Resveratrol Modulates the Redox Response and Bile Acid Metabolism to Maintain the Cholesterol Homeostasis in Fish Megalobrama amblycephala Offered a High-Carbohydrate Diet

Ge, Yaping and Zhang, Ling and Chen, Weiliang and Sun, Miao and Liu, Wenbin and Li, Xiangfei (2023) Resveratrol Modulates the Redox Response and Bile Acid Metabolism to Maintain the Cholesterol Homeostasis in Fish Megalobrama amblycephala Offered a High-Carbohydrate Diet. Antioxidants, 12 (1). p. 121. ISSN 2076-3921

[thumbnail of antioxidants-12-00121.pdf] Text
antioxidants-12-00121.pdf - Published Version

Download (5MB)

Abstract

This study aimed to characterize the effects of resveratrol on the redox balance, cholesterol homeostasis and bile acid metabolism of Megalobrama amblycephala offered a high-carbohydrate diet. Fish (35.0 ± 0.15 g) were fed four diets including one control diet (32% nitrogen-free extract), one high-carbohydrate diet (45% nitrogen-free extract, HC), and the HC diet supplemented with different levels (0.04%, HCR1; 0.08%, HCR2) of resveratrol for 12 weeks. The HC diet-induced redox imbalance is characterized by increased MDA content and decreased T-SOD and CAT activities in the liver. Resveratrol attenuated this by up-regulating the transcription of Cu/Zn-sod, and increasing the activities of T-SOD, CAT, and GPX. The HC diet enhanced the cholesterol synthesis, but decreased the bile acid synthesis via up-regulating both hmgcr and acat2, and down-regulating cyp7a1, thus resulting in excessive cholesterol accumulation. Resveratrol supplement decreased cholesterol synthesis, and increased cholesterol uptake in the liver by down-regulating both hmgcr and acat2, and up-regulating ldlr. It also increased bile acid synthesis and biliary excretion by up-regulating cyp7a1, and down-regulating mrp2, oatp1, and oatp4 in the hindgut, thereby decreasing cholesterol accumulation. In conclusion, resveratrol improves the cholesterol homeostasis of Megalobrama amblycephala fed a high-carbohydrate diet by modulating the redox response and bile acid metabolism.

Item Type: Article
Subjects: Opene Prints > Agricultural and Food Science
Depositing User: Managing Editor
Date Deposited: 15 Dec 2023 08:23
Last Modified: 15 Dec 2023 08:23
URI: http://geographical.go2journals.com/id/eprint/3347

Actions (login required)

View Item
View Item