Improving Oxygen Binding of Desiccated Human Red Blood Cells

Stefansson, Steingrimur and Chung, David S. and Yoon, Jamie and Yoo, Won Seok and Park, Young Wook and Kim, George and Hahn, David and Le, Huyen and Chung, Sung-Jae and Bruttig, Stephen P. and Ho, David H. (2016) Improving Oxygen Binding of Desiccated Human Red Blood Cells. Advances in Bioscience and Biotechnology, 07 (02). pp. 47-54. ISSN 2156-8456

[thumbnail of ABB_2016020416021530.pdf] Text
ABB_2016020416021530.pdf - Published Version

Download (935kB)

Abstract

Desiccating human red blood cells (RBCs) to increase their storage life has been the subject of intense research for a number of years. However, drying RBCs invariably compromises their integrity and has detrimental effects on hemoglobin function due to autoxidation. We have previously demonstrated an RBC desiccation and rehydration process that preserves RBC antigenic epitopes better than frozen RBCs. This study expands on those observations by examining what effects this desiccation process has on RBC hemoglobin function with respect to oxygen binding properties. In this paper, we examined RBCs from normal donors which were desiccated to 25% moisture content and stored dry for 2 weeks at room temperature prior to rehydration with plasma followed by structural and functional studies. Our data showed that approximately 98% of the RBCs were intact upon rehydration based on hemolysis assays. Oxygen dissociation curves for the desiccated/rehydrated RBCs showed a left shift compared to fresh RBCs (pO2 = 17 mmHg vs. 26 mmHg, respectively). The desiccated/rehydrated RBCs also showed an increase in methemoglobin compared to fresh RBCs (4.5% vs 0.9%, respectively). 2,3-Diphosphoglycerate concentration of the desiccated/rehydrated RBCs was reduced by 20%. In conclusion, although this RBC dehydration process preserves RBC integrity and hemoglobin oxygen binding properties better than most other dehydration techniques described so far, further optimization and long-term studies are needed to make this procedure acceptable for human transfusion.

Item Type: Article
Subjects: Opene Prints > Biological Science
Depositing User: Managing Editor
Date Deposited: 28 Jan 2023 06:58
Last Modified: 20 Jul 2024 09:06
URI: http://geographical.go2journals.com/id/eprint/1239

Actions (login required)

View Item
View Item