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Abstract

A means to develop a comparative assessment of the risks of available
wastewater effluent disposal options on a local scale needs to be developed to
help local decision-makers make decisions on options such as direct or indi-
rect potable reuse options. These options have garnered more interest as a
result of water supply limitations in many urban areas. This risk assessment
was developed from a risk assessment developed at the University of Miami
in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse
and injection wells were deemed to have the lowest risk in the most recent
study by FAU. However, the injection well option may not be available
everywhere. As a result, a more local means to assess exposure risk is needed.
This paper outlines the process to evaluate the public health risks associated
with available disposal alternatives which may be very limited in some areas.
The development of exposure pathways can help local decision-makers define
the challenges, and support later expert level analysis upon which public
health decisions are based.
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1. Introduction

Regulatory, political, and economic constraints have shaped wastewater man-
agement strategies throughout the United States. Historically the easiest means
to dispose of wastewater is via the nearest river or stream. Such disposal goes back
to Roman times. However, as the communities grew, the environmental degra-
dation caused by this practice became clearer, and regulations to eliminate raw

wastewater disposal were legislated. With passage of the Clean Water Act, other
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effluent management options were pursued, and regionalization became the
standard.

Today there are eight categories for waste disposal, none of which are availa-
ble in every location. The most common are septic tanks which are limited to
rural areas, surface water disposal and various and reclamation for beneficial reuse
(irrigation) although the latter has not generally been implemented anywhere
where water supplies are not limited. In some, options like ocean outfall and Class
I injection wells might be available.

Bloetscher et al. [1] noted that there are studies that have “looked at risks re-
lated to wastewater disposal in agriculture [2] [3], tertiary treatment in surface
water [4], injection wells [5], groundwater recharge [6] [7] and potable reuse [8]
[9] [10] [11] [12],” but the closest to comparative risks outside Florida was per-
formed by Soller et al. [13]. Other assessments have been performed to evaluate
the risks associated with water distribution systems and reclaimed water pro-
grams associated with viral pathogens [14]-[19], but these were neither compar-
ative assessments nor recent.

The first comparative risk assessment of multiple wastewater disposal options
was undertaken by the University of Miami (UM) in 2000. The analysis was a
comparative assessment of the public health an ecological risks associated with
three effluent disposal alternatives available to wastewater utilities in Southeast
Florida: ocean discharges (300 MGD), Class I injection wells (300 MGD), and
surface water discharges (although the practice was abandoned in the 1970s in
south Florida) [20] [21] [22] [23]. The use of reclaimed water was specifically
excluded. Class I injection wells were deemed to have the lowest relative risk of
the three alternatives analyzed.

A concurrent study conducted by Cadmus Group for USEPA in 2001 also
found that in southeast Florida, Class I injection wells were the lowest risk as
well, although in the Tampa area, the different depth and geology increase public
health exposure. In the third study, Soller, et al [12] compared risks from de
facto reuse (surface water discharge), indirect potable reuse (IPR), and direct
potable reuse (DPR) scenarios using their prior Quantitative Microbial Risk As-
sessment (QMRA) methodology and found direct potable reuse to have the low-
est risk in California.

In Bloetscher ef al. [1], six effluent disposal alternatives currently or poten-
tially available to wastewater utilities in Southeast Florida: Class I injection well,
ocean outfalls, surface discharges, irrigation with reclaimed water, indirect and
direct potable reuse. Differing levels of treatment were required for each option:

1) Deep well injection utilizing secondary treatment plus filtration and
high-level disinfection to the Boulder zone 3000 ft below the surface.

2) Ocean outfalls utilizing secondary treatment and disinfection.

3) Surface water (canal) discharges utilizing tertiary treatment (secondary
wastewater treatment, filtration and nutrient removal plus ultraviolet disinfection).

4) Reclaimed water for irrigation purposes (secondary treatment plus filtra-

tion and high-level disinfection).

DOI: 10.4236/jwarp.2024.166022

396 Journal of Water Resource and Protection


https://doi.org/10.4236/jwarp.2024.166022

F. Bloetscher et al.

5) Indirect potable reuse (full treatment with reverse osmosis, plus ultraviolet
light and advanced oxidation with storage in the aquifer or a pond).

6) Direct potable reuse using reverse osmosis, ultraviolet light and advanced
oxidation prior to discharge to the headworks of a water treatment plant.

Septic tanks are not a consideration in urban areas, so are not considered. One
other option is snow—an option in high mountain areas in the winter that as-
sumes the same treatment as reclaimed water above, although UV is likely to be
employed as opposed to chlorination. Table 1 outlines a comparison of options

by some jurisdictions.

2. Methods

The concept for the development of the comparative (relative) risk assessment
used in the UM and FAU studies is based on the predictive Bayesian compound
Poisson model proposed previously by Englehardt [24]. In both Englehardt et al
[20] and Bloetscher et al [1], a conceptual model of the operating environment
was developed for each disposal option. Elements of the conceptual models in-
cluded regulatory constraints, hydrogeological and hydrological considerations,
and potential pathways of health and ecological exposure. Water quality gath-
ered from the utility effluents and receiving water was compared to applicable
disposal and drinking water standards (see Table 2).

Figures 1-12 show the conceptual models used in Bloetscher, et al [1]—odd
numbered figures) with applicable exposure routes associated with each disposal
method (even numbered tree diagram figures), with the treatment assumptions
noted above. However, with these methods, many of the nodes provided mini-
mal impact. The direct potable reuse scenario assumes the use of filtration, mi-
crofiltration, reverse osmosis, ultraviolet light, and peroxide, prior to discharge
to a water plant for treatment (see Figure 11). The only exposure is customers of
the drinking water utility. Impacts from the water distribution piping are not
part of the analysis since they are not fully controllable once the water leaves the

treatment plant.

Table 1. Examples of wastewater disposal options.

Comparison w (0]6] Reuse IRR PR SW Snow
SE FL X X X X X
Colorado X X x* X
Texas X X X X
AA X X X
Central FL X X X
Detroit i i X

*WQ might need to be must greater than AWT for some discharges; **Lacks need for this
option; ***recreation exposure.
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Figure 1. Ocean outfall disposal method route diagram (from [23]).
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Figure 3. Injection well disposal method route diagram 9 from [23]).
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Figure 4. Injection well tree risk tree diagram (from [23]).
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Figure 5. Surface water disposal method route diagram (from [23]).
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Figure 7. Reuse irrigation disposal method route diagram (from [2]).
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Figure 10. Indirect potable reuse aquifer injection risk tree diagram from [1]).
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Figure 12. Potable reuse risk tree diagram (from [1]).

Contaminants of Concern

Initial discussions among the experts focused on the conceptual models dis-
cussed above for the technological and environmental setting for wastewater
disposal in Southeast Florida. An extensive literature review was gathered and
discussions about contaminants of concern were held. “Risk” for this study was
defined in terms of the number and duration of periods when public health ex-
posure triggers were exceeded. projected for each alternative. The following pub-
lic health exposure triggers were used [1]:

1) Rotavirus—zero CFU/mL (based on Bloetscher [25] and team microbiolo-
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gists)

2) PFAS—5 ng/L (per California law—note this effort was conducted before
the USEPA proposed 4 ng/L regulation)

3) Total Phosphorous—10 mg/L environmental exposure (as used in both
prior studies)

4) 17b estradiol—0.5 ng/L—the known impact on fish

While these were used for Bloetscher et al [1], local conditions may dictate
what public health concerns might be appropriate. Norovirus has been suggested
as a replacement for rotavirus [13]. A different microbiological agent might be
considered in other jurisdictions such as fecal or total coliforms which are faster
to detect. Caffeine, ibuprofen and acetaminophen are also options to contami-
nants.

Expert opinion can be solicited for input on the model developed using a
modified Delphi method. The modified Delphi method used in the UM and
FAU studies is described in Bloetscher et al [1] [23]. The Delphi technique is a
methodology developed by the Rand Corporation in 1948 to elicit expert opin-
ion in a systematic way in order to gather subjective information as data. Apost-
alakis [26] anticipated that the use of expert opinions in safety studies and risk
management would receive increased attention. The benefits of a Delphi solici-
tation are that it is generally fast, inexpensive, easy to understand, versatile, and
can be applied wherever expert opinion is believed to exist [27]. The method
used in this study was a modified version of Delphi, aimed at obtaining a distri-
bution of opinions rather than consensus, and with experts answering question-
naires individually rather than as a group.

For the modified Delphi each node and each discharge alternative, the re-
search team was asked four questions:

1) How many times in 30 years will the public health exposure trigger be ex-
ceeded at the receiving node? (One such exceedance event may last any number
of days.)

2) What is your confidence in the numbers of exceedance events you entered?
Please select low (L), medium (M) or high (H).

3) How many days will exceedance events last (minimum, mean, maximum)?

4) What is your confidence in the event sizes you entered? Please select from
low (L), medium (M) or high (H).

For each disposal option and each constituent, the results calculated for each
node were added to obtain an overall believed number of days as a percentage of
the total timeframe of 10,950 days (30 years). The means for creating these re-
sults was based on obtaining the probability distribution for risks and develop-
ing a robust risk assessment is described by Shannon [28]: “The probability dis-
tribution having maximum entropy (uncertainty) over any finite range of real
values is the uniform distribution over that range.” Predictive Bayesian inference
is one means of addressing the challenge of assessing uncertainty in risk estima-
tion and has been previously applied [29] [30] [31] [32] [33]. The approach,
successful in previous projects, involves the assignment of probability distribu-
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tions, termed sampling distributions, to uncertain/variable parameters affecting
the risk of a planning alternative.

The Poisson distribution is known to predict the number of incidents over a
period [34]. The Pareto distribution is known to predict incident size ([23] [29]
[30] [31] [32] [35]. Probability distributions, termed prior distributions, can
then be assigned to the parameters of the sampling distributions. The predictive
Bayesian approach used here is identical to that from the UM study [20].

Incidents have been suggested to be represented as Poisson distributions [23]
[30] [31] [32] [33]. A Poisson distribution is a discrete distribution that can be
used to model rare-events with a gamma prior distribution for A [36]. Using this
method, Table 3 shows the results of the programs for the south Florida example
(run for reach node). Ultimately, the injection wells and direct potable reuse op-
tions were the lowest risk. The similarity in risk from these two options was un-
anticipated but, these low relative risks are likely due to the advanced treatment

used for direct potable reuse and the lack of public exposure.

3. Results

Reviewing the results of the FAU study provides some insight into the simplifi-
cation of the process. First, very few places will have 6 available alternatives,
thereby simplifying the process considerably. In addition, not all nodes are sig-
nificant. In Table 3, the red items indicate the expert opinion is less than the
minimum of 107°. As a result, they can be ignored since they fall below the
minimum risk permitted in the study (10~°). The orange boxes indicate risk ex-
posures that are less than 1% contributions. As a result, they can also likely be
ignored. Yellow boxes are 10 times less and therefore probably should not be
ignored. Figures 13-18 show each of the decision trees with the important risks
highlighted. This can greatly simplify the analysis particularly as an initial analy-
sis that does not require the extensive literature review and data gathering an
expert opinion might need. As noted in Figures 13-18, the process simplifies
considerably when many nodes are not required.

The modified Delphi can also be created at two levels. For starting purposes at
the local level, a staff can use the models to develop “what if” scenarios and
measure the breadth of uncertainty. However, to conduct a public-facing study,
experts should be employed.

During the FAU study [1], for most of the options, there was a node or two
that carried the weight many times others were far lower magnitudes and can
probably be ignored. For example, the injection wells nodes of significant public
health exposure were ASR wells that did not treat the water (a finding from
[23]). For ocean outfalls, the issue was beach swimming. The exposure pathway
can vary considerably—in south Florida, no one is really swimming in the ca-
nals, but this may not be true in places where the water is more recreation (Tex-
as) or high quality waters (Colorado mountains, N. England). As the options
may vary, the need to pursue options varies as well. Likewise, data on contami-

nants needs careful consideration. PFAS data was too scattered to provide a
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Table 3. Comparison of total believed days failing to meet trigger over 30 years to other options (from Bloetscher, et al. 2024).

Indirect

Rotavirus Contaminant Ocean Outfalls  Surface Irr Reuse Potable Reuse
Potable Reuse
Rotavirus 6E+00 2E+01 2E+01 3E+00 7E-01
PFAS 4E+01 3E+01 4E+01 4E+00 4E+00
Injection Wells

Total Phosphorous 4E+00 4E+00 6E+00 3E+00 3E-01

Estrogen 3E+01 1E+01 2E+01 3E+00 6E-01

Rotavirus 3E+00 4E+00 5E-01 1E-01

PFAS 8E-01 1E+00 1E-01 1E-01

Ocean Outfalls

Total Phosphorous 1E+00 2E+00 7E-01 7E-02

Estrogen 4E-01 5E-01 8E-02 2E-02

Rotavirus 1E+00 2E-01 3E-02

PFAS 1E+00 1E-01 1E-01

Surface

Total Phosphorous 2E+00 7E-01 7E-02

Estrogen 1E+00 2E-01 5E-02

Rotavirus 1E-01 3E-02

PFAS 1E-01 9E-02

Irr Reuse

Total Phosphorous 4E-01 4E-02

Estrogen 2E-01 4E-02

Rotavirus 2E-01

PFAS 8E-01

Direct Potable Reuse

Total Phosphorous 1E-01

Estrogen 2E-01

*Negative exponent indicates the risk numerator is lower disposal option than the denominator disposal option.

Casing I.eak

Consumption

Hawthorn
Formation

Lime Softening,

2nd Effluent, CI Chlorine

. Lime Softening,
\ Non-potable ASR  (anals Chlorine
5 _ Ln.1 ln.l2 ln.12.11
Pptable ASR Chlorine Consumption
1n.1 1n13

Ocean
migration,
farficld, benthic

R.O.

Figure 13. Significant nodes for injection wells.
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2nd Effluent,

Cooked

2nl.1.11

Fish Consumptioff Uncooked

2n.l.1 }—' 2nl.11 H 201112 |

Nearfield (boil)

Consumption

R.O.
E 2n21

Fish Consumption/ Uncooked

Zvn.J.l |—{ 2n3.11 H 2n3.1.12 |

Farfield, Benthic
2n.

Swimming

Pipeline Leak

Figure 14. Significant nodes for ocean outfall discharges.

Advanced Wastewater Treatment

Irrigation Aerial Drift

Vegetable
Consumption

Tish/Shellfish Consumption

33n.1 |—| ST

/ Uncooked

| 51112 |

Effluent,

High Level Disinfection

(=1

Ingestion

Dermal
Contact

|
. Aerosol
GAC/RO Shallow Wells Water Lime Soft.,
1‘ Supply Chlorine Consumption 33023
Figure 15. Significant exposure nodes for Cana/surface water discharges.
Cooked
Fish/Shellfish ~ Consumption Uncooked

4111112 | xDRC

4.1.1.1.1 H ANIRIR LT

Ingestion

4.1.1.1.2.1

Dermal Contact

x DRC

Acrosol
x DRC

Storage
Lime Soft.,

Water Supply Chlorine Consumption

41121 '——' 41121 | xDRC

Private Wells Vegetable Consumption

Aecrial Drift

Figure 16. Significant exposure nodes for reuse irrigation.

DOI: 10.4236/jwarp.2024.166022

407 Journal of Water Resource and Protection


https://doi.org/10.4236/jwarp.2024.166022

F. Bloetscher et al.

Shallow Wells

Fish/Shellfish Consumption

Uncooked

SH kL }—{ S0

S1E12; |

Swimming

Irrigation Aerial Drift

Vegetable

Consumption

Ingestion

Dermal
Contact

Aerosol

Lime Soft.,
‘Water Supply Chlorine Consumption
513.1 513.1n

Figure 17. Significant exposure nodes for indirect potable reuse.

Effluent,
Full Treatment, UV/AOP

‘Water Treatment
Process

Consumption

[]

6.1

6.1.1

Figure 18. Significant exposure nodes for direct potable reuse.

good answer, the FAU study did not have enough data to really evaluate this
properly. Nutrient pathways are not really an issue in south Flroida, but they are
in other communities with the caveat of whether they are ecological or public
health impacts? Surrogates for nutrients, like cyanobacteria might be useful for
ecological risks.
Development of the initial process would include asking a series of question to
reduce the number of scenarios offered:
1) Do you have access to ocean disposal?
2) Do you have access to Class I injection zone available for disposal?
3) Do you need to use reclaimed water for water supply purposes?
4) Do you make snow for skiing using wastewater (or might you)?
5) Are there recreational uses downstream of your discharge point?
6) Is swimming in local waterways where wastewater is discharged a signifi-
cant issue?
7) Is fish consumption from nearby waterways that receive wastewater dispos-
al significant in your community?
Many nodes can be excluded at this point.
The process to develop such a tool is outlined as follows:
1) Challenges to overcome
a) Direct comparisons
b) Localized effort requires a lot of time from experts
¢) Finding experts

d) Simplifying the process
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Table 4. Summary of Modeling Results by node and constituent.

Injection Well Ocean Outfall Surficial Recharge Reuse Irrigation Indirect Potable Reuse Direct Potable Reuse
ln.l.1.1 2.n.2.1 1 - 4.1.2 6.80E-08 5.1.3.1.n 1.33E-07 6.1.1 -
1ln.l1.1.2.1 2.n.1.1.1.1 3.2.n.1.2 7.81E-08 4.1.1.1.1.1.1  2.32E-07 51111 8.23E-07
1n.1.2.1.1 2n.1.1.1.2 2.03E-07 3.3.n.1.1.1 2.22E-08 4.1.1.1.1.1.2 5.95E-08 5.1.1.12. 3.97E-09
1n.13 2.n.3.2.1 3.54E-06 3.3.n.1.12  512E-07 4.1.1.1.1.2.1  5.11E-07 5.1.1.2.1 5.93E-08
Rotavirus 1n.1.4 2.n.3.2.2 6.18E-08 3.3.n.2.1 7.07E-08 4.1.1.1.1.2.2  1.92E-06 5.1.1.2.2 3.26E-07
1nll111 2.n.3.2.3 1.11E-06 3.3.n.2.2 3.45E-09 4.1.1.1.1.2.3  4.73E-07 5.1.1.2.3 2.85E-06
ln.1.2 2.n.3.1.1.1 7.55E-07 3.3.n.2.3 1.73E-09 4.1.1.3.2 9.90E-07 5.1.2.1 2.55E-07
1.2.1 4.58E-09 2n.3.1.1.2  4.58E-07 3.2.n.2.1.1 1.38E-07 4.1.1.3.1 7.52E-07 5.1.22 2.20E-07
12.1.1 - 2.1 4.94E-06 4.1.1.3 3.13E-07
2.n.2 6.42E-07
Summation of Delphi: 4.62353E-09 1.1708E—05 8.26123E-07 5.31489E-06 4.66852E-06 7.7982E-10
Injection Well Ocean Outfall Surficial Recharge Reuse Irrigation Indirect Potable Reuse Direct Potable Reuse
ln.l.11 2.n.2.1 9.77E-08 3.2.n.1.1 - 4.1.2 1.75E-07 5.1.3.1.n 6.80E-07 6.1.1 3.43E-06
1ln.l1.1.2.1 2.n.1.1.1.1 1.80E-06 3.2.n.1.2 8.24E-07 4.1.1.1.1.1.1  5.62E-07 51111 1.49E-07
1n.121.1 1.08E-08 2.n.1.1.1.2 | 6.64E-07 3.3.n.111 1.14E-06 4.1.1.1.1.1.2  5.04E-06 5.1.1.1.2. 1.41E-09
1n.13 1.17E-08 2.n.3.2.1 8.56E-08 3.3.n.1.12 | 6.48E-07 4.1.1.1.1.2.1  1.14E-06 5.1.1.2.1 2.82E-08
PFAS 1n.l4 2.91E-09 2.n.3.2.2 1.15E-06 3.3.n.2.1 9.88E-06 4.1.1.1.1.2.2  1.96E-07 5.1.1.2.2
1n.l111 2.n.3.2.3 - 3.3.n.2.2 5.32E-08 4.1.1.1.1.2.3  1.24E-07 5.1.1.2.3
1ln.1.2 2.n.3.1.1.1 2.23E-06 3.3.n.2.3 - 4.1.1.3.2 9.72E-09 5.1.2.1
12.1 2n.3.1.1.2  9.79E-06 3.2.n.2.1.1 4.57E-06 4.1.1.3.1 2.60E-06 5122
12.1.1 2.1 5.36E-06 4.1.1.3 5.74E-06
2.n.2 5.99E-06
Summation of Delphi: 2.55799E—08 2.71685E-05 1.71189E-05 1.558E-05 8.59003E-07 0.000003429
Injection Well Ocean Outfall Surficial Recharge Reuse Irrigation Indirect Potable Reuse Direct Potable Reuse
Inlll  264E-09 2021 32011 | 5.03E-09 412 5.95E-08 513.1n | 140E-09 611 -
1ln.l1.1.2.1 2.n.1.1.1.1 3.2.n.1.2 6.69E-09 4.1.1.1.1.1.1  7.41E-09 51111 -
1n.12.1.1 2.n.1.1.1.2 3.3.n.1.1.1 3.51E-08 4.1.1.1.1.1.2 2.40E-09 5.1.1.1.2. 1.44E-07
1n.1.3 1.55E-09 2.n.3.2.1 1.38E-07 33.n.1.12 | 3.31E-09 4.1.1.1.1.2.1  3.78E-09 5.1.1.2.1 -
TP 1n.1.4 2.n.3.2.2 3.3.n.2.1 1.40E-08 4.1.1.1.1.2.2  |4.22E-10 5.1.1.2.2 5.75E-09
1nll111 2.n.3.2.3 3.3.n.2.2 4.91E-09 4.1.1.1.1.2.3  1.18E-08 5.1.1.2.3 1.02E-08
1n.1.2 2.n.3.1.1.1 3.3.n.2.3 1.33E-09 4.1.1.3.2 5.39E-09 5.1.2.1 2.79E-08
1.2.1 2.n.3.1.1.2 3.2.n.2.1.1 2.67E-06 4.1.1.3.1 6.53E-08 5.1.22 2.58E-07
12.1.1 2.1 1.40E-07 4.1.1.3 1.33E-07
2.n.2 1.70E-07
Summation of Delphi: 4.50241E-09 4.49269E-07 2.73742E-06 2.89233E-07 4.47737E-07 1.9614E-10
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Continued
Injection Well
Ln.l.11
1n.l1.121
1n.l121.1
1.n.1.3 6.90E-09
Synthetic Estrogen
. 1.n.1.4
Synthetic Estrogen
1n.l1.1.1.1 1.33E-09
1n.12

121

12.1.1

Summation of Delphi: 8.28879E—09

Ocean Outfall Surficial Recharge Reuse Irrigation Indirect Potable Reuse Direct Potable Reuse
2.n.2.1 4.87E-07 32.n.1.1 9.69E-07 4.1.2 1.74E-08 5.1.3.1.n 8.84E-08 6.1.1 2.09E-08
2.n.1.1.1.1 3.97E-06 3.2.n.1.2 5.43E-08 4.1.1.L.1.L1.1  |6.97E-08 51111 3.73E-07
2.n.1.1.1.2 1.99E-05 3.3.n.1.11 8.45E-07 4.1.1.1.1.1.2  6.45E-07 5.1.1.1.2. -
2.n.3.2.1 7.70E-07 3.3.n.1.1.2 | 7.00E-08 4.1.1.1.1.2.1  2.23E-07 5.1.1.2.1 3.73E-09
2.n.3.2.2 2.27E-06 3.3.n.2.1 2.73E-08 4.1.1.1.1.2.2  7.74E-07 5.1.1.2.2
2.n.3.2.3 - 3.3.n.2.2 6.41E-06 4.1.1.1.1.2.3 | 5.40E-08 5.1.1.2.3
2.n.3.1.1.1 2.15E-06 3.3.n.2.3 3.39E-07 4.1.1.3.2 1.14E-07 5.1.2.1
2.n.3.1.1.2 | 4.03E-07 3.2.n.2.1.1 1.44E-06 4.1.1.3.1 1.10E-06 5.1.22
2.1 3.42E-06 4.1.1.3 2.66E-07
2.n.2 1.14E-07
3.34792E-05 1.01592E-05 3.26331E-06 4.65863E-07 2.0895E—08

i) How to eliminate nodes (and maybe some are gone to start)
ii) Identify nodes that are locally relevant
e) Identify treatment requirements that apply
2) Create a two track excel based program
a) Your options
b) Your treatment
¢) Your WQ concerns
d) Your pathways
e) Track 1—the primary driver only (Staff based)
f) Track 2—experts—may include others nodes deemed relevant by experts
i) How to find the experts or is that us? Need local help as well
g) Include all nodes but “zero” out the unneeded ones
h) Develop a process to solicit responses from experts
For a more formal process, expert opinion and data are needed. It is suggested
that all yellow, and likely many orange nodes on Table 4 should be retained, at
least initially. Finding the experts is one challenge as some knowledge of local

conditions and regulatory contacts is also relevant.

4. Conclusions

The FAU [1] and UM [20] studies provide a pathway to an informed risk as-
sessment process of wastewater disposal and reuse options. While the FAU and
UM studies are limited to south Florida, the methods can be translated else-
where. The ability to limit options and nodes reduces the effort required consid-
erably. In comparing the FAU study to this effort, eliminating the red, orange
and yellow boxes in Table 4, created minimal impact and no changes in the
magnitude of difference between options. Hence the concept has potential.

Note this effort is not intended to address risks associated with issues in the

water distribution systems. Such problems are not related to the wastewater dis-
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posal options. The public’s perception of wastewater treatment and reclaimed
water also is not something measurable. A public relations effort is needed to

address the public’s perception of the “Toilet to Tap” concern.
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