
*Corresponding author: E-mail: george.oreku@gmail.com;

Asian Journal of Research in Computer Science

14(4): 198-211, 2022; Article no.AJRCOS.94574
ISSN: 2581-8260

A Study of Online Database Servers: The Case of
SQL - Injection, How Evil that could be?

George S. Oreku a,b*

a
Department of Information and Communication Technologies, Open University of Tanzania (OUT),

P.O. Box 23409, Dar es Salaam, Tanzania.
b
Faculty of Science and Forestry, School of Computing, University of Eastern Finland, P.O. Box 111,

FIN-80101 Joensuu, Finland.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/AJRCOS/2022/v14i4304

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers,

peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/94574

Received 10 October 2022
Accepted 13 December 2022
Published 17 December 2022

ABSTRACT

SQL injection attack is one of the most serious security vulnerabilities in many Databases
Managements systems. Most of these vulnerabilities are caused by lack of input validation and
SQL parameters used particularity at this time of technology revolution. The results of a SQL
injection attack (SQLIA) are unpleasant because the attacker could wipe the entire contents of the
victim's database or shut it down. As such, SQLIA can be used as important weapons in cyber
warfare. As an attempt of breaching of number of application data bases systems two SQL injection
techniques were used to successful locating vulnerable points during this research which are Blind
Text Injection Differential and Error based Exploitation. The motivations behind were to find out
where the databases systems are most likely to face an attack and proactively shore up those
weaknesses before exploitation by hackers. The success of both techniques is a result of poor web
server (online database server) design especially in the selection of error messages (or answers)
they display to website users if something goes wrong. The approach through examination of error
messages (error codes) did enable to precisely know the backend Database Management System
(DBMS) type and version and what exactly are parameters (variables) which can allow “illegally”
injecting codes (a SQL query). Additionally, the paper presents SQLIA cases and their impact in
Tanzania cyber space as well as it suggests the possible mitigation ways while reflecting the
collected data with what currently existing in cyberworld as far as SQL injection attack is concern to
present the reality.

Short Research Article

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

199

Keywords: First SQLIA; second code injection; third cyber warfare; fourth SQLMap; fifth security;
sixth database.

1. INTRODUCTION

SQL injection is a code injection technique used
to attack data-driven applications in which
nefarious SQL statements are inserted into an
entry field for execution [1]. The nefarious SQL
statements (SQL queries) can be instructed by
an attacker to dump the database contents, steal
credentials, or modify the entire database.
According to Imperva [2] which analyzed 297,954
attacks and 22,850,023 alerts in year 2015,
SQLIA rose by 150% and it was leading among
all kind of web application Attacks. This is in
favour of data presented in the report “state of
the Internet 2020” from the artticle in [3] justifying
the validy of the study.

SQL Injection vulnerabilities are a result of poor
or bad programming and occur when developers
combine hard-coded strings with user-input to
create dynamic queries [4]. Precautions should
be taken in order to prevent externally supplied
user input to modify the query string such that it
performs unintended actions including gaining
unauthorized read or write access to the data
stored in the database.

With today on going concerns online applications
security is unarguably the most serious concern
for Web applications, to which SQL injection
(SQLi) attack is one of the most devastating
attacks. Automatically testing SQLi vulnerabilities
is of ultimate importance, yet is unfortunately far
from trivial to implement. This is because of the
existence of a huge or potentially infinite number
of variants and semantic possibilities of SQL
leading to AQLi attacks on various web
applications [5].

According to National Security Agency (NSA),
SQL injection is the most typically ways used by
hackers, even the famous database organization
MYSQL was hacked by these techniques on
electronic records [6,7]. Presently a day, the
more the quantity of vulnerabilities will be
diminished, the more the quantity of threats
become to increment [8]. Structured Query
Language Injection Attack (SQLIA) is one of the
incredible dangers of web applications threats
where by lack of input validation vulnerabilities
where cause to SQL injection attack on web.

Sqlmap is an open-source penetration testing
tool that automates the process of detecting and
exploiting SQL injection flaws and taking over of

database servers [9]. It comes with a powerful
detection engine, many niche features for the
ultimate penetration tester and a broad range of
switches lasting from database fingerprinting,
over data fetching from the database, to
accessing the underlying file system and
executing commands on the operating system
via out-of-band connections. In respect to that
this study did follow the basics procedures of the
tool while applying different techniquics and
approach.

In the other hand in addressing the problem
many researchers have effectively analyzed
black box scanner in vulnerability detection.
Furthermore, they find out its constraints by
repeatedly testing numerous black-box scanners
against a wide range of vulnerable applications.
A lot of work in this direction is focused on
fuzzing. It deals with testing (semi)-random
values [10]. Another important method to prevent
web vulnerabilities is data mining and machine
learning. These learning methods with a variety
of web applications are considered a unique
approach. However, it can also be used in
source code to identify vulnerabilities [11].

With the same efforts Valeur and colleagues [12]
propose the use of an Intrusion Detection
System (IDS) to detect SQLIAs. Their IDS
system is based on a machine learning
technique that is trained using a set of typical
application queries. The technique builds models
of the typical queries and then monitors the
application at runtime to identify queries that do
not match the model. However, two recent
approaches, SQL DOM [13] and Safe Query
Objects [14], use encapsulation of database
queries to provide a safe and reliable way to
access databases. These techniques offer an
effective way to avoid the SQLIA problem by
changing the query-building process from an
unregulated one that uses string concatenation
to a systematic one that uses a type- checked
API.

In [15] & [1], existing detection and prevention
techniques against SQL injection attacks is
presented and analyzed. The authors presented
one Technique for Detection and Prevention of
SQL Injection Attack using ASCII Based String
Matching. Our approach has taken different turn
in addressing SQL injection problem by using
three different scenarios for testing security
systems. The approach applied penetration

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

200

testing technique trying to find out which is the
best solution for protecting sensitive data within
the government network to a number of agencies
were the exercise was undertaken. Specifically,
penetration testing has been conducted using
SQL Injection attacks [16]. As a target for the
conducting such attacks, a test web server was
set up in the government network.

In our approach the study first focused in
exploiting SQLI vulnerabilities to identify
vulnerable parameters where by identifications of
parameters using Google dorks and open-source
penetration testing tools was applied. However,
Vega was used to identify the vulnerable
parameters, SQLMap for a proof of concept that
is to verify if the databases under study is
actually exploitable for the given parameters.

Having the best efficiency and having the most
secure applications are always in contradiction
with each other. We cannot have high security
without any cost [17]. Injecting a web application
is the synonym of having access to the data
stored in the database. The data sometimes
could be confidential and of high value like the
financial secret of a bank or list of financial
transactions or secret information of some kind of
information system, etc. An unauthorized access
to this data by a crafted user can threat their
confidentiality, integrity, and authority. As a
result, the system could bear heavy loss in giving
proper services to its users or it may face
complete destruction and this is the foci or
conducting this research.

2. EXPLOITATION METHODS AND
TECHNIQUES USED

Although this vulnerability has been known
for more than 20 years, injections still
rank third in the OWASP Top 10 for web
vulnerabilities. In 2022, 1162 SQL
injection vulnerabilities were accepted as CVE.
[18,19] In an SQL injection, the attacker inserts
an SQL statement into an exchange between a
client and a database server [2]. SQL (Structured
Query Language) is used to represent queries to
database management systems (DBMS). The
maliciously injected SQL statement is designed
to extract or modify data from the database
server. A successful injection can lead
to authentication and evasion as well as
database modifications by inserting, modifying
and/or deleting data, resulting in data loss
and/or destruction of the entire database.

SQL Injection (SQLi) is the most common attack
vector responsible for over 50% of all web
application attacks today. The impact of SQL
injection (SQLIA) attacks is negative because
they can allow an attacker to delete or close
the entire contents of a victim's database [20].
Financial services are one of the safest
industries in the world, yet the number of attacks
against this industry continues to rise. But how
far and how? In 2022, Akamai Security Research
observed a phenomenal 3.5x growth in web
application and API attacks on FinServ and the
alarming rate at which attackers are exploiting
zero-day vulnerabilities that pose significant risks
to organizations EndServ. According to Akamai's
2020 State of the Internet Report, SQLi accounts
for nearly 80% of all retail, travel and hospitality
web application attacks between 2018 and 2020
[21].

In this paper, we will test security systems which
are implemented in government network with
Firewalls and IPS. A study of 228 web servers
was examined in the year 2016 in Tanzania
which indicated that 102 (≈45%) servers can be
SQL injection exploited. The vulnerability
observed could allow data exfiltration such that it
was possible to list tables and dump user
accounts, emails and passwords. Some of the
tables were found to contain administrative user
accounts and easily crack able passwords
enabling an attacker to take total control of the
victim server. According to Akamai “State of the
Internet” report 2020, SQLi accounts for almost
80% of all attacks against retail, travel, and
hospitality web apps between 2018 and 2020 [3].

2.1 Sample Selection

A total of 220 websites (web servers for that
matter) that provides web services to Tanzanians
were randomly chosen and cross examined to
check if are SQLI exploitable. Although the
choice was random, certain criteria were
considered;

• Websites that provide (have links that
provide) email services

• Websites owned by government
institutions, Universities, Regulators and
Tanzania Revenue Authority.

• Websites owned by banks/financial
institutions

• Websites ran by universities
• Website of the Communications Regulator
• Website of the Revenue Authority

https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-loyalty-for-sale-retail-and-hospitality-fraud-report-2020.pdf
https://www.akamai.com/uk/en/multimedia/documents/state-of-the-internet/soti-security-loyalty-for-sale-retail-and-hospitality-fraud-report-2020.pdf

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

201

Fig. 1. Top Web attack vectors targeting commerce (Source 24)

2.2 SQL Injection Techniques

SQL Injection exploitation is all about examining
error messages which web browsers (clients) get
from database servers. Through examination of
error messages (error codes) we can precisely
be able to know the backend DBMS type and
version. Also, we can also be able to know what
parameters (variables) can allow us to “illegally”
inject codes (a SQL query).

There are some cases where programmers are a
bit careful not to reveal backend systems through
“traditional” error codes, in such situations
normally blind injection techniques is used to test
SQLIA existence. In blind injections a number of
questions are probed to the database (web
server) application with TRUE or FALSE
responses and by examining the answers,
detailed information about the DBMS and
vulnerability parameters can be identified.
Several methods and tools can be used to detect
presence of SQL Injection points (parameters)
and perform exploitation; one can use manual
techniques [22], Google dorks [23] or automated
tools like SQLMap.

Google dorks and SQLMap were used during
this study. Depending on how a database is
designed, each database can be exploited with
different technique(s). During this study at least
eight exploitation techniques were observed;

• Time Delay Exploitation
• Blind Arithmetic Evaluation Differential

• Out of Band Exploitation
• Union Exploitation
• Boolean Exploitation
• Blind Text Injection Differential
• Stored Procedure
• Error based Exploitation

2.3 Injection Exploitation Method

There are two methods the browser use to send
information to the web server; these are GET
and POST. The GET method sends the encoded
user information appended to the page request.
The page and the encoded information are
separated by the? Character. The POST method
transfers information via HTTP headers.
Encoding in POST is done like in the GET
method, what is different is that, with POST, the
encoded information is put into a header called
QUERY_STRING.

Because data in the GET method is made up by
part of the URL, this method is less secure.
Parameters usually remain in browser history. In
the POST method, data are transferred through
HTTP header; therefore security of this method
depends on the HTTP protocol. By using Secure
HTTP, that is HTTPS, web servers can at least
guarantee the information is secure.

SQLIA are code injections attacks. Knowing
which method(s) is used when a targeted server
exchanges data with its clients is important as it
helps an attacker to decide a method to inject her
malicious codes. Experience shows that

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

202

exploiting SQL Injection parameters via GET
Method is easier than in POST Method. Part of
this study was to examine which method (GET or
POST) is mostly employed in Tanzania websites.

3. A PERFORMANCE EVALUTION:
DUMPING VULNERABLE DATABASES
WITH SQLMAP

A proof of concept in illustrating SQLIA is to be
able to dump database contents of a vulnerable
server. To do that, SQLMap was used in this
study. If you are a hacker, SQLMap is one of
powerful technique used in attacking a particular
web server. If you are an ICT Admin, SQLMap is
one of powerful and efficient tool to examine all
possible weaknesses in database applications in
order to mitigate SQL Injection attacks. SQLMap
not only can identify vulnerabilities, it can perform
the actual hack – exploitation. This paper will
show simple steps which were applied on
SQLMap to exploit a DBMS.

3.1 Vulnerable Parameter Identification

The first step in examining online databases for
weaknesses is to identify vulnerable parameters,
that is, injection points. Google dorks and
website auditing tools that are included in Kali
Linux were used to identify vulnerable
parameters in the selected web servers.

Screenshot 1 displays typical output of a
vulnerable parameter.

Things to note down from that output are
Resource and Parameter; The Resource is the
URL (webpage) that contains an injection point. It
is through this resource the database will (might)
be exploited. Second is the Parameter; this is
actually the vulnerable point – it is our place to
inject the “killer poison”. These two (Resource
and Parameter) will be inserted to the SQLMap
engine for exploitation.

The detection method helps the choice of a
syntax to be used in SQLMap, we know
there are two methods; GET and POST. These
have different syntaxes. The syntax for
exploitation using GET method is summarized in
Screenshot 2.

The above test was an exploitation tested in one
of university based in Dar es Salaam. It is a
university that offers online training.
Unfortunately, its database is still vulnerable until
when this paper was being compiled. As it can
be seen in coming sections, database contents
were successfully dumped. Hitting Enter key in
the above command shown in Screenshot 2,
SQLMap should start execution and if
successful, the results presented in Screenshot 3
would appear.

Screenshot 1. Output for the identification of an SQL vulnerable parameter in one of the tested
web server. The URL (webpage) shown in the Resource above, is what contains an SQL

injection point.

Screenshot 2. Syntax for using SQLMap to exploit a web server using the GET method. The
vulnerable parameter “key” in this test was given a value 1. In GET method, vulnerable

parameters can be given any random value

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

203

After SQLMap finishes the launching of the
attack, it displays a nice summery telling even
the payload it used for exploitation. Screenshot 4
illustrates more.

3.2 Database Manipulation

After successfully performance what is instructed
in the previous step, we are sure that the server
is SQL Injectable. We have indeed identified
injection points. The study didn’t opt to inject
malware, rather opted to identify existing
databases in that server. One server can have
more than one database.

The command used by SQLMap to identify (list)
all the databases is --dbs this command was
typed at the end of the command shown in
Screenshot 2. For the test done, the output
should take the look shown in Screenshot 5.

3.3 Listing Tables

The step that follows is to see what tables and
columns are contained in the databases.
SQLMap has secrets for that see Screenshot 6.

Screenshot 8 shows a command used to access
a table in database. In this example we try to
access a table called users.

Screenshot 3. A display of how SQL injection with GET method is successful. SQLMap has
managed also to tell present us the DBMS (for this case is MySQL)

Screenshot 4. We learn from this output that the server can be exploited using two techniques.
Error Based and UNION query. Also, SQLMap tells us the total number of injections (where we

can insert our malicious code) points. For this resource (refer Screenshot 1), there were 47
different injection point.

Screenshot 5. List of databases found in the web server under observation. The server had
two databases; information schema and out db

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

204

Screenshot 6. A command to list down tables in all databases. If you specify a particular
database, usually using -- D option followed by database name, tables for that database will be
displayed. If you don’t specify a database, then all tables in all databases found in the server

will be shown. This takes a considerable amount of time

Screenshot 7. Application of the --tables switch to a vulnerable server. The command extracts

and displays all tables. Tables which attract hackers are those having names like users,
usernames, or something similar. These tables contain usernames and password (or

password hashes) for users with various privileges

Screenshot 8. How SQLMap is used to access specific tables within a database

If we can dump database contents, what else do
we want? We have successfully hacked a
database, using just three tools; the first which
helped identify vulnerable parameter, The
second (SQLMap) which helped perform
injections and Third are tools which help cracking
password hashes.

3.4 SQLMap Injection with POST Method

All the above examples were for the GET
method. Let’s see how it was done with POST
method. Using POST, is a little bit tricky; we use
the data option to indicate that the vulnerable
parameter is a POST request. The command
takes the look shown in Screenshot 10.

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

205

Screenshot 9. Dumped outputs from the users table in the database. Names are intentionally
striped off for security reasons. The dumped table had password hashes of which were later

cracked using other password crackers with the help of 2GB rainbow table

Screenshot 10. SQL injection using POST method. The above server which belongs to one
government institution was (is, until the time of this publication) found vulnerable to SQL

injections

What is important when doing POST SQL
Injection with SQLMap is to make sure that you
supply the vulnerable parameter with necessary
data as identified during section 2.4.1 –
vulnerable parameter identification. Depending
on the choice of tool you use, certain tools give a
very nice presentation of POST data vulnerable
parameter.

Steps we followed during the GET method for
database manipulations are applicable in POST
as well. The end point is usually the same, see
Screenshot 11.

4. RESULTS: SQL INJECTIONS THE
CASE TANZANIA

4.1 Presence of SQLIA

From the study which was conducted most online
database servers in Tanzanian cyber space
seemed to be vulnerable to SQL Injection. The
Screenshot in cooperated in this paper from
number 1-11 displays results from selected
servers during experiment. Fig. 5 also
summarizes the presence of meta tags that
reveal sensitive information like platform details
and configuration characteristics in a histogram
diagram which was the results of misconstruction
of web server leading to code Injection. This
study shows that, of the 228 web servers

examined in year 2016 a total of 102 servers can

be SQL injection exploited, see Fig. 1.

4.2 GET vs POST SQLI Exploitation
Methods

From research overview it is observed that most
security Admins understand the fact that SQL
exploiting web servers using POST method is
difficult than the GET method, because during
this study it was observed that 56% of all SQL
Injection cases were found exploitable by POST
Method and the rest by the GET Method, see
Fig. 2.

4.3 SQL Exploitation Techniques

As said earlier, depending on how a database is
designed, each database system can be
exploited with different technique(s). There were
a total of 390 cases of exploitation techniques
found in 102 servers. These techniques are as
summarized in section 2.2 of this report. Fig. 3
displays those cases and their number of
occurrences.

Experience is using SQLMap during this study,
shows that it is quite easy to exploit SQL
injection using Error Based, Boolean and Union
techniques. These three techniques accounted
for 41.5% of all SQL exploitation.

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

206

Screenshot 11. Output from one server which was SQL injectable using POST method. This
government owned server had a total of 96 injection points which could be used for injecting

any malicious code, including malware

Fig. 2. Code Injections vulnerabilities as were observed in Tanzania cyber space between
Januarys to December in 2016. Script Injections accounted for most injections followed by
SQL. The results show that most web servers are susceptible to cyber espionage related

attacks; they can be injected with malware

Note: Some of database servers were found to
be exploitable using more than one SQL Injection
techniques. One University which offers distant
and online training had six of the above eight
techniques. It was indeed possible to damp most
of database contents of the server.

4.4 Web Server Misconfigurations

As explained in part of of the introduction section
of this paper, SQL injection vulnerabilities are a
result of poor web server design. Website
auditing tools were used to identify web server
that were designed poorly and existence of

injection vulnerabilities in such servers. The
screenshot number 12 below potrayes that
vividly.

Servers were observed to have the following
misconfigurations which might lead to code
injection vulnerabilities:

• Meta Tags Misconfiguration
• Unspecified Character Set
• HTTP Error Disclosure
• Unsecure Cookies
• Unsafe AJAX Code
• Weaker Encryption Algorithm

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

207

Fig. 3. Out of the 102 servers, 44% were found exploitable using GET Method. Most of these
servers were those ran and operated by universities. The rest 56% which are exploitable using

POST, were from banks and government institutions

Fig. 4. Blind Text and Blind Arithmetic Differential accounts for 42.3% of all cases of SQL
Injection exploitation techniques in Tanzania cyberspace. Out of Band Technique was the least

observed to only 0.07% of all cases

Unspecified Character Set and Meta Tag
misconfiguration account to most problems
(58.58%) that almost every server was observed
to have. Fig. 4 summarizes poor configuration
findings observed in 220 web servers surveyed
in year 2016.

5. DISCUSSION

The research underteken was to discover
relationships among what was done earlier and

to allow the prediction of future events from
present knowledge in reagard to SQL injection
attacks. The tests performed on government
network, have made it clear that Penetration
testing is of paramount importance on todays
efforts in fighting SQL injection attacks. The
advantage of using this technique is that it uses
the same tools as hackers do, but in a legal way.
Another advantage of this technique is the final
report that is produced, which provides

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

208

recommendations on avoiding security holes
which can be identified on a system.

Based on the findings as shown in Fig. 1, SQL
Injection accounted to 24.4% of all code
injections in year 2016. This means, nearly a
quarter of all web servers in Tanzania can be
injected with malicious codes (including malware)

using SQL injection techniques. Also, sensitive
information like credentials, emails and classified
documents can also be stolen by hackers who
can make use of this vulnerability. This study
process lays the foundation for more conclusive
data collection and analysis to set the foundation
of futher research on the topic.

Screenshot 12. Observations aimed at seeing server misconfigurations which lead to
exploitable vulnerabilities. Observations like this one were done using open source tools. The

above display is a vulnerability display as observed from one government mail server in
December, 2016. Owners of the server were notified in to fix all issues

Fig. 5. Cases of website Misconfigurations observed in webservers in a study conducted in
year 2016 for 220 we servers in Tanzania. One of “chilling” findings is the presence of meta
tags that reveal sensitive information like platform details and configuration characteristics

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

209

However, to be able to fully exploit a server using
SQL injection techniques and steal sensitive
data, an attacker must be capable of dumping
and cracking the dumped data. Success in
cracking the data depends on how strong is the
encryption algorithm used to cipher the data.
Unfortunately, there were observed to be 102
cases of weaker encryption algorithms used in
the 220 web servers examined. It was possible to
crack the dumped data using a 1GB of rainbow
tables in less than 15 minutes, which illustrates
how easy it was.

The results shows that, from SQLIA an attacker
can:

• Steal sensitive information by dumping
database contents.

• Grab web server access credentials by
cracking usernames and passwords.

Getting these credentials, an attack is practically
having full control of the web server and can
therefore modify data, inject malware (spyware),
launch denial of service attacks and any other
cybercrime related action she wishes.

A single SQL injection can impose serious
vulnerabilities in online database servers. The
vulnerability can be exploited by remote
attackers to gain unauthorized read or write
access to the victim database. Exploitation of
SQL injection vulnerabilities can also allow for
attacks against the logic of the installed
application. Attackers may be able to obtain
unauthorized access to the server hosting the
database. Indeed the injection can be very evil.

6. SUGGESTIONS FOR MITIGATIONS

While there are many approaches towards
mitigating SQL injection attacks [7,24,23], the
findings suggests the following to be done to
prevent an SQLIA;

 Use parameterized statements. This is
probably the best defense against SQL
injection vulnerabilities.

 Wherever possible, do not create dynamic
SQL queries or SQL queries with string
concatenation.

 Web developers must make sure that they
do input Sanitization. Variables of string
types should be filtered for escape
characters, and numeric types should be
checked to ensure that they are valid.

 Use of stored procedures can simplify
complex queries and allow for tighter
access control settings.

 Configuring database access controls can
limit the impact of exploited vulnerabilities.
This is a mitigating strategy that can be
employed in environments where the code
is not modifiable.

 Use of Object-relational mapping
eliminates the need for SQL.

7. CONCLUSION

Web servers in Tanzania seem to be vulnerable
to SQLIA. The vulnerabilities found from this
research are exploitable and could allow
adversaries steal sensitive information and take
full control of the victim servers. SQLIA detected
were a result of poor website design in terms of
security considerations. Web servers were found
to include sanitized inputs, display traditional
error messages that reveal sensitive server
information, creates dynamic queries and use
weaker encryption algorithms.

It is strongly advised that web server security
administrators should undergo proper security
training on ethical hacking courses and cyber
security. The course should be organized in a
manner that suites Tanzanian environment;
cyber space weaknesses in Tanzania might
slightly differ from what are observed in other
nations. Trainers must have full backgrounds
knowledge of the way the internet is accessed
and used.

However appropriate new grant funding and
research still needed to the growing
representation of underrepresented communities
in the cybersecurity field particularyly on web and
database attacks. SQL injections are still one of
the most exploited security vulnerabilities and, as
such, exist. SAST and DAST are two security
testing approaches for preventing SQL injections.
Both methods have a number of drawbacks.
There is, however, hope: recent research has
shown that fuzzing can be an especially effective
method for detecting SQL injections. The Code
Intelligence platform detects injections with high
accuracy and almost no false positives.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

210

REFERENCES

1. Wikipedia. SQL Injection; 2017.

Available:https://en.wikipedia.org/wiki/SQL
_injection May, 2017

2. Imperva. Web Application Attack Report;
2015.

Available:https://www.imperva.com/downlo
ad.asp?id=509 April, 2016.

3. Enemy at the Gates: Analyzing Attacks on
Financial Services

Available:https://www.akamai.com/lp/soti/e
nemy-at-the-gates-analyzing-attacks-on-
financial-services

Access on 12, 08, 2022

4. Indrani Balasundram, Ramaraj E.
Prevention of SQL injection attacks by
using service oriented authentication
technique. International Journal of
Modeling and Optimization. 2013;3(3):286-
S385.

5. Tang P, Qiu W, Huang Z, et al. SQL
injection behavior mining based deep
learning. In: International Conference on
Advanced Data Mining and Applications.
Springer, Cham, Nanjing, 2018:445–454.
Google Scholar

6. Zhang L, Tan C, Yu F. “An improved
rainbow table attack for long passwords.”
Procedia Computer Science.
2017;107:47–52.

7. Deniz Gurkan, Fatima Merchant.
“Interoperable medical instrument
networking and access system with
security considerations for critical care”.
Journal of Healthcare Engineering,
2010;1(4):637- 654.

8. Zar Chi Su Su Hlaing, Myo Khaing. A
detection and prevention technique on
SQL injection attacks”. 2020 IEEE
Conference on Computer Applications
(ICCA), IEEE Xplore; 2020.

9. SQLmap-Automatic SQL injection and
database etakeover tool.

Available:http://SQLmap.org

10. Duchene F, Rawat S, Richier JL, Groz R.
KameleonFuzz: Evolutionary fuzzing for
black-box XSS detection. In Proceedings
of the 4th ACM conference on Data and
application security and privacy. 2014:37-
48. ACM

11. Medeiros I, Neves NF, Correia M.
Automatic detection and correction of web
application vulnerabilities using data

mining to predict false positives. In
Proceedings of the 23rd International
Conference on World Wide Web.
2014:63-74. ACM.

12. Tyrone Grandison, Evimaria Terzi.
Intrusion Detection Technology; 2007.
DOI: https://doi.org/10.1007/978-0-387-
39940-9_209

13. McClure RA, Kruger IH. SQL DOM:
Compile time checking of dynamic SQL
statements. 2005m:88-96.

14. William R. Cook, Siddhartha Rai. Safe
query objects: Statically-typed objects as
remotely-executable queries, Conference:
27th International Conference on Software
Engineering (ICSE 2005). 2005:15-21. St.
Louis, Missouri, USA

15. Balasundarama I, Ramaraj E. “An efficient
technique for detection and prevention of
SQL injection attack using ASCII based
string matching”. International Conference
on Communication Technology and
System Design. 2011;30(2012):183–190.

16. Manish Kumar, Indu L. Detection and
prevention of SQL injection attack.
International Journal of Computer Science
and Information Technologies.
2014;5(1):374-377.

17. Raniah Alsahafi. SQL injection attacks:
Detection and prevention techniques.
International Journal of Scientific &
Technology Research 2019;8(01).

18. SingCERT's Security Bulletin.
Available:https://www.csa.gov.sg/singcert/
Alerts/sb-2022-018
Access on 12, 08, 2022

19. Khanna S, Verma AK. Classification of
SQL injection attacks using fuzzy tainting.
In: Sa P, Sahoo M, Murugappan M, Wu Y,
Majhi B. (eds). Progress in Intelligent
Computing Techniques: Theory, Practice,
and Applications. Advances in Intelligent
Systems and Computing, Springer,
Singapore. 2018;518.
Available:https://doi.org/10.1007/978-981-
10-3373-5_46

20. Asha NM, Varun Kumar, Vaidhyanathan
G. Preventing SQL injection attacks.
International Journal of Computer
Applications. 2012;52(13):0975 – 8887.

21. Charles MJ, Pfleeger P, Pfleeger
SL. Security in computing. 5th ed.;
Springer: Berlin/Heidelberg, Germany;
2004.

22. Exploit Database. Full SQL injection
tutorial (MySQL); 2016.

https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://www.akamai.com/lp/soti/enemy-at-the-gates-analyzing-attacks-on-financial-services
https://ieeexplore.ieee.org/author/37088232384
https://ieeexplore.ieee.org/author/37088232818
https://ieeexplore.ieee.org/xpl/conhome/9007008/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9007008/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9007008/proceeding
http://sqlmap.org/
https://doi.org/10.1007/978-0-387-39940-9_209
https://doi.org/10.1007/978-0-387-39940-9_209
https://ieeexplore.ieee.org/author/37562751000
https://ieeexplore.ieee.org/author/37267495100
https://www.researchgate.net/profile/William-Cook-29?_sg%5B0%5D=_jMZ30F32kabkxvjkZHgVbVJY7lPOOfEUvj0esLeowAa1XI6m8_r3cL9VqxnHPlrARAzkJU.m-P7qutrJ_DO416gTVfPxjJKgFI-kRiVET2V9RkSbrU07BWgYzkfxnDWWa9u78FfK1Gr_mlHm9dGKwo97PKVeQ&_sg%5B1%5D=LJlcTOTsuBlJk-UzqNimtMUjta2CP8V7fcDKRld5KS3URr5xAX1igIX9ChlWZeOFzxhKalQ.dIK8WQPFSaznYslr_rt2q7m15HzQDtrosQEGpeq3FxVFma1JBp5j4CfCfgeFE8-NEQ16qQF0XCo4YeLX22HrVA
https://www.researchgate.net/scientific-contributions/Siddhartha-Rai-70164532?_sg%5B0%5D=_jMZ30F32kabkxvjkZHgVbVJY7lPOOfEUvj0esLeowAa1XI6m8_r3cL9VqxnHPlrARAzkJU.m-P7qutrJ_DO416gTVfPxjJKgFI-kRiVET2V9RkSbrU07BWgYzkfxnDWWa9u78FfK1Gr_mlHm9dGKwo97PKVeQ&_sg%5B1%5D=LJlcTOTsuBlJk-UzqNimtMUjta2CP8V7fcDKRld5KS3URr5xAX1igIX9ChlWZeOFzxhKalQ.dIK8WQPFSaznYslr_rt2q7m15HzQDtrosQEGpeq3FxVFma1JBp5j4CfCfgeFE8-NEQ16qQF0XCo4YeLX22HrVA
https://www.csa.gov.sg/singcert/Alerts/sb-2022-018
https://www.csa.gov.sg/singcert/Alerts/sb-2022-018
https://doi.org/10.1007/978-981-10-3373-5_46
https://doi.org/10.1007/978-981-10-3373-5_46

Oreku; AJRCOS, 14(4): 198-211, 2022; Article no.AJRCOS.94574

211

Available:https://www.exploit-
db.com/papers/13045/. 2017.

23. Johnny Long. Google hacking for
penetration testers: Explore the dark side
of googling. Syngress Publishing; 2005.

24. Singh Kalsi T, Kaur N, et al. “Methods for
preventing SQL injection attacks: A
review”. International Journal of Adanced
Engineering Technology.

E-ISSN: 0976-394.

© 2022 Oreku; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/94574

http://creativecommons.org/licenses/by/4.0

