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Abstract

Genetic effects can be sex-specific, particularly for traits such as testosterone, a sex hor-

mone. While sex-stratified analysis provides easily interpretable sex-specific effect size esti-

mates, the presence of sex-differences in SNP effect implies a SNP×sex interaction. This

suggests the usage of the often overlooked joint test, testing for an SNP’s main and

SNP×sex interaction effects simultaneously. Notably, even without individual-level data, the

joint test statistic can be derived from sex-stratified summary statistics through an omnibus

meta-analysis. Utilizing the available sex-stratified summary statistics of the UK Biobank,

we performed such omnibus meta-analyses for 290 quantitative traits. Results revealed that

this approach is robust to genetic effect heterogeneity and can outperform the traditional

sex-stratified or sex-combined main effect-only tests. Therefore, we advocate using the

omnibus meta-analysis that captures both the main and interaction effects. Subsequent

sex-stratified analysis should be conducted for sex-specific effect size estimation and

interpretation.

Author summary

When genetic variant effects on complex traits differ between females and males, sex-

stratified analysis is often applied, offering easy-to-interpret, sex-specific effect estimates.

However, from the viewpoint of maximizing the power and robustness of association test-

ing, sex-stratified analysis may not be the best analytical strategy. As sex-specific genetic

effects imply an SNP×sex interaction effect, jointly testing SNP main effects and SNP×sex

interactions could be more powerful than sex-stratified analysis or the standard main-

effect testing. Furthermore, this joint test is applicable even when individual-level data are

not available, by leveraging sex-specific summary statistics through an omnibus meta-

analysis. In this study, we performed such an omnibus meta-analysis using the UK Bio-

bank data. Across 290 phenotypes, our results showed that this method is generally
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comparable to traditional analyses and excels by identifying new loci for traits such as tes-

tosterone, which standard tests do not detect. Our findings suggest that leveraging genetic

heterogeneity enhances the detection of genetic associations, with significant implications

for the future analysis of diverse data.

Introduction

The genetic architecture of complex traits can vary among subgroups within a population. Evi-

dence of such heterogeneity has been found in subgroups defined by various factors, including

sex [1–4] and smoking status [5]. Sex, in particular, is an important factor, and sex differences

in genetic effect on complex traits have been extensively reported [1, 6–8]. Subsequently, the

research community has acknowledged the necessity of sex-aware genetic association studies

and has developed guidelines for their implementation [3, 9].

A recent genome-wide association study (GWAS) of the UK Biobank data [10] has revealed

“small yet widespread” sex differences in genetic architecture across 530 traits [8]. This finding

aligns with the observation that genetic effects often exhibit sex-specific patterns, especially for

sex hormone traits such as testosterone [1] where sex-stratified GWAS discovered 79 and 127

independent genome-wide significant signals for females and males, respectively, in the UK

Biobank [1]. Interestingly, the top GWAS hits for males largely diverged from those for

females, both in terms of genomic locations and the signalling pathways in which the anno-

tated genes are involved.

Some earlier GWASs have also reported the existence of genetic effect heterogeneity

between sexes. An example of a genetic effect in the same direction but with different magni-

tudes is serum uric acid concentration [6]: the association between rs7442295 in SLC2A9 was

stronger in females (Effect = -0.46 mg/dl, p = 2.6 × 10−74, explaining 5.8% of the phenotypic

variance) than males (Effect = -0.25 mg/dl, p = 7.0 × 10−17, explaining 1.2% of the phenotypic

variance). There are also examples of genetic effects in opposite directions. For example, the

association between SNPs near RNF212 and sex-specific recombination rates have opposite

directions [7]. Another example is body fat distribution [11–13], for which approximately

one-third of all signals identified from sex-stratified GWAS were found to exhibit sex-specific

effects [13]. Turning to COVID-19, although there is a well-documented sex difference in the

risk of severe outcomes [14], most published GWAS did not conduct sex-stratified analysis or

consider SNP×sex interaction with the exception of [15].

In the presence of genetic effect heterogeneity between sexes, a sex-stratified analysis

approach is often used, which provides easy-to-interpret, sex-specific effect size estimates [16–

18]. However, from the viewpoint of maximizing the power and robustness of association test-
ing, the sex-stratified analysis may not be the best analytical strategy for two reasons. First, after

a sex-stratified analysis, it remains tempting to consider sex-combined analysis by, for example,

aggregating the association evidence from both sexes using traditional meta-analysis [19–21],

but complications arise. The fixed-effect meta-approach, though it could be used robotically in

this context, is conceptually at odds with the heterogeneity setting considered here [22]. Apply-

ing the random-effects meta-approach is also challenging, as its implementation requires esti-

mating τ2, the parameter that quantifies the extent of between-study heterogeneity. When the

number of studies (or groups) is small, the estimate can be unreliable [23, 24]. Second, if the

effect of an SNP indeed differs between sexes, it implies an SNP×sex interaction effect. This

suggests that jointly testing an SNP’s main and SNP×sex interaction effects may be more pow-

erful than sex-stratified analysis or the standard main effect-only testing approach [25, 26].
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Table 1 summarizes the different types of tests that can be used; the Materials and methods

provide more details. Briefly, let TFemale and TMale be the summary statistics from sex-stratified

analysis, where TFemale and TMale follow the standard normal distribution under the null of no

association. Now consider three different meta-analysis approaches that combine TFemale and

TMale: (1) (for completeness) the traditional meta-analysis T1,metaL, using a weighted average of

TFemale and TMale, (2) the SNP×sex interaction effect only test TDiff, testing for the effect differ-

ence between sexes, and (3) our recommended omnibus meta-analysis T2,metaQ, using the sum

of T2
Female and T2

Male. For the mega-analysis of individual data, if available, let T2,mega be the 2

degrees of freedom (df) test derived from jointly testing both the SNP main and SNP×sex

interaction effects. For completeness, let us also consider T1,mega, the most commonly used

GWAS approach of testing the genetic main effect, without the SNP×sex interaction term but

with sex included as a covariate in the regression model.

Multiple earlier studies have demonstrated that including interaction effects makes the

association analysis more robust to model assumptions in that the joint test remains powerful

even in the absence of heterogeneity of SNP effect size between sexes, and the test would be

considerably more powerful if there were interactions [25–31]. For example, focusing on gene-

environment interaction analysis of a binary trait, Kraft et al [25] concluded that “Although

the joint test of genetic marginal effect and interaction is not the most powerful, it is nearly

optimal across all penetrance models we considered”. As sex can statistically be regarded as an

environmental variable, we can infer that the 2 df T2,mega is a more robust test than the 1 df

T1,mega in our setting, where SNP×sex is of interest.

When individual data are unavailable, focusing on T1,metaL and T1,mega, Lin and Zeng [32]

has shown that meta- and mega-analysis perform the same “for all commonly used parametric

and semiparametric models.” Moreover, Aschard et al [27] also concluded that T2,metaQ and

T2,mega are analytically equivalent to each other. Therefore, the 2 df joint main and interaction

analysis can be performed by quadratically aggregating the sex-stratified summary statistics,

where squaring TFemale and TMale making the test omnibus; this is akin to the added benefits of

SKAT-type over the Burden-type methods when aggregating association evidence across

Table 1. A list of association methods considered in this analysis.

Notation Method Details in the UK Biobank (UKB) application Asymptotic null

distribution

Sex-stratified analysis (The UKB sex-stratified analysis was performed by Neale’s lab (Online Resources).)

TFemale Female-only SNP main effect test The association summary statistic TFemale in females with covariates of 20

principal components, age and age2
N(0, 1)

TMale Male-only SNP main effect test The association summary statistic TMale in males with covariates of 20

principal components, age and age2
N(0, 1)

Sex-combined meta-analysis

T1,metaL The traditional meta-analysis (testing an SNP’s

main effect only)

1=v̂ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=v̂2

Fþ1=v̂2
M

p TFemale þ
1=v̂Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=v̂2
Fþ1=v̂2

M

p TMale; where v̂F; v̂M are standard errors of sex-

stratified effect estimates

N(0, 1)

TDiff The interaction effect-only test b̂F � b̂Mffiffiffiffiffiffiffiffiffiffi
v̂2

Fþv̂2
M

p , where b̂F ; b̂M; v̂2
F; v̂2

M are sex-stratified summary statistics N(0, 1)

T2,metaQ The omnibus meta-analysis (jointly testing an

SNP’s main and SNP×Sex effects)

T2
Female þ T2

Male w2
2

Sex-combined mega-analysis if individual data are available

T1,mega SNP main effect test The traditional 1 df test, testing for an SNP’s main effect, where sex is

included as a covariate

N(0, 1)

T2,mega SNP main and SNP×sex interaction joint analysis The often overlooked 2 df test, testing for an SNP’s main and SNP×sex

interaction effects simultaneously

w2
2

https://doi.org/10.1371/journal.pgen.1011221.t001
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multiple rare variants [33]. The resulting T2,metaQ is more robust to sex-specific effects assump-

tion (e.g. opposite effect direction) than the traditional meta-analysis T1,metaL.

While the benefits of the omnibus meta-analysis T2,metaQ (and equivalently the sex-com-

bined joint analysis T2,mega of both main and interaction effects) have been documented, they

are yet to be adopted as a standard analysis method for association scanning when heterogene-

ity is anticipated. Recent genetic research guidelines emphasized the importance of sex-aware

genetic association studies [3] and made some general analysis suggestions, including 1) use a

blend of two or more strategies of TFemale, TMale, TDiff, and T1,mega, especially when there is no

prior understanding of sex-specific effects, and 2) apply TDiff on a sex-combined sample to ver-

ify if the effect size difference is statistically significant, followed by a sex-stratified analysis on

a subset of variants with significant interaction [3, 34]. Through a large-scale application, our

study aims to provide empirical evidence to show that T2,metaQ is generally comparable to all

other GWAS methods and can be more powerful in the presence of genetic effect heterogene-

ity. Although T2,metaQ method serves as a powerful first-stage association screening method,

subsequent stratified analyses, as well as genetic correlation and functional annotation enrich-

ment analyses, should be applied to fully reveal the landscape of genetic effect heterogeneity

and its interpretation.

In this analysis, we leveraged publicly available summary statistics from Neale’s Lab [35]

and conducted a large-scale interaction analysis of 290 complex quantitative traits in the UK

Biobank (UKB) data. Our results demonstrate that the omnibus meta-analysis T2,metaQ (equiv-

alently the sex-combined 2 df joint analysis, testing both the main and interaction effects)

indeed is more robust to effect heterogeneity assumption than the sex-stratified GWAS

(TFemale and TMale), the traditional meta-analysis (T1,metaL or equivalently T1,mega) or testing the

SNP-sex interaction effect alone approach (TDiff). Focusing on testosterone, a sex-hormone

trait with known distinct genetic architectures between sexes, we found that T2,metaQ not only

echoed findings from previous GWAS but also unveiled novel signals, suggesting its potential

to reveal previously overlooked loci. Moreover, we report multiple serum urate-associated

SNPs near SLC2A9 with genome-wide significant association in both females and males but

with opposite effect directions. These signals could be missed by the traditional main effect

testing approach (T1,metaL or T1,mega), suggesting the importance of a sex-aware approach in

future studies.

Results

Our analysis relied on the sex-stratified summary statistics, labelled as TFemale and TMale,

sourced from the Neale Lab’s round 2 (imputed-v3) GWAS [35] (Online Resources), focusing

on the 290 continuous traits for which TFemale and TMale are available (Materials and methods).

The Neale Lab’s sex-stratified GWAS included a cohort of up to 361,194 unrelated participants

(194,174 females and 167,020 males), genetically determined and self-identified as of white

British ancestry; see Online Resources for trait-specific sex-stratified sample sizes. The GWAS

originally encompassed 13.7 million genotyped and centrally imputed SNPs, with INFO

score > 0.8, minor allele frequency (MAF) > 0.001 (and for SNPs coded as Variant Effect Pre-

dictors [36], MAF >10−6), and Hardy-Weinberg equilibrium (HWE) p-value>10−10. Consid-

ering the varied sample sizes between phenotypes, especially with some as low as

approximately 5,000, in our analysis we further focused on SNPs with trait-specific

MAF > 0.01 in both females and males. We further assessed the robustness of our results with

respect to MAF through sensitivity analyses (Materials and methods).

Using the available sex-stratified summary statistics, TFemale and TMale, we computed three

sex-combined meta-analysis test statistics: the traditional meta-analysis T1,metaL, the SNP-sex
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interaction-only TDiff, and the omnibus meta-analysis T2,metaQ (Table 1; Materials and meth-

ods). We note T1,mega and T2,mega were omitted from this analysis, as they are empirically

equivalent to, respectively, T1,metaL and T2,metaQ (Fig i in S1 Appendix), consistent with the ana-

lytical conclusion of [32] and [26]. We used the threshold of p-value <5 × 10−8 to declare

genome-wide significance [37].

Genome-wide comparison of sex-stratified and sex-combined association

methods across traits

There are 1,113,865 SNPs genome-wide significantly associated with one or more traits in the

290 traits analyzed, detected by any of the five association testing methods. Fig 1A shows the

pairwise scatter plots for the corresponding set of 6,207,519 genome-wide significant SNP-

phenotype associations. The first notable feature is that the −log10 p-values of T2,metaQ appear

to be consistently larger than those of the other four methods (the last column in Fig 1A), indi-

cating that T2,metaQ is capable of capturing signals detected by any of the other methods.

The second feature in Fig 1A, when comparing T1,metaL with T2,metaQ, is the presence of a

cluster of SNPs close to the x-axis, where the −log10 p-values of T1,metaL are close to zero but the

−log10 p-values of T2,metaQ are very large, indicating substantially better performance by T2,

metaQ as compared with T1,metaL. Upon further inspection, these associations are primarily for

testosterone (Fig 1B). After removing the testosterone, Fig 1B shows that the first feature

remains: For all significant associations identified by any of the five methods, association evi-

dence provided by T2,metaQ are comparable or substantially stronger. In other words, T2,metaQ

is a robust association method. We arrived at similar conclusions from MAF-stratified pair-

wise scatter plots (MAF > 0.05 in both sex groups vs. either sex-stratified MAF�0.05; S1 Fig).

Alternatively, focusing on traits, instead of SNPs, we compared the the number of associated

traits across 1,113,865 SNPs among the five methods (S2–S4 Figs), and concluded that method

comparison remain consistent.

Fig 2A shows the stacked-Manhattan plots of the set of 179,718 genome-wide significant

SNPs identified by the recommended omnibus meta-analysis T2,metaQ but missed by the tradi-

tional meta-analysis T1,metaL across the 290 traits analyzed. It is evident that SNPs identified by

T2,metaQ have −log10 p-value range from 7.3 to over 200, but they may have no association evi-

dence based on T1,metaL with −log10 p-value close to zero. On the other hand, although the

number of SNPs missed by T2,metaQ but identified by T1,metaL is 756,316, sustainably larger

than 179,718, the two sets of p-values among the 756,316 SNPs are comparable (Fig 2B; also

see S5 Fig for distribution of these SNPs with a zoomed-in view within Fig 1A). Notably, the

minimum −log10(p) for such SNPs was 6.45 by T2,metaQ while capped at 8.17 by T1,metaL,

matching the expected small cost of T2,metaQ having an additional 1 degree of freedom in the

absence of sex difference in genetic effect (S7 Appendix). This pattern of results persisted,

albeit to a lesser degree, after removing testosterone (Fig 2C and 2D). Further, a similar con-

clusion can be drawn when T2,metaQ is compared with the aggregated SNPs identified by any of

the alternative methods considered (S6 Fig) or based on MAF-stratified results (S7–S10 Figs).

Fig 3A contrasts the numbers of genome-wide significant SNPs identified by either T1,metaL

or T2,metaQ for each of the 290 traits analyzed; see S11 Fig for a log10 transformation, which

allows better visualization of the traits with smaller numbers of associated SNP. Although it is

clear that T1,metaL generally resulted in more associated SNPs than T2,metaQ, it is important to

recall that, for SNPs missed by T2,metaQ, T2,metaQ provides comparable association evidence (the

last two rows in Fig 2B and 2D). On the other hand, for SNPs missed by T1,metaL, T1,metaL may

provide no association evidence at all (the last two rows in Fig 2A and 2C), completely failing

to capture those SNPs identified by T2,metaQ. Both features highlight the fact that T2,metaQ is
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Fig 1. Pairwise scatter plots of the genome-wide significant (p< 5 × 10−8) associations detected by any of the five

testing methods considered. (A) includes 6,207,519 SNP-phenotype associations across all 290 traits analyzed, and (B)

includes 6,175,594 SNP-phenotype associations after excluding testosterone. The five association methods include

TFemale (Female-only analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional

sex-combined meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for method details. The sex-
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stratified GWAS summary statistics come from the Neale lab’s UK Biobank GWAS round 2, which included a cohort

of up to 361,194 participants (194,174 females and 167,020 males). Axes depict −log10 p-values for each pair of tests,

and each hexagon’s color corresponds to the count of associations falling within the −log10 p-value range defined by

that region. Dashed line indicates the main diagonal reference line. The −log10 p maximum was truncated at 200 to

improve visualization.

https://doi.org/10.1371/journal.pgen.1011221.g001

Fig 2. Stacked Manhattan plots of genome-wide significant SNPs. (A) 179,718 SNP-phenotype associations

identified by T2,metaQ but missed by T1,metaL across all the 290 traits, (B) 756,316 SNP-phenotype associations missed by

T2,metaQ but identified by T1,metaL across all the 290 traits, (C) 155,930 SNP-phenotype associations identified by T2,

metaQ but missed by T1,metaL after removing the testosterone, and (D) 756,051 SNP-phenotype associations missed by

T2,metaQ but identified by T1,metaL after removing the testosterone. The −log10 p-values (with further log10

transformation on y-axis to aid presentation) are shown for the five association methods, including TFemale (Female-

only analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional sex-combined

meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for method details. The sex-stratified GWAS

summary statistics come from the Neale lab’s UK Biobank GWAS round 2, which included a cohort of up to 361,194

participants (194,174 females and 167,020 males). The red horizontal lines (at y = −log10(5 × 10−8) = 7.3) indicate the

genome-wide significant threshold of 5 × 10−8 on the −log10 scale. See S6 Fig for similar stacked Manhattan plots when

comparing SNPs identified by T2,metaQ with those identified by any of the alternative methods considered.

https://doi.org/10.1371/journal.pgen.1011221.g002
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more robust than T1,metaL against genetic heterogeneity assumption. These features are consis-

tent when comparing independent SNPs after LD clumping (Materials and methods; Fig 3B),

albeit with four phenotypes, in addition to testosterone, showing more significant loci in T2,

metaQ, for which we provided a comprehensive analysis check in S4 Appendix. A graphical

comparison of the different methods for each of the 290 traits can be found at https://sex-

combined-interaction-meta.shinyapps.io/figures/.

When genetic heterogeneity is present, such as for testosterone (UKB Data-Field: 30850),

T2,metaQ is substantially more powerful than T1,metaL, which we examine closely next.

Genome-wide results for testosterone

Noticeably, testosterone (UKB Data-Field: 30850) behaves differently from other traits, where

the omnibus meta-analysis T2,metaQ yielded substantially more genome-wide significant SNPs

than the traditional meta-analysis T1,metaL (29,327 and 5,804 for T2,metaQ and T1,metaL respec-

tively, corresponding to 206 and 61 independent loci; Materials and methods). Given the

established distinct genetic architecture of testosterone levels between males and females [1],

this observation suggests that association analysis of phenotypes with sex-specific genetic

effects could benefit considerably from the use of omnibus meta-analysis. Indeed, the 2 df T2,

metaQ test generally recovers all hits detected by all of the other four 1 df methods (S14(A) Fig).

Additionally, the −log10(p) values derived from T2,metaQ are always nearly equivalent to, or sig-

nificantly larger than, those from the other tests (S14(B) Fig). This observation is similar to

that drawn from evaluating all traits (Fig 1), suggesting that T2,metaQ exhibits enhanced robust-

ness and potentially superior power relative to the other testing methods. Notably, many SNPs

Fig 3. Comparison of the numbers of genome-wide significant (A) SNPs and (B) independent loci, identified by the traditional meta-analysis

T1,metaL (y-axis) and the omnibus meta-analysis T2,metaQ (x-axis) for each of the 290 traits analyzed. The dashed line indicates the reference main

diagonal line. See S11 Fig for a log10 transformation of the axes to better visualization traits with smaller numbers of associated SNPs. See S12 Fig for a

zoomed-in plot focusing on traits with smaller numbers of associated loci, including testosterone, high light scatter reticulocyte percentage and pulse

wave arterial stiffness index; see S4 Appendix for additional analyses of these phenotypes. In (B), the linkage disequilibrium is defined with a physical

distance of 10MB and r2 > 0.01 (Materials and methods); see Fig i in S4 Appendix for the loci results after using a different linkage disequilibrium

threshold.

https://doi.org/10.1371/journal.pgen.1011221.g003
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identified by T2,metaQ but overlooked by other methods exhibit opposite sex-specific effect

directions between females and males (S14(B) Fig).

For testosterone, T2,metaQ uniquely identified 1,287 genome-wide significant SNPs which

corresponds to 36 independent loci (Materials and methods). We ascertained the biological

relevance of the 36 loci by cross-referencing the NHGRI-EBI GWAS catalog [38] (Version:

e0r2022-11-29) to check for previously reported SNP-phenotype associations of the lead SNPs

and nearby SNPs in linkage disequilibrium (LD; Materials and methods). We found four of

these 36 loci include SNPs with reported association with testosterone in two recent GWAS

[39, 40] (S1(A) Table). Even though these loci are not novel, our confirmation of these associa-

tions using the Neale Lab’s UK Biobank data underscores the utilizes of T2,metaQ, since these

loci are overlooked by either the sex-stratified approach or the conventional sex-combined

methods.

Of the remaining 32 loci, 12 included lead SNPs (or SNPs in LD) with previously reported

associations with other traits (S1(B) Table). Although these SNPs have no previously reported

association with testosterone levels directly, some (e.g. sex hormone-binding globulin levels)

are related to testosterone levels and to the steroid biosynthesis pathway—the process respon-

sible for testosterone synthesis.

Moreover, joint testing through T2,metaQ also revealed 20 novel loci with no association

reported in the NHGRI-EBI GWAS catalog (date accessed: 2023-05-13). These newly discov-

ered loci merit further investigation. Table 2 lists results for the 12 loci with bi-allelic leading

SNPs; S2 Table shows results for the remaining 8 loci with leading insertions/deletions

(INDELs). Interestingly, the features of the 12 leading bi-allelic SNPs in Table 2 are similar to

those 4 SNPs in S1(A) Table (with earlier association reports in the NHGRI-EBI GWAS

Table 2. A total of 12 novel testosterone-associated loci with leading bi-allelic SNPs uniquely identified by the recommended T2,metaQ but missed by any other

methods in the UK Biobank data application.

Lead SNP CHR BP (hg19) INFO Major / Minor Allele MAF (All/Female/Male) βFemale βMale PFemale PMale PDiff P1,metaL P2,metaQ

rs4308991 1 93418330 0.987 T / A (0.398 / 0.398 / 0.397) -0.007 0.068 2.01E-03 5.73E-07 5.20E-08 2.69E-02 3.16E-08

rs2638052 1 101956313 0.999 A / T (0.340 / 0.341 / 0.339) -0.01 0.059 9.95E-06 2.45E-05 9.76E-07 2.58E-04 7.84E-09

rs72697614 1 107514107 0.972 A / C (0.321 / 0.320 / 0.322) 0.008 0.078 8.90E-04 5.06E-08 1.44E-06 2.85E-05 1.42E-09

rs1672939 3 138276133 0.999 T / C (0.449 / 0.449 / 0.449) 0.006 0.072 5.37E-03 6.31E-08 1.11E-06 2.67E-04 9.15E-09

rs150750289 4 3443769 0.950 T / C (0.024 / 0.024 / 0.024) -0.025 -0.209 7.52E-04 1.83E-06 3.45E-05 3.78E-05 3.88E-08

rs4946386 6 119322992 0.984 T / C (0.302 / 0.302 / 0.302) 0.013 -0.037 1.91E-07 1.08E-02 7.28E-04 2.44E-06 4.99E-08

rs117916257 10 65387009 0.976 G / A (0.044 / 0.044 / 0.044) -0.015 -0.176 7.17E-03 5.69E-08 9.26E-07 3.81E-04 1.07E-08

rs7943570 11 48085968 0.994 T / C (0.090 / 0.090 / 0.090) -0.009 -0.125 2.40E-02 6.86E-08 7.68E-07 1.78E-03 3.74E-08

rs2241235 17 7381366 0.982 C / T (0.141 / 0.140 / 0.142) -0.009 -0.099 8.08E-03 1.87E-07 2.65E-06 4.96E-04 3.77E-08

rs8087735 18 71977923 0.979 G / A (0.140 / 0.140 / 0.139) 0.017 -0.045 7.45E-08 1.96E-02 1.39E-03 8.80E-07 3.39E-08

rs117599084 19 49530502 0.890 A / T (0.073 / 0.074 / 0.073) 0.018 0.114 8.15E-05 1.91E-05 3.72E-04 4.29E-06 4.58E-08

rs146539762 23 65720145 0.943 A / G (0.017 / 0.017 / 0.017) -0.021 -0.196 1.91E-02 9.98E-08 3.57E-06 4.33E-04 4.42E-08

T2,metaQ uniquely identified 1,287 genome-wide significant testosterone-associated SNPs that were missed by any of the four alternative methods, encompassed by 36

independent loci after LD clumping. This table presents 12 of these 36 loci with no reported association in the NHGRI-EBI GWAS catalog [38] (Version: e0r2022-11-

29). Each locus is represented by its lead SNP which has the smallest T2,metaQ p-value within the locus. The table only included loci with bi-allelic leading SNPs; loci with

leading insertions/deletions (INDELs) are reported in S2 Table. The p-values are from the following methods: PFemale: Female-only analysis (TFemale); PMale: Male-only

analysis (TMale), PDiff: SNP-sex interaction-only test (TDiff), P1,metaL: Traditional sex-combined meta-analysis (T1,metaL), and P2,metaQ: Omnibus meta-analysis (T2,metaQ).

The βFemale and βMale columns show the sex-specific effect size estimates from the stratified analysis, indicating the estimated effect of each copy of the minor allele. The

sex-stratified GWAS summary statistics came from the Neale lab’s UK Biobank GWAS round 2, which included a cohort of up to 361,194 participants (312,102 for the

testosterone GWAS, 154,364 females and 157,738 males). Notably, testosterone exhibits a marked difference in both phenotype mean and variance between sexes (Fig iii

(A) in S4 Appendix).

https://doi.org/10.1371/journal.pgen.1011221.t002
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catalog), including similar sex-stratified MAF and notable (but not significant) association evi-

dence in one sex. This consistency in results between S1(A) Table and Table 2 further supports

the use of T2,metaQ.

Finally, out of the 290 phenotypes analyzed, 164 phenotypes have one or more associated

loci that were identified exclusively by the T2,metaQ and not by any of the other four 1 d.f. tests.

The distribution for these loci numbers is illustrated in S13 Fig, and detailed information

about the index SNPs of these loci are available in S1 Data.

Variants with sex-divergent genetic effects on serum urate levels

Of all GWAS signals across all 290 continuous traits analyzed, 19 bi-allelic SNPs showed

genome-wide significant effects on serum urate levels (UKB Data-Field: 30880; Fig i in S6

Appendix) with opposite directions between sexes (Table 3); all 19 SNPs are located near

SLC2A9 on Chr4:10004389-10049700 (Fig ii-Fig vi in S6 Appendix) and in strong LD with

each other (r2� 1). The 19 SNPs are independent of rs7442295 previously reported by Döring

et al [6] (r2 = 0.004 between rs7442295 and rs6857001, the leading SNP of the 19 SNPs with

smallest T2,metaQ p-value). Additionally, although rs7442295 exhibited different effect magni-

tudes between sexes, the directions are consistent [6]. In contrast, the novel SNPs identified in

our study have sex-specific directions: The minor alleles are associated with lower serum urate

levels in females but higher levels in males; the effect magnitudes also differ between the sexes.

Aligned with our analytical expectation, T1,metaL exhibited substantially reduced statistical

significance as compared to T2,metaQ. Two SNPs (rs6814556 and rs6833878) did not even reach

Table 3. A total of 19 bi-allelic SNPs exhibiting genome-wide significant effects in opposite directions between sexes, all associated with urate levels in the UK Bio-

bank data application.

SNP CHR BP (hg19) INFO Major / Minor Allele MAF (All/Female/Male) βFemale βMale PFemale PMale PDiff P1,metaL P2,metaQ

rs6814556 4 10004389 0.999 A / G (0.268 / 0.268 / 0.268) -3.184 2.285 4.91E-40 1.44E-15 1.77E-48 5.37E-07 1.14E-52

rs6833878 4 10005555 1.000 A / T (0.268 / 0.268 / 0.268) -3.169 2.277 1.09E-39 1.80E-15 4.25E-48 6.25E-07 3.14E-52

rs3796834 4 10012846 1.000 C / T (0.279 / 0.279 / 0.279) -3.704 2.056 8.14E-55 3.47E-13 6.77E-55 3.86E-13 4.73E-65

rs3796833 4 10012878 1.000 C / T (0.279 / 0.279 / 0.279) -3.714 2.052 4.33E-55 3.86E-13 5.31E-55 2.88E-13 2.81E-65

rs1122966 4 10014476 1.000 G / A (0.280 / 0.279 / 0.280) -3.813 2.002 4.36E-58 1.32E-12 4.90E-56 1.00E-14 9.63E-68

rs6857001 4 10018080 1.000 G / A (0.280 / 0.280 / 0.280) -3.837 1.980 7.88E-59 2.24E-12 4.06E-56 3.63E-15 2.93E-68

rs3796830 4 10019135 1.000 G / C (0.279 / 0.279 / 0.279) -3.742 2.033 6.43E-56 6.18E-13 3.38E-55 1.05E-13 6.58E-66

rs28449404 4 10019678 1.000 C / G (0.279 / 0.279 / 0.279) -3.738 2.033 8.34E-56 6.21E-13 4.03E-55 1.15E-13 8.64E-66

rs10030570 4 10027160 1.000 G / T (0.280 / 0.280 / 0.280) -3.687 2.100 1.79E-54 9.98E-14 1.51E-55 1.12E-12 3.03E-65

rs6819833 4 10027354 1.000 C / G (0.280 / 0.280 / 0.280) -3.687 2.100 1.85E-54 1.01E-13 1.55E-55 1.13E-12 3.14E-65

rs6820230 4 10027542 1.000 C / T (0.280 / 0.280 / 0.280) -3.691 2.095 1.41E-54 1.15E-13 1.62E-55 9.45E-13 2.76E-65

rs6449237 4 10027643 1.000 A / G (0.280 / 0.280 / 0.281) -3.689 2.095 1.60E-54 1.15E-13 1.77E-55 9.86E-13 3.13E-65

rs6449238 4 10027744 1.000 G / A (0.280 / 0.280 / 0.280) -3.689 2.100 1.60E-54 1.01E-13 1.43E-55 1.07E-12 2.75E-65

rs7697004 4 10028077 1.000 G / A (0.280 / 0.280 / 0.281) -3.686 2.101 1.95E-54 9.77E-14 1.54E-55 1.18E-12 3.25E-65

rs7697416 4 10028287 0.999 G / A (0.281 / 0.280 / 0.281) -3.659 2.105 1.13E-53 8.62E-14 3.95E-55 2.38E-12 1.66E-64

rs7669699 4 10028438 1.000 C / T (0.280 / 0.280 / 0.280) -3.693 2.097 1.24E-54 1.10E-13 1.38E-55 9.32E-13 2.32E-65

rs9291645 4 10038254 0.997 G / A (0.281 / 0.281 / 0.282) -3.654 2.145 1.43E-53 2.97E-14 9.00E-56 4.65E-12 7.31E-65

rs6850166 4 10043688 0.997 C / T (0.281 / 0.281 / 0.281) -3.709 2.115 4.09E-55 6.94E-14 3.38E-56 7.99E-13 4.89E-66

rs4391034 4 10049700 0.996 T / C (0.282 / 0.281 / 0.282) -3.688 2.105 1.59E-54 9.03E-14 1.25E-55 1.10E-12 2.46E-65

The p-values are from the following methods: PFemale: Female-only analysis (TFemale); PMale: Male-only analysis (TMale), PDiff: SNP-sex interaction-only test (TDiff),

P1,metaL: Traditional sex-combined meta-analysis (T1,metaL), and P2,metaQ: Omnibus meta-analysis (T2,metaQ). The βFemale and βMale columns show the sex-specific effect

size estimates from the stratified analysis, indicating the estimated effect of each copy of the minor allele. The sex-stratified GWAS summary statistics came from the

Neale lab’s UK Biobank GWAS round 2, which included a cohort of up to 361,194 participants (343,836 in urate GWAS, 184,755 females and 159,081 males).

https://doi.org/10.1371/journal.pgen.1011221.t003
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genome-wide significance of<5 × 10−8 based on T1,metaL, while the p-values of T2,metaQ are

<5 × 10−50. We cross-referenced our results with those from a recent GWAS meta-analysis of

serum urate [41] but did not find any of these 19 SNPs on their list of SNPs showing sex-spe-

cific differences (Table 9 of [41]), nor in their credible sets of SNPs with 99% posterior proba-

bility of containing the variant(s) driving four independent association signals at this locus

(Table 18 of [41]). This is, however, unsurprising as the meta-analysis of [41] was based on

T1,metaL which may miss SNPs with sex-specific directions, while our novel discoveries are

based on the omnibus T2,metaQ.

We further investigated the robustness of our conclusion based on the summary statistics

of these 19 SNPs from the GWAS of inverse normal transformed (IRNT) urate. We observed

consistent results with those based on the original, un-transformed urate values in terms of

both effect direction and relative performance between the different tests (S3 Table).

Discussion

Often, heterogeneity is viewed as a challenge that may lead to decreased statistical power.

However, we illustrate in this study that genetic effect heterogeneity can be exploited to

enhance statistical power to detect genetic associations. Notably, such an advantage can be

achieved through straightforward calculations when sex-stratified summary statistics are read-

ily available.

By leveraging the publicly available sex-stratified GWAS results from Neale’s lab [35]

(http://www.nealelab.is/uk-biobank), we undertook a comprehensive comparison of sex-

stratified and sex-combined analysis methodologies across 290 quantitative complex traits

from the UK Biobank. Our findings underscore that while sex-combined 2 df interaction

analysis is generally comparable to sex-stratified GWAS, the traditional meta-analysis on

main effect only test (T1,metaL), or SNP-sex interaction effect only test (TDiff), it can surpass

all these methods under genetic effect heterogeneity. Although we only analyzed continuous

phenotypes, our findings and conclusions can be extended to binary and ordinal outcomes

provided that the sample size is sufficient [42] and extreme case-control, if present, is

addressed [43].

We narrowed our focus to serum testosterone, a sex-hormone trait, known to possess dis-

tinct genetic architectures between sexes. Intriguingly, the unique signals detected by T2,metaQ

not only echo findings recorded in the NHGRI-EBI GWAS catalogue resource [38], but also

reveal novel signals not previously recorded in the same resource. These results suggest that

T2,metaQ can potentially unearth signals that previous studies may have overlooked.

Furthermore, we highlighted the presence of multiple serum urate-associated SNPs near

SLC2A9 with genome-wide significant associations in both females and males, but with con-

trasting effect directions. These associations may not be detected when employing the conven-

tional meta-analysis approach (T1metaL), underscoring the critical need for the integration of

sex-aware methodologies in future investigations. Noticeably, the SLC2A9 region harbours at

least four independent signals associated with serum urate [6, 41].

Certainly, the relative power between these tests is contingent on the underlying genetic

models, and may vary considerably across different scenarios. For instance, T1,mega, derived

from the standard genetic main effect model, is optimal when the true genetic effects exhibit

homogeneity between males and females. However, when the effects display opposite direc-

tions with similar magnitudes, T1,mega loses its capacity to detect association. In contrast, the

female-only sex-stratified test, TFemale, is optimal when the effect is exclusive to females, but its

relative power to sex-combined methods may diminish substantially when the effect also man-

ifests in males. Although TDiff is commonly utilized for testing sex-dimorphic SNP (sdSNP
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[8]), its relative deficiency in power for testing SNP-sex interaction effects, even when com-

pared with T1,mega, has been illuminated in analytical studies [26].

To provide additional supporting evidence to the existing literature [25–31, 44], we con-

ducted extensive simulation studies to show the robustness of jointly testing both SNP main

effect and SNP-sex interaction effect, including adequate type I error control (S2 Appendix

and Fig ii-Fig x in S3 Appendix). T2,mega (and equivalently T2,metaQ) retains power even in the

absence of SNP-sex interaction or if the effect is solely present in one group. For each scenario

considered, T2,mega and T2,metaQ are either the most powerful test or experience only minor

power loss compared with the oracle method tailored to that specific scenario.

We acknowledge certain limitations in our study. Firstly, as our analysis includes all 290

continuous raw phenotypes available from Neale’s Lab, we utilized the results from their linear

regression model for all evaluated traits, without conducting an explicit examination of the

model assumptions and sample quality control for each individual trait. Therefore, the effect

estimates should be interpreted with caution. For example, of the 194,174 females passed qual-

ity control, near 20% were excluded from the testosterone GWAS because their measurements

fell below the lower detection limit (0.35 nmol/L). In comparison, in the 167,020 males, only

0.01% were removed due to measurements beneath lower detection limit (0.35 nmol/L) and

0.001% were excluded for exceeding the upper detection limit (55 nmol/L). Such unbalanced

truncation of lower and upper extreme values could potentially introduce participation bias

[45]. Statistical models such as Tobit model [46] could be applied to incorporate data

truncation.

Additionally, our analysis focused on GWAS of raw phenotypes instead of rank-based

inverse normal transformation (IRNT). Association studies with raw phenotypes may be

biased by outlier samples with extreme phenotypic values. Indeed, in comparing the number

of independent SNPs after LD clumping (Fig 3B), we observed that T2,metaQ identified excess

of loci over T1,metaL for four phenotypes in addition to testosterone. Such excess was not

observed after applying IRNT, highlighting potential false discovery from extreme outliers or

non-normality in residuals (Fig ii-Fig ix in S4 Appendix). We recommend conducting thor-

ough sensitivity analyses in future research to determine if extreme phenotypic values arise

from genuine genetic (or environmental) factors or measurement errors.

Although association tests with IRNT phenotypes may mitigate type I errors, sex-specific

transformations (used by Neale’s lab for the UKB data), unfortunately, lead to inconsistent

response variables (quantiles) between stratified and sex-combined samples. This inconsis-

tency disrupts the equivalence between meta- and mega-analysis, especially for phenotypes

exhibiting mean and variance differences between sexes (Fig iii(A) in S4 Appendix), such as

testosterone, therefore complicates interpretation. Alternative strategies, such as log-transfor-

mation [1], winsorization or removal of extreme values [47], could offer protection against

extreme outliers without introducing inconsistency in the response variables across different

sample groupings.

Moreover, although our analyses were restricted to unrelated individuals [35], it is crucial

to approach the implementation of T2,metaQ cautiously if sample relatedness is present. Firstly,

the presence of related samples between sexes compromises the independence of TFemale and

TMale, disrupting the expected w2
2

distribution of T2,metaQ under the null. This situation is akin

to the challenges in meta-analyzing overlapping samples in the context of T1,metaL, where

neglecting sample relatedness may increase type I errors [48]. Secondly, within-sex sample

relatedness, while it could be readily accounted for in sex-stratified analyses, raises questions

about the analytical equivalence between T2,metaQ and T2,mega. Thus, addressing these between-

and within-sex relatedness in the context of T2,metaQ is of future research interest.
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Finally, while our analysis encompassed SNPs from both autosomes and X-chromosomes,

we did not specifically address the analytical challenges and nuances associated with the X-

chromosome [49, 50]. X-chromosome specific mechanisms, such as X-chromosome dosage

compensation, may contribute to X-linked sex-specific effect heterogeneity [51]. Consistent

with earlier analysis, we confirmed through our study, rs5934505 on X-chromosome showed

male-only genome-wide significant effects in 38 out of the 290 continuous phenotypes ana-

lyzed (S15 Fig). Future directions would involve conducting a more refined analysis and meth-

odological comparison specifically tailored to the analysis of the sex chromosomes.

In conclusion, our findings strongly support the utilization of T2,mega (or its equivalent

omnibus meta-analysis T2,metaQ when sex-stratified summary statistics are available) for the

initial screening of genetic associations, particularly in scenarios where genetic heterogeneity

is anticipated. We further recommend follow-up sex-stratified analysis, to elucidate the com-

plete landscape of genetic effect heterogeneity and interpretation.

Materials and methods

Data overview

Our analysis is based on sex-stratified GWAS summary statistics sourced from the Neale Lab’s

round 2 (imputed-v3) GWAS [35], which included a cohort of up to 361,194 unrelated partici-

pants (194,174 females and 167,020 males), genetically determined and self-identified as of

white British ancestry. Additional inclusion criteria for the sample encompassed inclusion in

principal component calculations and sex chromosome euploidy.

Phenotypes

The Neale Lab’s round 2 GWAS analyzed 4,203 distinct phenotypes in the UK Biobank. As the

primary goal of our analysis is to compare methodologies, we opted to focus on continuous

phenotypes and excluded all binary and ordinal phenotypes to avoid the potential additional

complexities caused by inadequate statistical power [8, 47] or extreme case-control imbalance

[43]. We further narrowed our scope to the raw measures of continuous phenotypes without

rank-based inverse normal transformation (IRNT). Finally, we excluded 15 phenotypes where

any of the sex-stratified or sex-combined summary statistics were not available, resulting in a

total of 290 continuous traits analyzed in our study. For each of these phenotypes, our analysis

only used the available female and male GWAS summary statistics.

Marker’s quality control

Neale Lab’s GWAS encompassed 13.7 million genotyped and centrally imputed SNPs on auto-

somes and X chromosome, with INFO score > 0.8, minor allele frequency (MAF) > 0.001

(and for SNPs coded as Variant Effect Predictors [36], MAF >10−6), and Hardy-Weinberg

equilibrium (HWE) p-value >10−10. In our analysis, given the variability in sample sizes across

phenotypes, some as small as approximately 5,000, we specifically focused on SNPs that have a

trait-specific MAF greater than 0.01 in both females and males.

Association testing

In this section we provide details for the sex-stratified, sex-combined meta- and mega-amlysis

considered in this study.

TFemale and TMale, the female- and male-only SNP main effect tests. Let TFemale ¼ b̂F=v̂F

be the standard Wald test statistic derived from the female-only regression model, where b̂F

and v̂F represent the genetic effect estimates and their standard error using female samples,
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respectively. In Neale Lab’s sex-stratified GWAS, covariates such as the first 20 principal com-

ponents, age, and age squared were controlled. Similarly, we can obtain TMale for the associa-

tion analysis using the male sample.

TDiff, the interaction effect only test. We could also consider the interaction effect only

test for effect difference between females and males:

TDiff ¼
b̂F � b̂Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v̂2
F þ v̂2

M

p : ð1Þ

Under the null of no effect differences between females and males, TDiff asymptotically fol-

lows the N(0, 1) distribution.

T1,metaL, the traditional meta-analysis. T1,metaL is the traditional meta analysis, which is

an inverse-variance weighted average of TFemale and TMale,

T1;metaL ¼
1=v̂Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=v̂2
F þ 1=v̂2

M

p TFemale þ
1=v̂Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=v̂2
F þ 1=v̂2

M

p TMale: ð2Þ

Under the null of no association, T1,metaL is asymptotically N(0, 1) distributed. The subscript

L reflects the fact that T1,metaL combines the two Z statistics linearly.

T2,metaQ Omnibus meta-analysis. Instead of forming a directional test by linearly com-

bining TFemale and TMale, we could construct an 2 df interaction test by calculating a quadratic

sum as

T2;metaQ ¼ T2
Female þ T2

Male: ð3Þ

Under the null of no association, T2,metaQ asymptotically follows the centralized w2
2

distribution.

T2,mega, SNP main and SNP×sex interaction joint analysis. When individual data are

available, we could consider the mega-analysis approaches through regression.

y ¼ aþ bggþ bssþ bgsg� sþ XbX þ Nð0; s2
s InÞ; ð4Þ

where y, g and s are sex-combined vectors of phenotype, genotype and sex respectively, and X

is the covariate matrix for variables in addition to sex. Here the interaction term is included to

capture the potential genetic heterogeneity between female and male. Additionally and impor-

tantly, the error model is sex-specific, s2
s . That is, sex-specific variances, s2

F and s2
M, are

assigned to female and male groups, respectively; for example, human height differs between

sexes in both its mean and variances [52]. We use T2,mega to denote the 2 df Wald test statistic

derived from jointly testing H0 : bg = bgs = 0. Aschard et al [27] concluded that T2,mega are

equivalent to T2,metaQ and could be derived from the latter when individual data are

unavailable.

T1,mega, SNP main effect test. For completeness, we also consider the standard approach

of testing SNP main effect. We consider the following most commonly used regression model

which was also implemented in Neale Lab’s both-sex analysis,

y ¼ a0 þ b0ggþ b0ssþXb
0

X þ Nð0; s02s InÞ; ð5Þ

with the modification on the error term to allow for sex-specific variance s0
2

s , as noted earlier.

We use T1,mega to denote the Wald test statistic derived from testing H0 : b0g ¼ 0. Zeng and Lin

[32] has shown the analytical equivalence between T1,mega and T1,metaL.
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Independent SNPs, loci and lead variant annotation

We conducted linkage disequilibrium (LD) clumping using PLINK 1.9’s --clump option to

extract independent SNPs from the GWAS summary statistics [53]. For each testing method

and each trait, we grouped the genome-wide significant SNPs that were within a physical dis-

tance of 10Mb and had an r2 value (based on 1000 Genomes Phase 3 [54] European reference

panel) greater than 0.01 as outlined in [1]. The SNP with the lowest p-value within each clump

was selected to form a set of independent GWAS SNPs.

To select SNPs for functional annotation, we employed FUMA (Version v1.5.4 [55]) to

merge independent SNPs within 250 kb to form risk loci. Each locus was represented by the

top lead SNP which has the minimum p-value in the locus. We then annotated the loci with

the previously reported SNP-phenotype associations of these lead SNPs and their dependent

SNPs within the loci (r2 > 0.6) by referencing NHGRI-EBI GWAS catalog (Version e0r2022-

11-29) accessed through FUMA (Version v1.5.4 [55], date accessed: 2023-05-13). Loci that

exhibited no previously reported SNP associations with any traits for their lead SNPs or their

dependent SNPs were highlighted as novel signals.

Supporting information

S1 Appendix. Simulation study design.

(PDF)

S2 Appendix. Empirical equivalence between mega- and meta-analysis.

(PDF)

S3 Appendix. Simulation results.

(PDF)

S4 Appendix. Comparison of number of independent SNPs.

(PDF)

S5 Appendix. Analysis check on MAF.

(PDF)

S6 Appendix. SNPs with opposite significant effects between sexes for urate on chr4.

(PDF)

S7 Appendix. Analytical ranges for p-values of T1,metaL and T2,metaQ in Fig 2.

(PDF)

S1 Data. Loci uniquely identified by T2,metaQ but missed by all other four 1 d.f. tests.

(XLSX)

S1 Fig. Pairwise scatter plots of the genome-wide significant (p< 5 × 10−8) associations

detected by any of the five testing methods considered. (A) includes SNPs with either sex-

stratified MAF� 0.05, and (B) includes SNPs with MAF> 0.05 in both sex groups, across all

290 traits analyzed and after excluding the testosterone (C and D). The five association meth-

ods include TFemale (Female-only analysis), TMale (Male-only analysis), TDiff (SNP-sex interac-

tion-only test), T1,metaL (the traditional sex-combined meta-analysis), and T2,metaQ (the

omnibus meta-analysis); see Table 1 for method details. The sex-stratified GWAS summary

statistics come from the Neale lab’s UK Biobank GWAS round 2, which included a cohort of

up to 361,194 participants (312,102 in testosterone GWAS, 154,364 females and 157,738

males). Axes depict −log10 p-values for each pair of tests, and each hexagon’s color corresponds

to the count of associations falling within the −log10 p-value range defined by that region. The
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−log10 p maximum was truncated at 200 to improve visualization. The dashed line indicates

the reference main diagonal reference line.

(TIF)

S2 Fig. Histograms of the number of associated traits across 1,113,865 SNPs associated

with one or more traits, stratified by the five testing methods. 1,113,865 SNPs are associated

with one or more traits identified by any of the five association testing methods: TFemale

(Female-only analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test),

T1,metaL (the traditional sex-combined meta-analysis), and T2,metaQ (the omnibus meta-

analysis). The histograms are based on Nj;m ¼
P290

t¼1
Iðpj;t;m < 5� 10� 8Þ, where I(�) is an

indicator function, pj,t, m is the association p-value between SNP j and trait t by method m. The

y-axis ticks are on the log10 scale for ease of visualization.

(TIF)

S3 Fig. Manhattan plots of the number of associated traits for each of the 1,113,865 SNPs

associated with one or more traits, stratified by the five testing methods. The 1,113,865

SNPs are associated with one or more traits identified by any of the five association testing

methods: TFemale (Female-only analysis), TMale (Male-only analysis), TDiff (SNP-sex interac-

tion-only test), T1,metaL (the traditional sex-combined meta-analysis), and T2,metaQ (the omni-

bus meta-analysis). The plots are based on Nj;m ¼
P290

t¼1
Iðpj;t;m < 5� 10� 8Þ, where I(�) is an

indicator function, pj,t, m is the association p-value between SNP j and trait t by method m.

(TIF)

S4 Fig. Pairwise scatter plots of the number of associated traits across the 1,113,865 SNPs

among the five testing methods. The 1,113,865 SNPs are the SNPs associated with one or

more traits identified by any of the five association testing methods: TFemale (Female-only anal-

ysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional

sex-combined meta-analysis), and T2,metaQ (the omnibus meta-analysis). The plots are based

on Nj;m ¼
P290

t¼1
Iðpj;t;m < 5� 10� 8Þ, where I(�) is an indicator function, pj,t, m is the association

p-value between SNP j and trait t by method m.

(TIF)

S5 Fig. Left: the bottom-right plot in Fig 1A, comparing T2,metaQ and T1,metaL; Right: a

zoomed-in view within the range of (0,20) to show that the −log10p-values of T2,metaQ can

be slightly smaller than those of T1,metaL. In the red-highlighted area (a), there are 179, 718

SNP-trait associations which were identified by T2,metaQ but missed by T1,metaL, and in the

blue-highlighted area (b), there are 756, 316 SNP-trait associations which were identified by

T1,metaL but missed by T2,metaQ.

(TIF)

S6 Fig. Stacked Manhattan plots of genome-wide significant SNPs. (A) 64,934 SNP-pheno-

type associations identified by T2,metaQ but missed by all other four methods across all the 290

traits, (B) 800,183 SNP-phenotype associations missed by T2,metaQ but identified by any other

four methods across all the 290 traits, (C) 63,647 SNP-phenotype associations identified by

T2,metaQ but missed by all other four methods after removing the testosterone, and (D) 797,585

SNP-phenotype associations missed by T2,metaQ but identified by any other four methods after

removing the testosterone. The −log10p-values (with further log10 transformation on y-axis to

aid presentation) are shown for the five association methods, including TFemale (Female-only

analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the tradi-

tional sex-combined meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for
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method details. The sex-stratified GWAS summary statistics come from the Neale lab’s UK

Biobank GWAS round 2, which included a cohort of up to 361,194 participants (194,174

females and 167,020 males). The red horizontal lines indicate the genome-wide significant

threshold of 5 × 10−8 on the −log10 scale.

(TIF)

S7 Fig. Stacked Manhattan plots of genome-wide significant SNPs with MAF greater than

0.05 in both sex groups, comparing T2,metaQ vs T1,metaL. (A) SNPs identified by T2,metaQ but

missed by T1,metaL across all the 290 traits, (B) SNPs missed by T2,metaQ but identified by

T1,metaL across all the 290 traits, (C) SNPs identified by T2,metaQ but missed by T1,metaL after

removing the testosterone, and (D) SNPs missed by T2,metaQ but identified by T1,metaL after

removing the testosterone. The −log10p-values (with further log10 transformation on y-axis to

aid presentation) are shown for the five association methods, including TFemale (Female-only

analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the tradi-

tional sex-combined meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for

method details. The sex-stratified GWAS summary statistics come from the Neale lab’s UK

Biobank GWAS round 2, which included a cohort of up to 361,194 participants (194,174

females and 167,020 males). The red horizontal lines indicate the genome-wide significant

threshold of 5 × 10−8 on the −log10 scale.

(TIF)

S8 Fig. Stacked Manhattan plots of genome-wide significant SNPs with MAF greater than

0.05 in both sex groups, comparing T2,metaQ vs all other four methods. (A) SNPs identified

by T2,metaQ but missed by all other four methods across all the 290 traits, (B) SNPs missed by

T2,metaQ but identified by any other four methods across all the 290 traits, (C) SNPs identified

by T2,metaQ but missed by all other four methods after removing the testosterone, and (D)

SNPs missed by T2,metaQ but identified by any other four methods after removing the testoster-

one. The −log10p-values (with further log10 transformation on y-axis to aid presentation) are

shown for the five association methods, including TFemale (Female-only analysis), TMale (Male-

only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional sex-combined

meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for method details. The

sex-stratified GWAS summary statistics come from the Neale lab’s UK Biobank GWAS round

2, which included a cohort of up to 361,194 participants (194,174 females and 167,020 males).

The red horizontal lines indicate the genome-wide significant threshold of 5 × 10−8 on the

−log10 scale.

(TIF)

S9 Fig. Stacked Manhattan plots of genome-wide significant SNPs with either sex-stratified

MAF� 0.05, comparing T2,metaQ vs T1,metaL. (A) SNPs identified by T2,metaQ but missed by

T1,metaL across all the 290 traits, (B) SNPs missed by T2,metaQ but identified by T1,metaL across all

the 290 traits, (C) SNPs identified by T2,metaQ but missed by T1,metaL after removing the testos-

terone, and (D) SNPs missed by T2,metaQ but identified by T1,metaL after removing the testoster-

one. The −log10p-values (with further log10 transformation on y-axis to aid presentation) are

shown for the five association methods, including TFemale (Female-only analysis), TMale (Male-

only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional sex-combined

meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for method details. The

sex-stratified GWAS summary statistics come from the Neale lab’s UK Biobank GWAS round

2, which included a cohort of up to 361,194 participants (194,174 females and 167,020 males).

The red horizontal lines indicate the genome-wide significant threshold of 5 × 10−8 on the
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−log10 scale.

(TIF)

S10 Fig. Stacked Manhattan plots of genome-wide significant SNPs with either sex-strati-

fied MAF� 0.05, comparing T2,metaQ vs all other four methods. (A) SNPs identified by

T2,metaQ but missed by all other four methods across all the 290 traits, (B) SNPs missed by

T2,metaQ but identified by any other four methods across all the 290 traits, (C) SNPs identified

by T2,metaQ but missed by all other four methods after removing the testosterone, and (D)

SNPs missed by T2,metaQ but identified by any other four methods after removing the testoster-

one. The −log10p-values (with further log10 transformation on y-axis to aid presentation) are

shown for the five association methods, including TFemale (Female-only analysis), TMale (Male-

only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the traditional sex-combined

meta-analysis), and T2,metaQ (the omnibus meta-analysis); see Table 1 for method details. The

sex-stratified GWAS summary statistics come from the Neale lab’s UK Biobank GWAS round

2, which included a cohort of up to 361,194 participants (194,174 females and 167,020 males).

The red horizontal lines indicate the genome-wide significant threshold of 5 × 10−8 on the

−log10 scale.

(TIF)

S11 Fig. Comparison of the numbers of genome-wide significant SNPs (a) and indepen-

dent loci (b) identified by the traditional meta-analysis T1,metaL (y-axis) and the omnibus

meta-analysis T2,metaQ (x-axis) for each of the 290 traits analyzed. Both x-axis and y-axis are

in log10 scale, which provides a zoomed-in look at the traits with smaller numbers of associated

SNPs. In (b) linkage disequilibrium is defined with a physical distance of 100kb (Methods and

material). The dashed line indicates the reference main diagonal line. The plot with the origi-

nal scale is provided in Fig 3.

(TIF)

S12 Fig. Comparison of the numbers of independent genome-wide significant

(p< 5 × 10−8) SNPs identified by traditional meta-analysis T1,metaL and omnibus meta-

analysis T2,metaQ across 290 traits. In plots A and B, the x-axis and y-axis represent the num-

bers of independent SNPs identified by T2,metaQ and T1,metaL, respectively. The linkage disequi-

librium is defined with a physical distance of 10MB and r2 > 0.01. The definition for

independent SNPs is available in the Materials and methods. Plot B provides a zoom-in view

of plot A within the range of (0, 250). Traits that yield more signals in T2,metaQ than in T1,metaL

and present at least 50 independent genome-wide significant SNPs in both methods are

highlighted in red. Traits with the largest number of associations are annotated. The dashed

line indicates the reference main diagonal line.

(TIF)

S13 Fig. Histogram of the number of associated loci uniquely identified by T2,metaQ but

missed by any of the other four methods across phenotypes. In total, 164 out of the 290

tested phenotypes have one or more associated loci identified by T2,metaQ (the omnibus meta-

analysis), but missed by all four of TFemale (Female-only analysis), TMale (Male-only analysis),

TDiff (SNP-sex interaction-only test) and T1,metaL (the traditional sex-combined meta-analysis).

(TIF)

S14 Fig. Stacked Manhattan plots (A) and pairwise scatter plots (B) of genetic association

for testosterone level. In (A) the −log10 p-values (with further log10 transformation on y-axis

to aid presentation) are shown for the five association methods, including TFemale (Female-

only analysis), TMale (Male-only analysis), TDiff (SNP-sex interaction-only test), T1,metaL (the
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traditional sex-combined meta-analysis), and T2,metaQ (the omnibus meta-analysis); see

Table 1 for method details. The sex-stratified GWAS summary statistics come from the Neale

lab’s UK Biobank GWAS round 2, which included a cohort of up to 361,194 participants

(312,102 in testosterone GWAS, 154,364 females and 157,738 males). The red horizontal lines

indicate the genome-wide significant threshold of 5 × 10−8 on the −log10 scale. In (B), axes

depict −log10 p-values for each pair of tests. For simplicity in computation and better visualiza-

tion, we only included points that achieved genome-wide significance in at least one of the five

tests. The −log10 p maximum was truncated at 200 to improve visualization. The dashed line

indicates the reference main diagonal line.

(TIF)

S15 Fig. Sex-specific Z-scores of X chromosome SNP rs5934505 in GWAS of 290 continu-

ous phenotypes. The sex-stratified GWAS summary statistics come from the Neale lab’s UK

Biobank GWAS round 2, which included a cohort of up to 361,194 participants (194,174

females and 167,020 males). The dashed lines indicate critical values corresponding to the

two-tailed test at genome-wide significant level (5E-8).

(TIF)

S16 Fig. Histograms of numbers of genome-wide significant SNPs by tests across 290

traits. We compare the signals identified by TFemale: Female-only analysis, TMale: Male-only

analysis, TDiff: SNP-sex interaction-only test, T1,metaL: Traditional sex-combined meta-analysis,

and T2,metaQ: Omnibus meta-analysis. The sex-stratified GWAS summary statistics come from

the Neale lab’s UK Biobank GWAS round 2, which included a cohort of 361,194 participants

(194,174 females and 167,020 males). We excluded phenotypes with no signals in any of the

five methods.

(TIF)

S1 Table. 16 testosterone-associated loci uniquely identified by the recommended T2,metaQ

but missed by any other methods in the UK Biobank data with previously reported associa-

tions in NHGRI-EBI GWAS catalog. The T2,metaQ method uniquely identified 1,287

genome-wide significant SNPs, representing 36 independent loci after Linkage Disequilib-

rium (LD) clumping (Materials and methods). This table presents 16 of these 36 loci with

leading SNPs or their dependent SNPs that have been previously reported to be associated

either with testosterone phenotypes (A) or with any other phenotypes (B), as reported in the

NHGRI-EBI GWAS catalog (Version: e0r2022-11-29, [38]). The βFemale and βMale columns

show the sex-specific effect size estimates from the stratified analysis, indicating the esti-

mated effect of each copy of the minor allele. We compared the p-values for the following

methods: TFemale: Female-only analysis, TMale: Male-only analysis, TDiff: SNP-sex interaction-

only test, T1,metaL: Traditional sex-combined meta-analysis, and T2,metaQ: Omnibus sex-com-

bined interaction meta-analysis.

(PDF)

S2 Table. 8 novel testosterone-associated loci with leading insertions/deletions (INDELs)

uniquely identified by the recommended T2,metaQ but missed by any other methods in the

UK Biobank data. The T2,metaQ method uniquely identified 1,287 genome-wide significant

SNPs, corresponding to 36 independent loci after LD clumping. This table presents 8 of

these 36 loci that have never been reported to be associated with any phenotypes in the

NHGRI-EBI GWAScatalog [38]. Each locus is represented by its Lead SNP, selected based

on the minimum p-value within the locus. The table only included loci with leading inser-

tions/deletions (INDELs). Loci with bi-allelic leading SNPs are reported in Table 2. The

βFemale and βMale columns show the sex-specific effect size estimates from the stratified
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analysis, indicating the estimated effect of each copy of the minor allele. We calculated the

p-values for the following methods: Female-only TFemale, male-only TMale, traditional sex-

combined meta-analysis T1,metaL, and SNP-sex interaction-only analysis TDiff, omnibus

meta-analysis T2,metaQ. The sex-stratified summary statistics used were from Neale’s group

(Online Resources).

(PDF)

S3 Table. 19 bi-allelic SNPs exhibiting genome-wide significant effects on urate in opposite

directions in females and males (including IRNT results). We compared the p-values for the

following methods: TFemale: Female-only analysis, TMale: Male-only analysis, TDiff: SNP-sex

interaction-only test, T1,metaL: Traditional sex-combined meta-analysis, and T2,metaQ: Omnibus

meta-analysis. The βFemale and βMale columns show the sex-specific effect size estimates from

the stratified analysis, indicating the estimated effect of each copy of the minor allele. The sex-

stratified GWAS summary statistics come from the Neale lab’s UK Biobank GWAS round 2,

which included a cohort of 361,194 participants (343,836 in urate GWAS, 184,755 females and

159,081 males). Columns notated with IRNT show result based on inverse normal transformed

urate phenotype.

(PDF)
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