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Abstract

The preference of the proper distribution for modelling data is often a substantial concern to researchers and
practitioners. For this reason, new statistical distributions or the generalizations of well-known distributions
have been proposed for flexible modeling. Weighted distributions are one of the generalization methods for
these distributions. In this article, we proposed e new discrete distribution which takes length and area
biased exponential distributions as an underlying distribution. Main statistical properties of these proposed
distributions are obtained and real-life examples which have been used in literature are used for illustration
of these distributions.
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1 Introduction

In recent years, it has been seen that, traditional statistical distributions have limited application areas. For
this reason, some authors have proposed some generalization methods of these distributions or some other new
distributions. On the other hand, by using the statistical analysis which strongly depends on the assumed
probability model or distributions [1]. Discretization of continuous distribution is one of the most applied
methodologies used in statistical literature. If the underlying continuous random variable X has the survival
function S(x) = 1 − F (x) = P (X > x) then the random variable Y (largest integer less than or equal to X) will
have the discrete probability function as

f(y) = Sx(y) − Sx(y + 1), y = 0, 1, 2, ... (1.1)

There are many studies dealing with this discretization method. Nakagawa and Osaki [2] first proposed discrete
Weibull distribution, Stein and Dattero [3] presented another discretization of Weibull distribution, Roy [4]
considered discrete normal distribution, he also studied discrete Rayleigh distribution, Krishna and Pundir [5]
studied discrete Burr distribution, Chakraborty and Chakravarty [6] proposed discrete gamma distribution,
Jazi et al. [7] proposed discrete inverse Weibull distribution and Bakouch et al. [8] studied discrete Lindley
distribution. Additionally, these proposed distributions have been applied to so many areas such as renewal
theory, molecular biology, reliability, finance, value at risk problems and water management, see for example
Nekoukhou et al [9], Roy [10], Lin and Guillén[11], Haas [12]and Wang et al. [13].

On the other hand, exponential distribution is one of the key distributions in statistics application and theory.
Exponential distribution has a huge application area because of its lack of memory property, its constant
hazard rate and its great mathematical tractability. Many generalizations of the exponential distribution are
developed in recent years such as the exponentiated exponential [14, 15], generalized exponentiated moment
exponential [16], extended exponentiated exponential [17], Marshall-Olkin exponential Weibull [18], Marshall-
Olkin generalized exponential [19], and exponentiated moment exponential [20] distributions. In this paper, we
use the weighted exponential distribution as an underlying continuous distribution.

The weighted distribution is defined as

f(x; θ) =
w(x)f0(x; θ)

E(w(x))
(1.2)

where w(x) is any function of random variable X. Size-biased distributions are the special cases of the weighted
distributions and has the form

f(x; θ) =
xkf0(x; θ)

µk
(1.3)

where f0(x; θ) is the original underlying distribution and µk = E(Xk) is the kth moment of the random variable
X. We get the length-biased and area-biased distributions for k = 1 and k = 2 respectively.

Let X be a random variable which follows length-biased exponential distribution with parameter θ, then the
probability density function is given by

f(x; θ) = θ2xexp(−θx), x > 0 (1.4)

and the corresponding cumulative distribution function is obtained as

F (x; θ) = 1 − (θx+ 1)exp(−θx), x > 0. (1.5)
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On the other hand, let X be a random variable which follows area-biased exponential distribution with parameter
θ, then the probability density function and cumulative distribution function are given by

f(x; θ) =
θ3

2
x2exp(−θx), x > 0 (1.6)

and

F (x; θ) = 1 −
(
θ2x2 + 2θx+ 2

2

)
exp(−θx), x > 0 (1.7)

respectively.

2 Discrete Length-Biased Exponential Distribution

The probability mass function of the discrete length-biased exponential (DLBE) distribution can be obtained
by using Equation (1.1) and Equation (1.5) as follows:

P (X = x) = qx
(
θx(1 − q) + 1 − θq − q

)
, x = 0, 1, 2, ... (2.1)

where q = exp(−θ). The corresponding cumulative distribution function and survival function of the DLBE
distribution are

F (x) = 1 − qx+1
(

1 + θ + θx
)
, x = 0, 1, 2, ... (2.2)

and

S(x) = qx+1
(

1 + θ + θx
)
, x = 0, 1, 2, ... (2.3)

respectively.

Fig. 1 shows some possible shapes of Equation (2.1). It can be seen that the probability mass function is always
unimodal.

Fig. 2 shows some possible shapes of hazard rate function h(x) = f(x)/S(x) for different θ values. It can be
easily seen that the failure rate is increasing with respect to x and θ values.

As a result, the DLBE distribution is unimodal, since the probability function satisfies the log-concave inequality(
f2(x) > f(x+ 1)f(x− 1)

)
, see Keilson and Gerber, [21]. Additionally, the DLBE distribution is unimodal and

has a discrete increasing failure rate.

The quantile function of DLBE distribution can be obtained by solving the equation F (Q(u)) = u.

1 − u = exp
(
− θ(Q(u) + 1)(1 + θ + θQ(u))

)
(2.4)

Substituting Z(u) = −1 − θ − θQ(u), the quantile function can be obtained as,

Q(u) = −
W
(
e−1(u− 1)

)
+ θ + 1

θ
(2.5)

for 0 < u < 1, where W (.) is the Lambert W function. In particular, the median of the DLBE distribution
is

Q(
1

2
) = −

W
(
e−1(1 − 1

2
)
)

+ θ + 1

θ
(2.6)
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Fig. 1. Possible shapes of probability function of the DLBE distribution

The moment generating function can be found by using probability generating function E(tX) as:

Mx(t) = (1 − θq − q)
1

1 − qet
+ θ(1 − q)

qet

(1 − qet)2
(2.7)

Consequently, the first four moment of DLBE distribution can be found by using the derivatives of moment
generating function obtained in Equation (2.7).

E(X) =
q(1 − θq − q) − θq(q − 1) + 2θq2

(q − 1)2

E(X2) =
q(1 − θq − q)

(q − 1)2
− 2q2(1 − θq − q)

(q − 1)3
− θq

(q − 1)
+

6θq2

(q − 1)2
− 6θp3

(q − 1)3

E(X3) =
q(1 − θq − q)

(q − 1)2
− 6q2(1 − θq − q)

(q − 1)3
+

6q3(1 − θq − q)

(q − 1)4
− θq

(q − 1)

+
14θq2

(q − 1)2
− 36θq3

(q − 1)3
+

24θq4

(q − 1)4

E(X4) =
q(1 − θq − q)

(q − 1)2
− 14q2(1 − θq − q)

(q − 1)3
+

36q3(1 − θq − q)

(q − 1)4
− 24q4(q − θq + 1)

(q − 1)5

− θq

(q − 1)
+

30θq2

(q − 1)2
− 150θq3

(q − 1)3
+

240θq4

(q − 1)4
− 120θq5

(q − 1)5

The estimator of θ by using moments method can be found as

q(1 − θq − q) − θq(q − 1) + 2θq2

(q − 1)2
= µ1 (2.8)
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Fig. 2. Possible shapes of hazard rate function of the DLBE distribution

where q = exp(−θ) and µ1 = X̄. The method of moments estimator of θ is the root of this equation. For small
θ, the approximation of q = 1 − θ can be used as

− θ2(µ1 + 3) + 2θ + 1 = 0 (2.9)

for better approximation the better approximation p = 1 − θ + θ2

2
can be used.

In order to obtain the ML estimator of the unknown parameter, the log-likelihood function of θ is

logL(θ) = −θ
n∑
i=1

Xi +

n∑
i=1

log (θXi(1 − exp(−θ)) + 1 − θexp(−θ) − exp(−θ)) (2.10)

Taking the derivative of the log-likelihood function with respect to the unknown parameter θ and equating it to
the zero, we obtain the following equation

∂ lnL

∂θ
= −

n∑
i=1

Xi +

n∑
i=1

Xi + exp(−θ)(θXi −Xi + θ)

θXi(1 − exp(−θ)) + 1 − θexp(−θ) − exp(−θ) (2.11)

The solution is called maximum likelihood estimator (MLE) of θ and has no explicit solutions. Iterative methods
can be used for solving the equation.

3 Discrete Area-Biased Exponential Distribution

The probability mass function of the discrete area-biased exponential (DABE) distribution can be obtained by
using Equation (1.1) and Equation (1.7) as follows:

P (X = x) = qx
(θ2

2
x2(1 − q) + θx(1 − θq − q) + (1 − θ2

2
q − θq − q)

)
, x = 0, 1, 2, ... (3.1)
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where q = exp(−θ). The corresponding cumulative distribution function and survival function of the DABE
distribution are

F (x) = 1 − qx+1
(θ2

2
x2 + θ2x+ θx+

θ2

2
+ θ + 1

)
, x = 0, 1, 2, ... (3.2)

and

S(x) = qx+1
(θ2

2
x2 + θ2x+ θx+

θ2

2
+ θ + 1

)
, x = 0, 1, 2, ... (3.3)

respectively.

Fig. 3 shows some possible shapes of Equation (3.1). It can be seen that the probability mass function is always
unimodal.

Fig. 3. Possible shapes of mass function of DABE distribution

Fig. 4 shows some possible shapes of hazard rate function h(x) = f(x)/S(x) for different θ values. It can be
easily seen that the failure rate is increasing with respect to x and θ values.

As a result, the DABE distribution is unimodal, since the probability function satisfies the log-concave inequality(
f2(x) > f(x+ 1)f(x− 1)

)
, see Keilson and Gerber, [21]. Additionally, the DABE distribution is unimodal and

has a discrete increasing failure rate.

The moment generating function can be found by using probability generating function E(tX) as:

Mx(t) =
θ2

2
(1 − q)

etq(1 + qet)

(1 − qet)3
+ θ(1 − θq − q)

qet

(1 − qet)2
+ (1 − θ2

2
q − θq − q)

1

1 − qet
(3.4)

Consequently, the first four moment of DLBE distribution can be found by using the derivatives of moment
generating function obtained in Equation (3.4).

39



Celik; Asian Res. J. Math., vol. 18, no. 12, pp. 34-45, 2022; Article no.ARJOM.94089

Fig. 4. Possible shapes of hazard rate function of DABE distribution

E(X) =
θ2q

2(q − 1)2
− q(1 − θ2/q − qθ − q)

(q − 1)2
− θq(1 − θq − q)

(q − 1)2
− 3θ2q(q + 1)

2(q − 1)3

+
2θ2(1 − θq − q)

(q − 1)3

E(X2) =
2q2(1 − θ2/q − qθ − q)

(q − 1)3
− 3θ2q2

(q − 1)3
+

θ2q

2(q − 1)2
− q(1 − θ2/q − qθ − q)

(q − 1)2

−q(1 − θq − q)

(q − 1)2
− 3θ2q(q + 1)

2(q − 1)3
+

6θ2q2(1 − θq − q)

(q − 1)3
− 6θ2q3(1 − θq − q)

(q − 1)4
+

6θ2q2(q + 1)

(q − 1)4

E(X3) =
180θ2q3

(q − 1)4
− 9θ2q2

(q − 1)3
+

6q2(1 − θ2/q − qθ − q)

(q − 1)3
− 6q3(1 − θ2/q − qθ − q)

(q − 1)4

+
θ2q

2(q − 1)2
− q(1 − θ2/q − qθ − q)

(q − 1)2
− θq(1 − θq − q)

(q − 1)2
− 3θ2q(q + 1)

2(q − 1)3
+

14θq2(1 − θq − q)

(q − 1)3

−36θq3(1 − θq − q)

(q − 1)4
+

24θq4(1 − θq − q)

(q − 1)5
+

18θ2q2(q + 1)

(q − 1)4
− 30θ2q3(q + 1)

(q − 1)5

E(X4) =
108θ2q3

(q − 1)4
− 21θ2q2

(q − 1)3
− 120θ2q4

(q − 1)5
+

14q2(1 − θ2/q − qθ − q)

(q − 1)3

−36q3(1 − θ2/q − qθ − q)

(q − 1)4
+

24q4(1 − θ2/q − qθ − q)

(q − 1)5
+

θ2q

2(q − 1)2
− q(1 − θq − q)

(q − 1)2

−q(1 − θ2/q − qθ − q)

(q − 1)2
− 30θ2q(q + 1)

2(q − 1)3
+

30θq2(1 − θq − q)

(q − 1)3
− 150θq3(1 − θq − q)

(q − 1)4

+
240θq4(1 − θq − q)

(q − 1)5
− 120θq5(1 − θq − q)

(q − 1)6
+

42θ2q2(q + 1)

(q − 1)4
− 180θ2q3(q + 1)

(q − 1)5

+
180θ2q4(q + 1)

(q − 1)6

40



Celik; Asian Res. J. Math., vol. 18, no. 12, pp. 34-45, 2022; Article no.ARJOM.94089

The estimator of θ by using moments method can be found as

E(X) =
θ2q

2(q − 1)2
− q(1 − θ2/q − qθ − q)

(q − 1)2
− q(1 − θq − q)

(q − 1)2
− 3θ2q(q + 1)

2(q − 1)3
= µ1 (3.5)

where q = exp(−θ) and µ1 = X̄. The method of moments estimator of θ is the root of this equation. For small

θ, the approximation of q = 1−θ can be used. For better approximation the better approximation p = 1−θ+ θ2

2

can be used and the solutions are the roots of the following function
In order to obtain the ML estimator of the unknown parameter, the log-likelihood function of θ is

logL(θ) = −θ
n∑
i=1

Xi +

n∑
i=1

log

(
θ2

2
X2
i (1 − exp(−θ)) (3.6)

+θXi(1 − θexp(−θ) − exp(−θ)) + (1 − θ2

2
exp(−θ) − θexp(−θ) − exp(−θ))

)
Taking the derivative of the log-likelihood function with respect to the unknown parameter θ and equating it to
the zero, we obtain the following equation

(3.7)

−
n∑
i=1

Xi +

n∑
i=1

θ2e−θ −Xie
−θ + θe−θ − 1 − θXi(e

−θ − 1)

2

(
θ2

2
Xi(1 − e−θ) + θXi(1 − θe−θ − e−θ) + (1 − θ2

2
e−θ − θe−θ − e−θ)

)
The solution is called MLE of θ and has no explicit solutions. Iterative methods can be used for solving the
equation.

4 Simulation Study

In this section, we perform a simulation study for the performance of the maximum-likelihood estimators. First,
we generate 10,000 samples of size n and we compute the ML estimates for the 10,000 samples, say θ̂ for
i = 1, 2, .... Then, we compute the estimates, biases, standard errors (SE), mean-squared errors (MSE) and
confidence intervals for the DLBE distribution as

1. E(θ̂) =
1

n

n∑
i=1

θ̂i = θ̄

2. Bias(θ̂) =
1

n

n∑
i=1

(θ̂i − θ)

3. E(SE(θ̂)) =

√√√√ 1

n

n∑
i=1

(−∂2 lnL

∂θ̂i
2

)

4. MSE(θ̂) =
1

n

n∑
i=1

(θ̂i − θ)2

5. CI95% = θ̂ ± 1.96 SE(θ̂)

We repeat these steps for n = 10, 20 and 50 with θ = 0.1, 0.4, 1.0 and 2.0. Table 1 shows the result of the
simulation.
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Table 1. Simulation results for MLE

True Parameter Estimates Sample Size

10 25 50

E(θ̂) 0.087 0.089 0.093

Bias(θ̂) 0.006 0.002 0.001

θ = 0.1 E(SE(θ̂)) 0.006 0.002 0.001

MSE(θ̂) 0.005 0.001 0.001

%p in CI95% %91.8 %92.4 %93.1

E(θ̂) 0.367 0.377 0.384

Bias(θ̂) 0.003 0.001 0.001

θ = 0.4 E(SE(θ̂)) 0.004 0.003 0.003

MSE(θ̂) 0.002 0.001 0.001

%p in CI95% %92.7 %93.4 %94.2

E(θ̂) 0.973 0.989 1.005

Bias(θ̂) 0.002 0.002 0.001

θ = 1.0 E(SE(θ̂)) 0.004 0.003 0.003

MSE(θ̂) 0.002 0.001 0.001

%p in CI95% %92.8 %93.5 %94.4

E(θ̂) 1.975 1.989 1.996

Bias(θ̂) 0.003 0.001 0.001

θ = 2.0 E(SE(θ̂)) 0.004 0.002 0.002

MSE(θ̂) 0.002 0.001 0.001

%p in CI95% %93.0 %93.8 %94.5

From the Table 1, it can be seen that as the sample size increases, the bias, the mean square error, and
the standard error of the estimates decreases. Further, the estimators satisfy the normality from the confidence
intervals. The same procedures is repeated for the DABE distribution. The results and the interpretation of
these results are approximately same.

5 Application to Real Data

In this section, we use some real-life data that has been applied to other discrete distribution. The first data
set given in Table 2 consists of survival times in days of 72 guinea pigs given by Bjerkedal [22]. The data have
been analyzed by many authors, recently Bakouch et al. [8]used this data for discrete Lindley distribution. In
this paper, the data were fitted to the five models (discrete Lindley, geometric, Poisson, discrete Weibull and
discrete gamma) and shown that the best fit is discrete Lindley distribution.

Table 2. Data Set 1

12 15 22 24 24 32 32 33 34 38 38 43

44 48 52 53 54 54 55 56 57 58 58 59

60 60 60 60 61 62 63 65 65 67 68 70

70 72 73 75 76 76 81 83 84 85 87 91

95 96 98 99 109 110 121 127 129 131 143 146

146 175 175 211 233 258 258 263 297 341 341 376
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We fit the DLBE distribution to the guinea pig’s data. In Table 3, Kolmogrov-Smirnov test statistics, p-values,
log-likelihood and AIC values for discrete Lindley and the proposed distribution.

Table 3. Fitted estimates for data set 1

Model Estimates p-value K-S stat lnL AIC

Discrete Lindley θ̂ =0.019 0.0683 0.1507 -252.716 507.44

DLBE θ̂ =0.016 0.0705 0.1685 -237,747 477.49

As can be seen from Table 3, the guinea pigs data provides better fits than discrete Lindley and of course other
four models geometric, Poisson, discrete Weibull and discrete gamma with bigger lnL, p-value and smaller AIC
values.

The second data set is about the number of European red mites on apple leaves [23, 24, 25, 26, 27]. Chakraborty
[6] proposed discrete gamma distribution and compared with negative binomial and generalized Poisson distribution.
The data set is given at Table 4.

Table 4. Data Set 2

European redmites Frequency

0 70

1 38

2 17

3 10

4 9

5 3

6 2

7 1

We fit the DLBE distribution to the European redmites data. In Table 5, Kolmogrov-Smirnov test statistics,
p-values, log-likelihood and AIC values for discrete gamma and the proposed distribution.

Table 5. Fitted estimates for data set 2

Model Estimates p-value K-S stat lnL AIC

Discrete gamma θ̂ =1.583, k̂=1.007 0.7160 0.1489 -222.44 448.88

DLBE θ̂ =0.65 0.7528 0.1447 -183.89 365.77

As can be seen from Table 5, the European redmites data provides better fits than discrete gamma and of course
other two models generalized Poisson and negative binomial with bigger lnL, p-value and smaller AIC values.

The last data set given in Table 6 consists of remission times in weeks for 20 leukaemia patients randomly
assigned to a certain treatment taken from Lawless [28]. Bakouch et al. [8] used this data for discrete Lindley
distribution. In this paper, the data were fitted to the five models (discrete Lindley, geometric, Poisson, discrete
Weibull and discrete gamma) and shown that the best fit is discrete Lindley distribution.

We fit the DABE distribution to the leukaemia patients data. In Table 7, Kolmogrov-Smirnov test statistics,
p-values, log-likelihood and AIC values for discrete Lindley and the proposed distribution.
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Table 6. Data Set 3

1 3 3 6 7 7 10 12 14 15 18 19

22 26 28 29 34 40 48 49

Table 7. Fitted estimates for data set 3

Model Estimates p-value K-S stat lnL AIC

Discrete Lindley θ̂ =0.10 0.0541 0.2909 -49.06 96.12

DABE θ̂ =0.08 0.126 0.1786 -30.63 59.26

As can be seen from Table 7 the leukaemia patients data provides better fits than discrete Lindley and of course
other four models geometric, Poisson, discrete Weibull and discrete gamma with bigger lnL, p-value and smaller
AIC values.

6 Conclusion

In recent years, it has been seen that, traditional statistical distributions have limited application areas. For
this reason, some authors have proposed some generalization methods of these distributions or some other new
distributions. In this paper, we propose a discrete length and discrete area biased exponential distributions.
We obtain some statistical and mathematical properties of these distributions. We also get likelihood equations
of the corresponding proposed distributions. In real life data analysis section, we fit some data to the discrete
length and area exponential distribution and observe that these proposed distributions give more reliable and
better solutions than the alternative models.
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