Shim, Jae Won and Kim, Sung Soo and Kim, Hyun Kuk and Bae, In Ho and Park, Dae Sung and Park, Jun-Kyu and Kim, Jae Un and Kim, Han Byul and Lee, Min Young and Kim, Joong Sun and Kim, Jung Ha and Koo, Bon-Sang and Jeong, Kang-Jin and Kim, Sun-Uk and Kim, Min Chul and Sim, Doo Sun and Hong, Young Joon and Ahn, Youngkeun and Lim, Kyung Seob and Jeong, Myung Ho (2021) Effect of Novel Polymer-Free Nitrogen-Doped Titanium Dioxide Film–Coated Coronary Stent Loaded With Mycophenolic Acid. Frontiers in Bioengineering and Biotechnology, 9. ISSN 2296-4185
pubmed-zip/versions/1/package-entries/fbioe-09-650408/fbioe-09-650408.pdf - Published Version
Download (3MB)
Abstract
Background: Titanium is commonly used in blood-exposed medical devices because it has superior blood compatibility. Mycophenolic acid inhibits the proliferation of vascular smooth muscle cells. This study examined the effect of a non-polymer TiO2 thin film–coated stent with mycophenolic acid in a porcine coronary overstretch restenosis model.
Methods: Thirty coronary arteries in 15 pigs were randomized into three groups in which the coronary arteries were treated with a TiO2 film–coated stent with mycophenolic acid (NTM, n = 10), everolimus-eluting stent with biodegradable polymer (EES, n = 10), or TiO2 film–coated stent (NT, n = 10). A histopathologic analysis was performed 28 days after the stenting.
Results: There were no significant intergroup differences in injury score, internal elastic lamina area, or inflammation score. Percent area stenosis was significantly smaller in the NTM and EES groups than in the NT group (36.1 ± 13.63% vs. 31.6 ± 7.74% vs. 45.5 ± 18.96%, respectively, p = 0.0003). Fibrin score was greater in the EES group than in the NTM and NT groups [2.0 (range, 2.0–2.0) vs. 1.0 (range, 1.0–1.75) vs. 1.0 (range, 1.0–1.0), respectively, p < 0.0001]. The in-stent occlusion rate measured by micro-computed tomography demonstrated similar percent area stenosis rates on histology analysis (36.1 ± 15.10% in NTM vs. 31.6 ± 8.89% in EES vs. 45.5 ± 17.26% in NT, p < 0.05).
Conclusion: The NTM more effectively reduced neointima proliferation than the NT. Moreover, the inhibitory effect of NTM on smooth muscle cell proliferation was not inferior to that of the polymer-based EES with lower fibrin deposition in this porcine coronary restenosis model.
Item Type: | Article |
---|---|
Subjects: | Opene Prints > Biological Science |
Depositing User: | Managing Editor |
Date Deposited: | 11 Feb 2023 06:09 |
Last Modified: | 09 Jul 2024 06:54 |
URI: | http://geographical.go2journals.com/id/eprint/643 |