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ABSTRACT 
 

Aims: Entomopathogenic nematode (EPN) and its symbiotic bacterium are used worldwide as 
microbial control agents. Toxins from EPN symbiotic bacteria were isolated and provided basis for 
using this potential resource as biocontrol agent against vegetable diseases and pests. 
Study Design: The toxins were extracted from 28 strains of bacteria associated with 
entomopathogenic nematodes. The insecticidal activity and antibiotic activity against vegetable 
diseases and pests were determined through bioassay. 
Place and Duration of Study: College of Bioscience and Biotechnology, between May 2020 and 
September 2021. 
Methodology: The toxins were extracted by (NH4)2SO4 precipitation method. The insecticidal 
activities and antibiotic activities were evaluated using bioassay in the laboratory.  
Results: The toxins of the symbiotic bacteria associated with EPN had certain insecticidal activities 
on the first instar larvae of Plutella xylostella and Laphygma exigua, and strain SY5 showed the 
most obvious antifungal activities against Trichothecium roseum and Fusarium oxysporum. 
Conclusions: The toxins of the EPN symbiotic bacteria SY5 had good insecticidal activity and 
antibiotic activity. Therefore, it has the potential for use against vegetable diseases and pests as 
biocontrol agents. 
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1. INRTODUCTION 
 
Vegetables are one of the essential foods in 
people's daily diet, but the production of 
vegetables will be greatly reduced by plant 
diseases and pests. Plutella xylostella, 
Laphygma exigua, Trichothecium roseum and 
Fusarium oxysporum are main pests and 
diseases of vegetables. “The diamondback moth, 
P. xylostella (Lepidoptera: plutellidae), is one of 
the most serious pests of cultivated 
Brassicaceae (such as cabbage, radish, and 
rapeseed) worldwide. Laphygma exigua 
(Lepidoptera: Noctuidae) is polyphagous, 
migratory, gluttonous, cosmopolitan, and 
intermittent pests, which damage cabbage, 
tomato, pepper, eggplant, cucumber and other 
vegetables and plants” [1-3]. “Fungal diseases 
are considered a great problem in vegetable 
production. Trichothecium roseum is the causal 
for many diseases of tomatos, and F. oxysporum 
is a worldwide distributed soil borne pathogenic 
fungus, which can cause fusarium wilt of melons, 
solanaceae, bananas, cotton, legumes and other 
plants” [4,5]. It is necessary to control insect 
pests and fungal plant disease in vegetable 
production.  

 
“Application of entomopathogenic nematode 
(EPNs) with their bacterial endosymbionts 
become a prime approach in the biocontrol 
sector as an ecologically safer tool in a 
sustainable agriculture perspective as well as in 
integrated pest management” [6]. “Since the 
early 1970s, there has been a tremendous 
research and commercial interest in 
entomopathogenic nematodes and their 
associated bacteria” [7]. “In the 1990s and 
twentieth century’s vast studies on EPNs were 
carried out, and it was reported that EPNs were 
distributed worldwide” [6]. (EPNs) exist widely in 
the soil. They are non-toxic and harmless to 
plants, humans, animals and the environment [8].                   
“EPN (genera Steinernema and Heterorhabditis) 
kill insects with the aid of a mutualistic 
association with symbiotic bacteria 
(Xenorhabdus spp. and Photorhabdus spp. for 
Steinernematidae and Heterorhabditidae, 
respectively). Xenorhabdus and Photorhabdus 
bacteria secrete a wide variety of substances into 
the culture medium including toxins, lipases, 
proteases, antibiotics and lipopolysaccharides. 
EPN and its symbiotic bacterium are used 

worldwide as microbial control agents                             
in agriculture” [9-12]. “Entomopathogenic 
nematode-bacterium complex research is being 
conducted in many parts of the world. Many 
countries and regions working on these important 
biological control agents of soil pests. In Central 
America, initial attempts to control insect pests 
and mass production research are reported” [7]. 
“In North America and Europe, emphasis on the 
status of commercially available nematodes was 
placed. In China, Korea, and India, research in 
the use of nematode for controlling insect pests 
or soil plant pathogens was emphasized , as well 
as in Japan, where the development of 
commercial nematodes was available” [6]. 
Overall, the intensity of research varies by 
country or regions. In most cases, the research 
in developing countries shows that the emphasis 
is to demonstrate the usefulness of the 
entomopathogenic nematodes or their symbiotic 
bacteria against various pests. In this study, the 
toxins were extracted from entomopathogenic 
nematode symbiotic bacteria. The insecticidal 
activities and antifungal activities to vegetable 
diseases and pests were determined through 
bioassay. The result will be helpful for the 
development of new microbial insecticides, and 
will provide new ways and methods for biological 
control of vegetable against pests and fungal-
plant diseases. 

 
2. MATERIALS AND METHODS 
 
2.1 Materials 
 
The EPNs were provided by Pest Biological 
Control Laboratory, Shenyang Agricultural 
University. Twenty-eight strains of EPN symbiotic 
bacteria were isolated from 5 species of EPNs 
out of the 23 species obtained from soil samples 
collected from different regions of China. The 
bacterial strain names were given according to 
the EPN hosts coded in our lab.  
 

2.2 Production of Bacterial Cell and the 
Crude Extract 

 

A single colony was inoculated into nutrient broth 
(18 g nutrient broth in 500 ml distilled water) in a 
flask and placed in a shaking incubator at 160 
rpm for 40 h at 27°C. The concentration                           
of bacterial cells in the broth suspension                   
was determined on a spectrophotometer                      
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at 600nmwavelength. After cultivation, the 
supernatant of the bacterial strains was collected 
by centrifugation (3400 g, 4°C, 15min) and then 
(NH4)2SO4 was added to give 85% final content. 
Through dialyzing and frost-desiccation, the 
insecticidal toxins were obtained. 
 

2.3 Bioassay 
 

We used the larvae of P. xylostella and L. 
exigua, which were kindly provided by Pest 
Biological Control Laboratory, Shenyang 
Agricultural University, to detect the oral 
insecticidal activity of the toxins. The toxins were 
mixed into artificial diet at 50 μg/g of diet as the 
test sample. Only distilled water was given as 
control samples. The mixed diet (0.2g) and 
larvae were placed individually into 5 ml clear 
plastic airtight pots. Each batch had 20 larvae, 
and three batches were repeated. Survival and 
weight of larvae were recorded at 3rd, 4th, 5th 
day. The corrected mortality and the inhibiting 
rate of larval weight were calculated. The 
corrected mortality =100 × (treatments mortality – 
contrast mortality) / (1- contrast weight). The 
inhibiting rate of larval weight = 100 × (contrast 
weight – treatments weight) / contrast weight. 

 
The toxin (50 μg /ml)) and cooled PDA agar were 
mixed as 1ml: 25 ml in 9 cm Petri dishes. The 
control dishes were 1 ml distill water and 25 ml 
cooled PDA agar. The plant pathogenic fungi 
plug (5 mm, kindly provided by Shenyang 
Chemical Engineering Research College.) was 
added to the center of the dish after the mixed 
PDA solid. All dishes were incubated at 28°C 
and each sample had three replicates. The zone 
of inhibition (the diameter of contrast and 
treatment) was observed and measured by the 
cross method at 3rd, 4th, and 5th days. The 
inhibiting rate of plant pathogenic fungi was 
calculated by the formula (The inhibiting rate 
against plant pathogenic fungi = 100 × (the 
diameter of contrast –the diameter of 
treatments)/contrast diameter).  

 
2.4 Statistical Analysis 
 
SPSS 23.0 software (one-way ANOVA) was 
used to analyze the data. The data on the 
corrected mortality, the inhibiting rate of larval 
weight and the inhibiting rate were analyzed by 
repeated measures ANOVA. The differences 
between treatments were determined using 

contrasts. The differences between treatments 
were analyzed by Duncan. All comparisons were 
considered as significance at p<0.05. 

 
3. RESULTS AND ANALYSIS 
 

3.1 Insecticidal Activity of Toxins against 
P. xylostella 

 
The reference EPN symbiotic bacterial toxin (X. 
nematophila, X. poinarrii, X. bovienii, P. 
temperatae and P.luminescens) exhibited highly 
insecticidal activities [13-18]. Bioassay results 
showed that the toxin of X. nematophila A24 had 
the highest oral insecticidal activity among the 
reference strains. The average of corrected 
mortality at 3rd, 4th, and 5th day and the average 
inhibiting rate of larval weight to P. xylostella 
were 45.83% (Fig. 1A), 77.50% (Fig. 1B), 
96.67% (Fig. 1C) and 34.12% (Fig. 1D).  

 
These toxins were extracted from 23 EPN 
symbiotic bacterial isolates which were gathered 
in different vegetation from different regions of 
China. Bioassay results indicated that all these 
bacterial strains had oral insecticidal activity to P. 
xylostella. The insecticidal activity of all toxin had 
no significant difference on the 3rd day (Fig. 1A), 
while it had significant difference on the 4th day 
and 5th day. Among these strains, the toxin of 
SY5 showed the highest oral insecticidal activity 
to P. xylostella, with 100% of the average 
corrected mortality at 5th day.  

 
3.2 Insecticidal Activity of Toxins against 

L. exigua 
 
At 3rd day, 4th day and 5th day, SY5 had the 
most obvious insecticidal activity among the 28 
strains of symbiotic bacteria toxin (Fig. 2). The 
average corrected mortality rates were 66.14% 
(Fig. 2A), 67.03% (Fig. 2B) and 68.52% (Fig. 
2C), respectively. The average corrected 
mortality to L. exigua of SY5 toxin was not 
significantly different from the broth of strains 
A24 and 0362W, but its average inhibiting rate of 
larval weight was more than these two strains 
(Fig. 2D).  

 
Taken together, the toxin of strain SY5 had the 
highest virulence to P. xylostella and L. exigua. 
Therefore, SY5 was selected as the most highly 
virulent symbiotic bacteria for further study. 
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D 
 
Fig. 1. Insecticidal activity of toxins against P. xylostella: A) The average corrected mortality of 
3d; B) The average corrected mortality of 4d; C) The average corrected mortality of 5d; D) The 

average inhibiting rate of larval weight 
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Fig. 2. Insecticidal activity of toxins against L. exigua: A) The average corrected mortality of 
3d; B) The average corrected mortality of 4d; C) The average corrected mortality of 5d; D) The 

average inhibiting rate of larval weight 
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B 
 
Fig. 3. Antifungal activities of the toxin to T. roseum and F. oxysporum: A) The inhibiting rate 

against T. roseum; B) The inhibiting rate against F. oxysporum 
 

3.3 Antifungal Activities of the Toxin to T. 
roseum and F. oxysporum 

 
Our results showed that the toxin of the symbiotic 
bacteria SY5 had antifungal activity against T. 
roseum and F. oxysporum. As shown in Fig. 3, 
the antifungal activities increased over time. The 
inhibiting rate against T. roseum and F. 
oxysporum at 5th day were 33.82% and 39.66%, 
which significantly raised comparism to the 
inhibiting rate of 3d and 4d. 
 

4. DISCUSSION 
 

Green food and biological pesticides are the 
priority development agenda in agricultural 
production, and the research and development of 
biological control, ecological control and other 
alternative control technologies are the main way 

to achieve this agenda. Bacillus thuringiensis (Bt) 
is the most wildly used biocontrol bacteria. With 
the extensive use of Bt products, the resistance 
of agricultural pests (such as P. xylostella) is 
becoming more and more obvious [19]. So, it is 
necessary to find some new biocontrol resource 
for the control and management of pests and 
plant diseases.  
 
As an important biological control resource, EPN 
have been used to control a variety of 
agricultural, forestry, grassland, flower, and 
sanitary pests such as grubs, leeks, and 
cutworms [19-21]. EPNs and their symbiotic 
bacteria have a wide range of activity against 
parasitic pests, and can produce different types 
of insecticidal toxins. Studying on such bacteria 
and their insecticidal substances are helpful for 
developing new microbial insecticides, 
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insecticides toxins and genes. “In different strain 
types and species, the antibiotic production of 
Xenorhabdus and Photorhabdus are different 
qualitatively and quantitatively” [22-26]. In this 
study, the toxin was the extracellular protein of 
native isolated Xenorhabdus and Photorhabdus. 
Our result showed that the insecticidal activities 
of toxin were tested differently among different 
strains. The toxin of SY5 showed higher larval 
mortality than the other stains. The insecticidal 
activities of symbiotic bacteria SY5 toxin against 
the two pest were different, which may be due to 
the different ability of different insects to respond 
to the toxins. The strain also showed good 
antifungal activity against two vegetable disease, 
T. roseum and F. oxysporum.  

 
There have been many reports on the toxins and 
genes of the symbiotic bacteria of EPN [27-29]. 
The strains used in this experiment were all 
collected and isolated in China. Insecticidal 
activity substances are separated, purified and 
identified in order to discover new insecticidal 
substances and insecticidal genes. The results 
will provide new materials for the development of 
new microbial insecticides, insecticidal genes 
and new materials for the biological control of 
vegetable pests.  

 
5. CONCLUSION 
 
In this study, the toxins from 28 strains of the 
symbiotic bacteria were extracted. The highly 
virulent strains SY5 was screened through 
bioassay. This strain had the highest insecticidal 
activity against P. xylostella and L. exigua, and 
good antifungal activity against T. roseum and F. 
oxysporum. The study provided an alternative 
resource for controlling pests and diseases of 
vegetables. The results of the present study will 
be helpful for the development of new microbial 
insecticides, insecticides toxins and will provide 
new ways and methods for vegetable pest and 
fungal plant disease biological control.  
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