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Abstract 
This paper introduces a conceptual framework for developing pedagogical 
games of mathematical proof (PGMP) designed to help non-STEM students 
learn mathematical reasoning in a playful manner and without “fear”. Within 
the constructivist learning paradigm it develops an in-class learning activity 
where social science students learn the concept of mathematical deduction 
playfully using toys to construct tables from which formal proofs of proposi-
tions are derived without calculations. A PGMP pedagogy quality assurance 
evaluation method based on fuzzy evaluation mappings capturing learning 
effectiveness, learning efficiency, and learning satisfaction is introduced. Our 
results from an in-class experiment show that pedagogical games of mathe-
matical proof help non-STEM students to effectively engage with mathemat-
ical reasoning playfully. The results are consistent according to a quality as-
surance consistency index. 
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1. Introduction 

Self-efficacy is a student’s set of beliefs in her or his capacity to successfully ex-
ecute a behavior necessary to produce a positive learning performance attain-
ment [1] [2] [3]. Students with high self-efficacy beliefs allocate more effort 
when they encounter learning difficulties compared to students with low self- 
efficacy who often don’t make any notable attempt to achieve a learning goal, as 
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they a priori belief that they will fail to achieve it [4] [5]. 
A unique type of anxiety is mathematics and statistics anxiety. It is unique in 

this regard, as there are no widespread anxiety conditions for other specific learn-
ing content areas such as reading, writing, or history1. Mathematics and statistics 
anxiety is a negative emotional reaction to the manipulation of numbers and 
symbols that can be debilitating. It has been defined as “a feeling of tension and 
anxiety that interferes with the manipulation of numbers and the solving of ma-
thematical problems in…ordinary life and academic situations [6] [7].” Recent 
research shows that a key factor negatively impacting mathematics anxiety is 
self-efficacy beliefs toward learning mathematics [8] [9]. This finding is in accor-
dance with the observation that students with lower self-efficacy beliefs toward 
learning mathematics have higher levels of mathematics anxiety [10] [11] [12] 
[13] [14], a relation consistent across gender groups, grade-level groups, ethnic 
groups, and instruments measuring mathematics anxiety [15] [16]. 

To help students overcome anxious feelings toward mathematics educators 
recently started to incorporate active learning elements in their instruction with 
pedagogical successes reported in attitudes towards mathematics studies [16] 
[17] [18] [19]. Active learning in mathematics is a recent pedagogical develop-
ment in response to a “call on institutions of higher education, ..., to ensure that 
effective active learning is incorporated into post-secondary mathematics class-
rooms”.2 Prior to this call a land marking paper showed in a meta analysis of 225 
studies that active learning improves learning and course performance in un-
dergraduate STEM courses relative to traditional lecturing [20]. This research 
further suggests that active learning does not harm, and may further benefit, al-
ready high-achieving students. It also shows that students in classes with tradi-
tional lecturing were more likely to fail compared to students in classes with ac-
tive learning. Active learning helps students effectively engage in their learning 
process and improve their performance attainment [21]. The basic premises of 
active learning include instructional techniques reinforcing higher-order think-
ing, requiring students to co-create their own knowledge through active partici-
pation in the learning process [22] [23]. 

Game based learning is an emerging active learning instructional method in 
mathematics with several advantages [24]: it increases student engagement [25] 
[26], enhances self-efficacy [18], improves student achievement [27], motivation 
and resilience [28]. The literature on pedagogical games supporting teaching and 
learning of mathematics in higher education courses is scarce, and largely focus-
es on online settings [29] [30]. The game introduced in this paper, however, uses 
a “toy” to help students put hands on mathematics to physically flip and or ro-
tate wooden objects to fit their counter-shape holes in a box. Students then write 
down their observations into a table from which mathematical proofs can be 
deduced. Even advanced mathematical concepts such as Abelian group proper-

 

 

1https://www.cne.psychol.cam.ac.uk/what-is-mathematics-anxiety.  
2https://www.ams.org/publications/journals/notices/201702/rnoti-p124.pdf.  
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ties of symmetries can be deduced from this method by playfully constructing a 
Cayley table. The activity considered here, enables students to derive proofs 
without calculations. There is currently little evidence in the literature about the 
effectiveness of using toys as an active learning activity to derive proofs “playful-
ly”. This paper sets out to investigate this by developing a formal framework for 
constructing pedagogical games of mathematical proof and their pedagogical 
quality evaluations. 

It is generally difficult to determine if a pedagogical game is devised with the 
explicit intention of meeting educational criteria, or whether researchers are ap-
propriating existing games to test their possible educational impact [29] [31] 
[32]. Moreover, how would one compare the effectiveness of alternative pedago-
gies relative to each other? Naik (2017) suggests that the effectiveness of peda-
gogical games should ultimately be measured in terms of student learning out-
comes [29]. In this paper, we consider a geometric approach based on fuzzy map-
pings to establish a pedagogical quality assurance system in which pedagogical 
effectiveness is only one dimension. We determine the quality of a pedagogical 
game by considering three main learning dimensions including: learning effec-
tiveness, learning efficiency, and learning satisfaction. We utilize the concepts of 
fuzzy variables and metric functions to obtain a pedagogical quality assurance 
evaluation method. 

The organization of this paper is as follows. Section two provides a formal 
framework for developing pedagogical games of mathematical proof. We apply 
this pedagogical framework in section four where we provide an example. Sec-
tion three introduces the PGMP pedagogical quality assurance evaluation model 
using fuzzy variables. It provides a process for calculating a pedagogical quality 
measure supported by a consistency measure to judge pedagogical quality as-
surance of PGMPs. Section four provides the results of an in-class experiment 
utilizing both, the PGMP framework and its pedagogical evaluation model. Sec-
tion five is a conclusion followed by an appendix. 

2. Constructing a PGMP Learning Activity 

We define a pedagogical game of mathematical proof expressed as 

( ) .A GφΓ                           (1) 

A pedagogical game of mathematical proof, hence, consists of a teaching 
model A  defined by a set of pedagogies A, a set of rules G defining the game 
structure, and the mathematical proof φΓ  , consisting of a set of assumptions 
Γ , a true statement φ  or set of statements Φ , and the method of deduction 
 . Table 1 below summarizes the steps in the development of a PGMP as de-
scribed in (1). 

Implicit assumptions: Students have been introduced to basic abstract algebra 
and are familiar with the concepts of a group, Abelian group, and (non-)symmetry 
of mathematical objects such as those shown in Figure 1. 

The theoretical model summarized in Table 1 requires educators to define the  
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Table 1. How to construct a PGMP. 

 Construction of PGMP Description 

1 Choose φΓ   Decide about the proof structure  , i.e. direct proof,  
proof by contradiction, etc. 
Then choose the assumptions Γ  and statement φ ;  
which is to formulate the theorem to be proven. 

2 Choose G over ( )φΓ  . Define a set of rules describing the mathematical 
game G (consider single versus multi player games). 

3 Choose A  over ( )G
φΓ   Choose A (could be a mix of pedagogies) to define A . 

Keep in mind “mathematics without fear”. 

 

 
Figure 1. PGMP “Toy”. 

 
sets , ,GΓ Φ , and A. We use the notation Φ  to indicate a set of mathematical 
statements { }1 2: , , , nφ φ φΦ =  . For example Φ  may represent a set of exercis-
es, and iφ  a specific statement 1,2, ,i n=   to be proven. 

Step 1: Define Γ  and Φ , and formulate ( )φΓ   as in Equation (1). We 
define the premises Γ . That is 

{ }1 4: , , ,γ γΓ =                          (2) 

where 

1γ : ∆  is an equilateral triangle. 

2γ : 


 is a box with a whole ∆  in it such that a block ∆  fits in 


. See 
Figure 1. 

3γ : There are two transformations called rotation Θ  and flip Ψ . 

4γ : There is a composition   of transformations Θ  and Ψ  acting on the 
block ∆ . 

Next, let there be a set of statements to be proven, where each statement iφ  
corresponds to an exercise. 

{ }1 6: , , ,φ φΦ =                          (3) 

where 

1φ : ∆  fits in 


 in 6 different ways. 

2φ : , , ,∆ Θ Ψ  and   form a group ( ),∗ . 

3φ : , ,∆ Θ  and   form subgroups ( ),i ∗  of ( ),∗ , for some 1,2, ,i n=  . 
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4φ : ( ),i ∗  are Abelian. 

5φ : , , ,∆ Θ Ψ  and   form subgroups i  of ( ),∗ , for some  
1,2, ,i n=  . 

5φ : ( ),i ∗  are Abelian. 

6φ : ( ),∗  is not Abelian. 
Step 2: Choose G over ( )φΓ  . This requires to define the set of rules of the 

mathematical game. 

{ }1 2 3: , , ,G g g g=                         (4) 

where 

1g : Θ  is a right (or left) rotation of 120 degrees with fixed center in ∆ . 

2g : Ψ  is a right or left flip of 180 degrees with fixed center in ∆  (imagine a 
line from any vortex through the center of ∆ ). 

3g :   is a composition of transformations acting on ∆ . 
The definition of the set G must be in accordance with the guidelines set out 

in the pedagogy A. In our case, the elements of G are supposed to support a con-
structivist learning approach, where students actively co-create knowledge by 
physically rotating and flipping a block ∆  to match a hole of same shape ∆  in 
a box 


 to derive a table of all possible successful combinations of flips and 

rotations of ∆  from which proofs are derived. 
Step 3: We now define the pedagogy of our game of mathematical proof. With 

an increasing awareness that many undergraduates are passive during seminar 
sessions [33] [34], we define a learning activity that allow students to actively 
engage in co-creating knowledge. Each student is provided a wooden block (an 
equilateral triangle) ∆  and a wooden box 


 with a hole of shape ∆  in it. 

The student is then asked to use the building block to physically rotate and flip it 
to fit the hole and to therewith derive symmetries and present observations in 
form of a table from which proofs of propositions are then derived. We defined 
the set A which includes the following conditions. 

1) Students are provided with a wooden box and a symmetric wooden object 
as shown in Figure 1. 

2) Students are provided with a problem set which contains a set of instruc-
tions for each problem (Appendix). 

3) Students work independently on the problem set (single player game). 
4) Students are provided with 50 minutes of time to complete a set of tasks 

(Theorems 1 and 2 in Appendix). 
5) Students can ask the instructor for definitions (loosing 5 points each). 
6) Students compete with each other on time (loosing 5 points each rank) and 

points (each task is worth some points). 
7) A total point score is calculated and appropriate reductions are made. The 

winner is announced to the class. 
The pedagogical model A  consists of a mixed pedagogy including elements 

from active learning and competitive learning both based within the construc-
tivist paradigm with students co-creating their own knowledge playfully. 

https://doi.org/10.4236/am.2022.135029
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3. Pedagogy Quality Assurance Evaluation Method 

In order to assess the usefulness of a PGMP as a learning activity we develop a 
pedagogy quality assurance evaluation method (PEM). We construct fuzzy va-
riables [35] combined with a hierarchical model [36] to obtain a numerical value 
expressing pedagogical quality [37] [38] [39]. In our PEM, quality is defined as a 
weighted average of learning effectiveness, learning efficiency, and learning sa-
tisfaction as shown in Figure 2. 

Let there be n evaluation factors represented by a set 

{ }1 2, , , ,nU u u u=                         (5) 

where iu  is the ith evaluation factor in u U∈  and ( )1 2, , , nu u u u=   a vector. 
There are m levels of appraisal grades represented by a set 

{ }1 2, , , ,mV v v v=                         (6) 

where kv  is the kth appraisal grade in v V∈  on a Likert scale and  
( )1 2, , , mv v v v=   is a vector. 1v  represents “strongly disagree” and gradually 

increasing to mv  representing “strongly agree”. A mapping U V→  is a fuzzy 
evaluation mapping if for each evaluation factor iu U∈  there is a mapping 

[ ]: 0,1
i

UµΠ →                         (7) 

where iΠ  is a fuzzy set associated with evaluation factor iu U∈ . Alternatively, 
for every iu U∈  the mapping [ ]: 0,1i UΠ →  yields a row vector  

( )1 2, , ,i i i imπ π π π=  , where ikπ  represents the fuzzy membership degree of 
appraisal factor i to grade k. The general fuzzy appraisal matrix [ ]ikπ  for all 
evaluation factors 1, ,i n=   and appraisal grades 1, ,k m=   is denoted by 

( )

11 12 1

21 22 2

1 2

.

m

m
n m

n n nm

π π π
π π π

π π π

×

 
 
 Π =
 
 
 





   



                  (8) 

For simplicity, we employ a triangular distribution function µ  in the con-
struction of the mapping Π  characterizing the fuzzy measure values ikπ  for 

1,2, ,i n=   and 1,2, ,j m=   [37] [38]. In order to obtain a comprehensive  
 

 
Figure 2. Pedagogy quality assurance evaluation method. 
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overall quality assurance evaluation vector ( ) ( )1 21 , , , mmQ q q q× =   we construct 
a weight vector ( )1nW ×  by the AHP method [36] assigning relative weight iw  to 
evaluation factor iu U∈  for every 1,2, ,i n=  . The overall quality assurance 
evaluation vector Q is obtained by 

,Q W= Π                            (9) 

where 

1
min 1, , for 1, , .

n

k i ik
i

q W k mπ
=

 = = 
 
∑                (10) 

Figure 2 outlines the overall methodology of the quality assurance evaluation 
process. Pedagogical quality is constructed as a measure of learning perfor-
mance, defined by the degree of which students can successfully perform tasks 
within given time constraints, and learning satisfaction. A Post-Study System 
Usability Questionnaire (PSSUQ) ([40], p.75-77) with respect to all three dimen-
sions is employed to obtain survey data. The goal of this quality assurance sys-
tem is to provide educators with a measure for the overall quality Q of a peda-
gogy. 

We begin by constructing the fuzzy sets iΠ  from student survey (PSSUQ) 
and expert survey data. The later can be obtained via qualitative interview with 
subject experts. For simplicity, we assume a triangular distribution function iµ  
to construct the mapping functions characterizing fuzzy measure values [ ]ikπ . 
We conduct a focus group with education experts to obtain the data points 

1 2 8, , ,i i iv v v  for each evaluation factor iu  in the product quality evaluation 
factor set U and appraisal intervals ( ) ( ) ( )1 2 2 3 7 8, , , , , ,i i i i i iv v v v v v . Then for all 

[ ]1, ,i i imv v v∈   

( )

( )

( )

11, when ,

11, when ,

0, otherwise,

k k k k k
k

i k
k k k k k

k

p v v v v v
p

v
p v v v v v

p

µ

  
− + ∈ −  

 
=   

− + ∈ +  
 



         (11) 

where each kv  is some value provided by the student survey data (PSSUQ). 

From Equation (11) we use the values 
( )

( )1

i k
m

ik ikk

v

v

µ

µ
=∑

 for 1,2, ,k m=   to cal-

culate the normalized appraisal vector iΠ . 

{ }1 2, , , ,i i i imπ π πΠ =                       (12) 

with appraisals grades iv V∈  for evaluation factor i. iΠ  can then be norma-
lized in the usual way yielding the values ikπ . 

Some factors iu U∈  according to our product quality definition provided 
above contribute with different importance to the overall measure of pedago- 
gical quality. We now discuss the construction of the vector W using the AHP 
method [41]. The AHP method requires experts to make pair-wise compare- 
sons between evaluation factors 1 2, , , nA A A  and assigning numerical values 
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ija  for , 1, 2, ,i j n=   to them. This yields a square matrix 

( )

1 2

1,1 1,2 1,1

2,1 2,2 2,2

,1 ,2 ,

n

n

nn n

n n n nn

A A A
a a aA
a a aA A

a a aA

×

 
 =  
 
  
 







   




               (13) 

of relative weights 1 2, , , nW W W  with the following properties: 

1) i
ij

j

W
a

W
≈ , for , 1, 2, ,i j n=  . 

2) 1iia = , for all 1,2, ,i n=  . 

3) If ija α=  for 0α ≠ , then 1
jia

α
= , for 1,2, ,i n=  . 

4) If iA  is more important than jA  then ( ) 1ij i ja W W≅ > . 
These properties yield a positive definite and reciprocal matrix with 1’s on the 

main diagonal. The experts only need to provide data for the upper triangle of 
the matrix, that is ( )1 2L n n= −  data points. Property one above suggests a 
relation 

AW nW=                          (14) 

One can use Saaty’s method to compute W [41]. The final step is to check that 
human judgments (expert data, A) are consistent. For that purpose, we calculate a 
consistency index (CI) measuring how a given matrix A compares to a purely ran-
dom matrix in terms of their consistency indices. Let CI be the consistency index 

max

1
n

CI
n

λ −
=

−
                        (15) 

where n is the size of the pair-wise comparison matrix A and maxλ  represents 
the maximum eigenvalue of the matrix. Let RI be the average random index 
which can be computed as shown in [41]. A matrix A is consistent if and only if 

max nλ =  and that we always have max nλ >  when matrix A is a positive reci-
procal one. If CI is less than 0.1, the numerical judgments will be considered ac-
ceptable [41]. 

4. Results from an In-Class Experiment 

An in-class experiment with 10 third year undergraduate economics students 
taking an advanced mathematics course was conducted at the University of Ex-
eter. The student cohort attended two different one hour sessions plus 15 mi-
nutes introduction to the learning activity. In session one, they conducted the 
learning activity “Theorem 1” and after 7 days, session two covered learning ac-
tivity “Theorem 2”3. The precises activities are discussed in section three and the 
appendix of this paper. Student performance was incentivized with a competitive 
game element, distributing points to correct answers and penalizing students 

 

 

3The learning activities correspond to 1φ  and 2φ  of section three. The other statements can be 
used as further active learning activities within the PGMP model. 
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with negative points who requested definitions from the tutor. A total score was 
determined and the best performer was announced to the cohort. 

Students reported Subjective Task Time, measured on a Likert scale 1 - 10 with 
1 long subjective time perception and 10 short subjective time perception. Both 
Subjective Task Completion and Subjective Task Time was reported in a USQ 
survey [40], with Task Completion determined by a tutor who marked the com-
pleted tasks to obtain an overall assessment score for each student. Together, 
Task Time and Task Completion determine a weighted measure of Learning 
Performance. 

A focus group consisting of five mathematics education experts was conducted 
to determine the bounds of the metric function in Equation (11). As a rule, ex-
perts had to jointly agree about the metric bounds, which were determined in a 
verbal 30 minutes debate after being introduced to the specifics of the experi-
ment and PGMP. Expert decisions were purely based on the description of the 
PGMP and they were not privy to student survey results. The same cohort of 
experts also provided numerical values (matrix (17)), based on a pairwise com-
parison of the variables “fun to play and usability”, “instruction quality”, and 
“game quality” of the PGMP to yield the matrix A in Equation (13). 

Table 2 shows the individual average task success and self evaluated task 
time data for both sets of exercises resulting in the proofs of theorems 1 and 2. 
Associated with each theorem, an USQ survey collected data on task completion 
and task completion time for six tasks (see Appendix) [40]. On average task 
success was 8.308 (Learning Effectiveness) with associated average task time 8.6 
(Learning Efficiency) for theorem 1. For theorem 2, average task success was 8.617 
(Learning Effectiveness) with associated average task time of 8.057 (Learning Effi-
ciency). average task success was higher for theorem 2, students completed the 
six tasks While associated with theorem 1 faster. From this table an average  

 
Table 2. Individual task success and task time for theorems 1 and 2. 

Subject 
Theorem 1 Theorem 2 

Task Success 1 Task Time 1 Task Success 2 Task Time 2 

1 7.833 8.286 8.333 7.857 

2 8.33 8.571 8.667 7.714 

3 8.5 7.714 9.167 7.571 

4 8.667 8.857 8.500 8.571 

5 7.667 9.0 8.333 7.857 

6 8.333 9.143 8.167 8.0 

7 9.0 8.714 9.333 8.571 

8 8.5 9.143 9.333 8.857 

9 8.5 8.143 8.667 8.143 

10 7.667 8.429 7.667 7.429 
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Learning Performance of 8.454 for theorem 1 compared to 8.337 for theorem 2 
suggests that students performed better on proving theorem 1. 

Table 3 reports individual subject data from the PSSUQ survey on three va-
riables: average “fun to play and usability” (PGMP play) 4.250, average instruction 
quality (InstQual) 4.129, and average game quality (PGMPQual) 4.100. From this 
table, an overall average Learning Satisfaction value of 4.160 is obtained. 

We now determine the parameters of the fuzzy evaluation mapping given in 
Equation (11). For simplicity, we assume a triangular metric. From a focus group 
consisting of five mathematics education experts we obtain the boundary values 
of each fuzzy variable reported in Table 4. The experts agree to apply the same 
metric boundaries for Task Success and Task Time, but propose different metric  

 
Table 3. Individual pedagogy satisfaction measured by PGMP play, InstQual, and PGMP-
Qual. 

Subject 
Learning Satisfaction 

PGMP play InstQual PGMPQual 

1 4.625 4.571 4.667 

2 4.625 4.571 4.0 

3 4.0 4.0 4.667 

4 4.5 4.143 3.333 

5 4.375 4.0 4.0 

6 3.625 4.0 3.0 

7 4.375 4.143 5.0 

8 4.125 3.714 4.333 

9 4.625 4.143 3.667 

10 3.625 4.0 4.333 

 
Table 4. Expert metric evaluation matrix. 

 PGMP Satisfaction Task Success/Time 
Magnitude 

 low high low high 

very poor 1 2 1 2.5 negative 

poor 1 1.7 1 2.5 positive 

 1.7 3.5 2.5 5 negative 

indifferent 2 3 2.5 5 positive 

 3 4.4 5 9 negative 

good 3.5 4 5 9 positive 

 4 5 9 10 negative 

very good 4.4 5 9 10 positive 
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boundaries for PGMP Satisfaction. Figure 3 graphically shows the suggested 
metric for PGMP Satisfaction and Figure 4 graphically represents the metric for 
Task Success and Task Time and Table 5. 

Table A1 (appendix) and Table 5 report the individual fuzzy values for Task 
Success for Theorems I and II. Table A2 (appendix) and Table 6 report the in-
dividual fuzzy values for Task Time for Theorems I and II. 

From Table 5, Table 6 and Table 3 we obtain the matrix 

0 0 0.13462 0.776883 0.88495
0 0 0.244403 0.755597 0 .
0 0 0.177471 0.75793 0.064599

 
 Π =  
 
 

           (16) 

The following matrix A is constructed with input from experts: 

InstQual GameQual PGMPplay
11 2InstQual 2

GameQual 2 1 3
1 1PGMPplay 1
2 3

 
 
 
 
 
 
 

          (17) 

 

 
Figure 3. Satisfaction metric. 

 

 
Figure 4. Task success, and task time metric. 
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Table 5. Task success theorem 2. 

Subject 
Theorem 2 

very poor poor indifferent good very good 

1 0 0 0.1668 0.8666 0 

2 0 0 0.0833 0.9168 0 

3 0 0 0 0.833 0.167 

4 0 0 0.125 0.875 0 

5 0 0 0.1668 0.8666 0 

6 0 0 0.2083 0.7918 0 

7 0 0 0 0 0.3 

8 0 0 0 0 0.3 

9 0 0 0.0833 0.9168 0 

10 0 0 0.3333 0.6668 0 

sum 0 0 1.1668 6.7334 0.767 

normalized sum 0 0 0.134622 0.776883 0.88495 

 
Table 6. Task time theorem 2. 

Subject 
Theorem 2 

very poor poor indifferent good very good 

1 0 0 0.2858 0.7142 0 

2 0 0 0.4572 0.6785 0 

3 0 0 0.3573 0.6427 0 

4 0 0 0.1072 0.8928 0 

5 0 0 0.2857 0.7143 0 

6 0 0 0.25 0.75 0 

7 0 0 0.1073 0.8927 0 

8 0 0 0.0358 0.9643 0 

9 0 0 0.2143 0.7858 0 

10 0 0 0.3927 0.673 0 

sum 0 0 2.4933 7.7083 0 

normalized sum 0 0 0.244403 0.755597 0 

 
Using the average of normalized columns (ANC) method 

11

1 , for , 1, 2, , .
n

ij
i n

j iji

a
a i j n

n a
=

=

′ = =∑
∑

                (18) 

where ija  are the entries of the matrix A we obtain a normalized matrix 
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Table 7. Satisfaction evaluation. 

Subject 
PGMP Satisfaction 

very poor poor indifferent good very good 

1 0 0 0 0.368 0.3867 

2 0 0 0 0.474 0.21 

3 0 0 0.2107 0.895 0 

4 0 0 0.1729 0.842 0 

5 0 0 0.1729 0.842 0 

6 0 0 0.3535 0.474 0 

7 0 0 0.0229 0.632 0 

8 0 0 0.2857 1 0 

9 0 0 0.06 0.684 0 

10 0 0 0.3607 0.79 0 

sum 0 0 1.6393 7.001 0.5967 

normalized sum 0 0 0.177471 0.75793 0.064599 

 
0.2857 0.2727 0.3333
0.5714 0.5454 0.5 .
0.1429 0.1818 0.166

A
 
 ′ =  
 
 

                (19) 

Averaging A′  over rows yields a vector ( )1 nW ×  defined by 

1 for , 1, 2, , .
n

i
j

j ja
w i j n

n
== =

∑
                 (20) 

Hence ( )0.297,0.539,0.164W = . We calculate the overall evaluation vector 

( )
0 0 0.13462 0.776883 0.88495

0.297,0.539,0.164 0 0 0.244403 0.755597 0 .
0 0 0.177471 0.75793 0.064599

Q
 
 = ⋅ 
 
 

  (21) 

That is ( )0,0,0.20,0.762,0.273Q = . We defuzyfy Q to obtain an overall 
measure of quality Q  using 

2

2

2 2 2 2 2

2 2

1

1

2

0 31 0 50 0.2 67 0.762 82 0.273 95
0.2 0.762 0.273

82.551

n
i

i

i i
n

i

b a
Q

b
=

=

=

× + × + × + × + ×
=

+ +
=

∑
∑

      (22) 

where 1 2 3 431, 50, 67, 82a a a a= = = =  and 5 95a =  is the appraisal vector in 
[38] representing “very poor”, “poor”, “medium”, “good”, “excellent”. 

We now calculate the consistency of our result. That is 

1 2 0.2972 0.8945
2 1 3 0.539 1.625 .

1 0.164

1 2

1 2 1 3 1 0.4922
AW

    
    = =    
    
    

            (23) 
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( )3

max
1

0.8945 1.625 0.4922 3.01
3 0.2972 3 0.539 3 0.1641

i

i i

AW
nw

λ
=

= = + + =
× × ×∑      (24) 

3.01 3 0.05.
3 1

CI −
= =

−
                     (25) 

5. Conclusions 

This paper designs a pedagogical game of mathematical proof to help non-STEM 
mathematics educators to produce pedagogically effective active learning exer-
cises within the constructivist paradigm using toys and without tedious calcula-
tions supporting anxious students in deriving mathematical proofs playfully. 
The purpose of this learning activity is to help students improve self-efficacy and 
reduce mathematics anxiety. 

An in-class experiment shows that our pedagogy based on PGMPs satisfies a 
pedagogical quality criterion. We derive this conclusion from our Pedagogy 
Quality Assurance Evaluation Method, which we introduce using fuzzy variables. 
Our model uses Learning Effectiveness, Learning Efficiency, and Learning Satis-
faction as inputs to derive a weighted measure of pedagogical quality. The ad-
vantage of this measure of learning activity evaluation is that it relies on data 
from both, students and experts. 

The data from the experiment show that students were effective in playfully 
producing mathematical proofs using a hands-on approach using toys demand-
ing them to physically rotate and flip geometric objects, and write up their ob-
servations in a table. The table, together with a set of sequential instructions ef-
fectively guided students through the reasoning required to produce a complete 
proof. The success was not only reflected in high performance attainment but 
also in the survey responses. 

To improve on the robustness of our main result, future work should consider 
different metric functions such as trapezoids, bell-shaped, and sigmoid functions 
to specifically take into account other pedagogical variables. An empirical expe-
riment with a large group of mathematics education experts would provide more 
accurate metrics. 

Obtaining a more specific measure of our learning activity of reducing mathe-
matics anxiety would be a valuable result for many educators. A robust measure 
could be obtained from a field-experiment with a much larger subject pool in-
corporating established instruments for measuring mathematics anxiety [23] 
[24] [33] into our model. 
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Appendix 

Definition 1. A symmetry is any transformation of ∆  which leaves ∆  in an 
equivalent state (−5 pts) 

Theorem 1 1φ : There are 6 symmetries. 
Task 1. Label the edges of the triangle ∆  with the capitals A, B, and C in 

counterclockwise direction. Similarly, label the edges of the corresponding hole 
∆  in the box 


 so that A∆  matches A , B∆  matches B , and C∆  

matches C . [20 pts] 
Task 2. Check that if starting at position A∆  matches A  (AA) a rotation 

Θ  moves to the new position A∆  matches B  (AB). We express this com-
pactly as ( )ABr A . Check that if starting at position A∆  matches A  (AA) 
with fixed (AA) a flip Ψ  leaves A∆  matches A  unchanged, but moves 
B∆  on B  (BB) to B∆  on C  (BC) and C∆  on C  (CC) to C∆  on 
B  (CB). We use the notation Af  to express this property. [15 pts] 

Task 3. Construct a table to show all symmetries of ( ) ( ),AA ABr A r A  and 
( )ACr A  only using rotations Θ  and its compositions  . [15 pts] 
Task 4. Fix the edge (AA) and use a flip Ψ  in isolation and in combination 

with rotations Θ  to obtain the symmetries of Af . Follow this procedure to 
obtain the symmetries associated with Bf  and Cf  and collect them in a table. 
[15 pts] 

Task 5. Collect all symmetries from above tables to define the set  . [15pts] 
Task 6. Use the results of tasks 1 - 5 in given order to formally write up the 

proof of theorem 1. [20 pts] 
The expected result from task 6 is summarized in the proof bellow. 
Proof. Label the vertices of ∆  counterclockwise starting from the top by A, B 

and C. Similarly on 


 label the initial vertices of ∆  counterclockwise starting 
from the top by A, B and C, such that the labeling for ∆  matches the labeling 
on the 


, i.e., AA, BB and CC. 

We introduce two operations; a counterclockwise rotation around the center 
of ∆  and a flip of ∆  at a fixed vortex (A, B, or C). Let Θ  denote the coun-
terclockwise rotation of ∆  from i.e. initial A to final B such that A on ∆  
moves from position A to position B on the 


. This is compactly expressed as 

( )ABr A . Let Ψ  be a flip with fixed vortex A such that initial B moves to final C 
and initial C moves to final B while A remains unchanged. We compactly ex-
press this as Af . 

The composition of two operations is denoted by  . Then by definition of 
symmetry we obtain: 

( ) 3
0 , no actionAAr A n= Θ Θ Θ = Θ =   

( )ABr A = Θ  
( ) ( ) ( ) 2 .AC AB BCr A r A r A= = Θ  

These are the symmetries obtained from only applying rotation to ∆ . Notice 
that there are two ways to achieve ( )AAr A ; i) apply rotation three times, or ii) 
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do not take any action 0n  at all. Let’s generate the symmetries associated with 
flipping. 

Af = Ψ  

( ) ( ) 2
B AAB BCf r A r A f= = Θ Ψ    

( ) .C AABf r A f= = Θ Ψ   
We collect all symmetries in a set { }2 2

0 , , , , ,n= Θ Θ Ψ Θ Ψ ΘΨ . 
Definition 2. A Latin square is an n n×  array filled with n different symbols, 

each occurring exactly once in each row and exactly once in each column. (−5 
pts) 

Definition 3. A group is a set   with a binary operation   (−2 pts each), 

: .× →     
for all , ,a b c∈  satisfying: 

1) Closure: a b∈  . 
2) Associativity: ( ) ( )a b c a b c=    . 
3) Identity element: There exists and element e∈  such that  

a e a e a= =  . 
4) Inverse: For every a∈  there exists some b∈  such that a b e=  

and b a e= . 
Definition 4. A Cayley table describes the structure of a finite group by ar-

ranging all the possible products of all the group’s elements in a square table (−5 
pts). 

Theorem 2. 2φ : , ,∆ Θ , and Ψ , form a group ( ), . 
1) Construct a table of symmetries (Cayley table) and show that it is a Latin 

square. [20 pts] 
2) Using the definition of a group show the closure property (use the Cayley 

table). [15 pts] 
3) Using the definition of a group demonstrate the associativity condition (use 

the Cayley table). [15 pts] 
4) Using the definition of a group find the identity element (use the Cayley ta-

ble). [15 pts] 
5) Using the definition of a group show that each element has an identity (use 

the Caleyly table). [15 pts] 
6) Write up a formal proof using the results of tasks 2 - 5. [20 pts] 
Proof. To show the closure property we construct a Cayley table for ( ), . 

From Table A3 one can also see that it defines a Latin square. The closure prop-
erty follows from the Latin square property. Associativity follows from the fact 
that the composition of bijections from a set to itself is associative. By inspection 
of the Cayley table we have: 

0 0 0 0 0n n n n n= =   

0 0n nΘ = Θ = Θ   
2 2 2

0 0n nΘ = Θ = Θ   
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Table A1. Task success theorem I. 

Subject 
Theorem I 

very poor poor indifferent good very good 

1 0 0 0.2918 0.7083 0 

2 0 0 0.1668 0.8666 0 

3 0 0 0.125 0.875 0 

4 0 0 0.0833 0.9168 0 

5 0 0 0.3333 0.6668 0 

6 0 0 0.1668 0.8666 0 

7 0 0 0 1 0 

8 0 0 0.125 0.875 0 

9 0 0 0.125 0.875 0 

10 0 0 0.333 0.6668 0 

sum 0 0 1.7503 8.3169 0 

normalized sum 0 0 0.173862 0.826138 0 
 

Table A2. Task time evaluation theorem I. 

Subject 
Theorem I 

very poor poor indifferent good very good 

1 0 0 0.1785 0.8215 0 

2 0 0 0.1072 0.8928 0 

3 0 0 0.4572 0.6785 0 

4 0 0 0.0358 0.9643 0 

5 0 0 0 1 0 

6 0 0 0 0.86 0.14 

7 0 0 0.0715 0.9285 0 

8 0 0 0 0.86 0.14 

9 0 0 0.2143 0.7858 0 

10 0 0 0.1428 0.8572 0 

sum 0 0 1.2073 8.6486 0.28 

normalized sum 0 0 0.119111 0.853264 0.027625 

 
Table A3. Cayley table for the six symmetries of ∆ . 

  0n  Θ  
2Θ  Ψ  

2Θ Ψ  ΘΨ  

0n  0n  Θ  
2Θ  Ψ  

2 fΘ  ΘΨ  

Θ  Θ  
2Θ  0n  ΘΨ  Ψ  

2 fΘ  
2Θ  

2Θ  0n  Θ  
2Θ Ψ  ΘΨ  Ψ  
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Continued 

Ψ  Ψ  
2Θ Ψ  ΘΨ  0n  Θ  Ψ  

2Θ Ψ  
2 fΘ  ΘΨ  Ψ  

2Θ  0n  
2Θ  

ΘΨ  ΘΨ  Ψ  
2Θ Ψ  Θ  

2Θ  0n  
 

0 0n nΨ = Ψ = Ψ   
2 2 2

0 0n nΘ Ψ = Θ Ψ = Θ Ψ   
0 0 .n nΘΨ = ΘΨ = ΘΨ   

It follows that 0n ∈  is the identity element since for any g ∈   

0 0n g g n g= =  . Each of our symmetries g  has an inverse 1g −  such that 
1 1

0g g g g n− −= =  . We have 

0n , with inverse 0n  since 0 0 0n n n=  

Θ , with inverse Θ  since 2 2
0nΘ Θ = Θ Θ =   

2Θ , with inverse 2Θ  since 2 2
0nΘ Θ = Θ Θ =   

Ψ , with inverse Ψ  since 0nΨ Ψ =  
2Θ Ψ , with inverse 2Θ Ψ  since 2 2

0nΘ Ψ Θ Ψ =  

ΘΨ , with inverse ΘΨ  since 0nΘΨ ΘΨ = .  
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