
Physical Science International Journal

25(7): 1-10, 2021; Article no.PSIJ.75479
ISSN: 2348-0130

Unsettled Problems of Second-Order Quantum Theories
of Elementary Particles

E. Comay1∗

1Charactell Ltd., P.O.Box 39019, Tel-Aviv, 61390, Israel.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/PSIJ/2021/v25i730267
Editor(s):

(1) Dr. Lei Zhang, Winston-Salem State University, USA.
(2) Dr. Roberto Oscar Aquilano, National University of Rosario (UNR), Argentina.

Reviewers:
(1) Alejandro Gutiérrez Rodrı́guez, Universidad Autnoma de Zacatecas, Mexico.

(2) Mbagwu Johnpaul Chiagoziem, Imo State University, Nigeria.
(3) Ayoub Ezzaki, Mohammed University, Morocco.

(4) Sayantan Gupta, University of Engineering and Management, India.
(5) Shyam Chand, University Shimla, India.

Complete Peer review History: https://www.sdiarticle4.com/review-history/75479

Received 15 August 2021
Accepted 14 October 2021

Original Research Article Published 25 October 2021

ABSTRACT

The physical community agrees that the variational principle is a cornerstone of a quantum fields
theory (QFT) of an elementary particle. This approach examines the variation of the action of a
Lagrangian density whose form is S =

∫
d4xL(ψ,ψ,µ). The dimension of the action S and d4x

prove that the quantum function ψ of any specific Lagrangian density L(ψ,ψ,µ) has a definite
dimension. This evidence determines the results of new consistency tests of QFTs. This work
applies these tests to several kinds of quantum functions of a QFT of elementary particles. It
proves that coherent results are derived from the standard form of quantum electrodynamics which
depends on the Dirac linear equation of a massive charged particle and Maxwell theory of the
electromagnetic fields. In contrast, contradictions stem from second-order quantum theories of an
elementary particle, such as the Klein-Gordon equation and the electroweak theory of the W±

boson. An observation of the literature that discusses the latter theories indicates that they do not
settle the above-mentioned crucial problems. This issue supports the main results of this work.
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equations.
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1 INTRODUCTION

Dimension is a fundamental property of any
physical quantity. Every person who has studied
physics becomes acquainted with this concept
at the very early period of his studies. This
work discusses quantum field theories (QFT) of
elementary particles and shows new features
of the dimension of quantum functions. The
standard system of units, where ~ = c = 1
is used. Thus, one independent dimension is
relevant and a power of the length [Ln] denotes
it.

A well-known property of quantum mechanics is
the particle’s density

ρ = ψ∗ψ (1)

(see [1], p. 22; [2], p. 37). This expression means
that the dimension of the Schroedinger function
ψ is [L−3/2]. As is well known, the dimension
of a classical quantity takes an integral power.
It means that the quantum function ψ has no
classical analog. This issue may be regarded
as an awkward property. However, it does
not deny the acceptability of the Schroedinger
quantum theory, because the ordinary form of the
expectation value of a physical variable is

< O >=

∫
ψ∗Ôψ d3r, (2)

where Ô denotes the operator that represents the
variable O. Equation (2) proves the importance
of the dimension [L−3/2] of the quantum function.
Indeed, it ensures that the dimension of the
operator of a given variable equals the dimension
of the variable’s expectation value. This issue is
a key element of the discussion of this work, that
analyzes several aspects of QFT of elementary
particles.

The people who have constructed quantum
mechanics recognized the need for the
correspondence between the classical limit of
quantum mechanics and classical physics. This
issue is documented in textbooks: “Classical
mechanics must therefore be a limiting case of
quantum mechanics” (see [3], p. 84). Similar
statements can also be found in other textbooks
(see e.g. [1], pp. 137, 138; [2], p. 3). Hence, the
mathematically real value of a classical variable
entails that the operator Ô of (2) should be
Hermitian.

The relevance of quantum mechanics to QFT is
clearly stated in Weinberg’s textbook (see [4], p.
49):

”First, some good news: quantum field theory is based on the same quantum
mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, and
others in 1925-26, and has been used ever since in atomic, molecular,
nuclear and condensed matter physics.”

These arguments mean that quantities of QFT are related to corresponding quantities of quantum
mechanics as well as to those of classical physics. Below, this relationship is called the generalized
correspondence principle. Few pages at the beginning of Rohrlich’s book [5] discuss this topic. The
rest of this work proves that an analysis of the dimension of well-known quantum functions yields far-
reaching consequences. In so doing, this work may help closing the gap created from the negligence
of this topic in the present literature.

Relativistic expressions are written in the standard notation. The Minkowski metric gµν is diagonal
and its entries are (1,-1,-1,-1). Greek indices run from 0 to 3 and Latin indices run from 1 to 3. Section
2 describes several constraints that are imposed on an acceptable quantum theory. These constraints
are utilized by the analysis. Section 3 examines theories of the Standard Model (SM). It proves that
quantum electrodynamics (QED) has a coherent structure while inherent contradictions are found in
second-order quantum theories of an elementary charged particle, such as the Klein-Gordon equation
and the electroweak equation of the W± bosons. A discussion of the results is carried out in section
4. Section 5 proves that the energy-momentum tensor of second-order quantum theories violates
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fundamental physical principles. In particular, the Higgs boson theory is unacceptable. The last
section summarizes this work.

2 RELEVANT CONSTRAINTS

Physics is a mature science that has already several well-established principles, and any specific
theory must abide by them. Some of these principles yield constraints that apply to every quantum
theory of an elementary particle. The list below shows constraints that are used by the mathematical
analysis of this work.

[label=CON.0] The primary role of special relativity means that a quantum theory of an elementary
particle should have a relativistic structure [4, 6]. Therefore, an acceptable QFT should take a
relativistic covariant form. A QFT of a given elementary particle should be derivable from the
variational principle that uses a Lagrangian density of the form

L(ψ,ψ,µ). (3)

The quantum function ψ(t,xxx) is the generalized coordinate of the Lagrangian density L. This
point is agreed by the physical community. For example, Weinberg states: ”all field theories
used in current theories of elementary particles have Lagrangians of this form” (see [4], p.
300). The variational principle says that the time evolution of the system is determined by
equations that are derived from a minimum of this action

S =

∫
d4xL(ψ,ψ,µ). (4)

This principle yields the system’s equations of motion

∂µ

(
∂L
∂ψ,µ

)
− ∂L
∂ψ

= 0, (5)

which are called the Euler-Lagrange equations (see [4], p. 300; [6], p. 16; [7], p. 14). In
the unit system used herein the action is dimensionless. Therefore, the four integrals of (4)
prove that the dimension of the Lagrangian density is [L−4]. Moreover, d4x is a Lorentz scalar.
Hence, the Lagrangian density must be a Lorentz scalar. A Lorentz scalar Lagrangian density
ensures that the theory abides by special relativity (see [6], p. 35). The dimension of the
Lagrangian density determines the dimension of every quantum function of any given QFT of
an elementary particle. This property is a primary element of the analysis that is described
below. Maxwellian electrodynamics is a theory of two physical objects: a massive charged
particle and electromagnetic fields. QED is a theory of these objects, and its Lagrangian
density is

LQED = ψ̄[γµi∂µ −m]ψ − 1

16π
FµνF

µν − ψ̄eγµAµψ. (6)

(see e.g. [6], p. 78; [7], p. 84). Here ψ is the quantum function of a charged Dirac particle; each
γµ is one of the four Dirac matrices that take the representation of [8]; Fµν is the tensor of the
electromagnetic fields; Aµ is the electromagnetic 4-potential and its components are regarded
as the generalized coordinates of the electromagnetic fields; ψ̄ = ψ†γ0. The quantities inside
the square brackets of (6) are the kinetic and the mass terms of the Dirac particle, respectively;
the second term of (6) represents the electromagnetic fields; the last term represents the
interaction between the electromagnetic fields and the charged particle. The QED Lagrangian
density (6) yields the first order Dirac equation of the massive spin-1/2 charged particle and
Maxwell equations of the electromagnetic fields. The QED Lagrangian density (6) is an
extremely important and successful expression. For example, Peskin and Schroeder state:
“That such a simple Lagrangian can account for nearly all observed phenomena from macroscopic
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scales down to 10−13 cm is rather astonishing” (see [6], p. 78). Maxwell equations describe
the time evolution of the electromagnetic fields

Fµν
,ν = −4πjµ; F ∗µν

,ν = 0. (7)

Here F ∗µν = 1
2
ϵµναβFαβ and ϵαβγδ is the completely antisymmetric unit tensor of the fourth

rank. The first equation of (7) is called the inhomogeneous Maxwell equation, and it depends
on the 4-current jµ of the charged particle. The second equation of (7) is called the homogeneous
Maxwell equation. As stated above, the QED Lagrangian density (6) yields the Dirac equation
of a charged spin-1/2 massive particle and Maxwell equations of the electromagnetic fields.
There is another aspect of the interrelations between the theories of these physical entities.
It turns out that the inhomogeneous Maxwell equation of the electromagnetic fields imposes
a constraint on the 4-current of every charged particle. Thus, taking the 4-derivative of the
inhomogeneous Maxwell equation (7), one obtains

Fµν
,ν,µ = 0 → jµ,µ = 0, (8)

where the null result is obtained from the antisymmetry of Fµν . Eq. (8) of the 4-current is
called the continuity equation (see [8], p. 24; [9], pp. 76, 77). The 4-current is a well-known
relativistic 4-vector and its component j0 is the charge density. Sometimes a multiplication
factor normalizes jµ so that ∫

j0 d3r = 1, (9)

which means that the charge density is ej0. The continuity equation is the mathematical
expression of the experimentally confirmed effects of charge conservation and its continuous
motion.

These arguments prove that the 4-current of a massive charged particle is a crucial theoretical
quantity. It has these properties:

[label=P.0] The electromagnetic fields are mathematically real quantities. Hence, Maxwell
equations (7) prove that the 4-current is a mathematically real 4-vector. Relation (9) means
that the dimension of the 4-current is [L−3]. The 4-current satisfies the continuity equation
(8).

The Noether theorem is an important element of the theoretical structure of QFT. Referring to the
4-current issue, this theorem takes advantage of the variational principle and provides a standard
expression for a conserved 4-current

jµ = a
∂L
∂ψ,µ

ψ, (10)

where a is an appropriate numerical coefficient (see [10], pp. 314, 315). j0 is the particle’s density.
Hence a is fixed so that

∫
j0d3x = 1.

1.2.3.4.1.2.3.
An important property of the Noether theorem (10) says that a term of the
Lagrangian density that is independent of a derivative of the quantum function
ψ,µ makes a null contribution to the form of the 4-current.

The 4-current of a quantum theory of a charged quantum particle plays a key role in the following
examination.

4



Comay; PSIJ, 25(7): 1-10, 2021; Article no.PSIJ.75479

3 MATHEMATICAL ANALYSIS

The present QFT structure of electrodynamics
discusses one unique kind of electromagnetic
fields Fµν that interact with one unique kind
of electric charge e. Experiment proves that
the particle form of electromagnetic fields is
the massless photon, while the electric charge
is carried by a massive particle. The SM
describes two distinct families of theories of
elementary massive charged particles: The first-
order Dirac theory of a spin-1/2 particle and
second-order equations of integral spin particles,
like the mathematically complex Klein-Gordon
(KG) equation and the electroweak equation of
the W±. It is explained in the previous section
that the electromagnetic fields impose constraints
on the 4-current of a charged particle. This work
examines the compatibility of each kind of the SM
theories of an elementary charged particle with
these constraints.

Experiments support the concept of one kind
of electric charge. Take for example this decay
channel: W− → eν̄ [11]. The SM says that the
second-order electroweak theory describes the
W− whereas the Dirac QED theory (6) describes
the electron. Hence, the above-mentioned W−

decay channel and the charge conservation law
say that the electric charge of the W− is the
same as that of the electron.

One objective of this work is to prove that
unsettled problems emerge from an attempt to
construct an electromagnetic theory of a second-
order quantum equation that is analogous to the
QED Lagrangian density of (6). Special attention
is devoted to the dimension of physical quantities
and to properties 1 - 3 of a coherent 4-current
that are mentioned near the end of the previous
section.

3.1 The Coherent Structure of
QED

An examination of the ordinary QED structure
that depends on the first-order Dirac equation
clarifies the problem. Here the Noether
expression for the conserved 4-current (10) yields

jµ = ψ̄γµψ (11)

(see [6], pp. 14, 15; [8], pp. 23, 24). The following
items explain why this QED 4-current satisfies the
requirements 1 - 3:

• The Noether expression (11) is a 4-vector
(see [8], p. 24). The definition ψ̄ =
ψ†γ0 and the Dirac γ matrices prove that
components of this 4-vector are

ψ̄γ0ψ = ψ†γ0γ0ψ = ψ†ψ (12)

and

ψ̄γiψ = ψ†γ0γiψ = ψ†αiψ, (13)

(see [8], pp. 8, 17). Here ψ†ψ
is mathematically real and the Dirac
αi are Hermitian matrices (see [8], p.
8). Hence, their expectation values are
mathematically real numbers and (11) is
compatible with 1.

• The dimension of the Lagrangian density
is [L−4]. Hence, the QED Lagrangian
density (6) proves that the dimension of
the Dirac quantum function ψ is [L−3/2],
and entries of the γ matrices are pure
numbers. It follows that the dimension
of the Dirac 4-current (11) is [L−3]. It
is explained in the introduction, after (2),
that the dimension [L−3/2] of the quantum
function is an adequate property and it is
compatible with 2.

• The Dirac 4-current (11) satisfies the
continuity equation (see [8], p. 9), which
means that it is compatible with 3.

These issues show the coherent structure of
QED, where the Dirac equation of a charged
massive spin-1/2 particle and Maxwell equation
of the electromagnetic fields describe the time
evolution of the system.

Concerning the QED Lagrangian density, the
components of the 4-potential Aµ are the
generalized coordinates of the electromagnetic
fields (see the footnote on p. 72 of [9]; [12],
p. 596). The electromagnetic fields are the
derivatives

Fµν = Aν,µ −Aµ,ν (14)

(see [9], p. 65; [12], p. 596). A significant attribute
of this system is that Maxwell equations (7) are
independent of the 4-potential Aµ. This property
is called gauge invariance. The first-order
derivative of the Euler-Lagrange equation (5)
with respect to the electromagnetic generalized
coordinates Aµ yields this important conclusion:
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Maxwellian Gauge Invariance Requirement: Maxwellian gauge invariance
requires that the Lagrangian density of electromagnetic fields should not
contain a term that has a factor where the power of Aµ is greater than 1.

A straightforward observation of the QED
Lagrangian density (6) proves that the Dirac
theory abides by the Maxwellian Gauge
Invariance Requirement. However, it is proved
below that the SM literature ignores the
Maxwellian Gauge Invariance Requirement. This
issue emphasized the significance of this work.

Another important element of the QED
Lagrangian density is that its interaction term
is independent of derivatives of the quantum
function ψ,µ. Hence, according to the result that
is stated near the end of section 2, it does not
modify the Noether expression for the 4-current
(10).

3.2 Problems with Second-Order
Quantum Equations

Let us carry out an analogous examination of
second-order quantum equations of elementary
massive charged particles. Here ϕ denotes the
quantum function of a given particle. Specific
theories of this kind are the mathematically
complex KG equation and the electroweak
equation of the W± particles. The Lagrangian
density of the system L(ϕ, ϕ,µ) depends on
the quantum function ϕ and its derivatives.
Therefore, by virtue of the Euler-Lagrange
equation (5), a second-order quantum equation
is obtained from a term that contains a product of
derivatives of the particle’s quantum function. In
the case of the KG particle, one finds

LKG = aϕ†
,µϕ,νg

µν + ..., (15)

where a is a numerical factor (see [4] p. 21; [7], p.
38; [13], p. 198). In the case of the electroweak
theory, the quantum function is the 4-vector Wµ,
and the Lagrangian density is

LW = a[∂µWν − ∂νWµ]
2 + ... (16)

(see [14], p. 307; [15], p. 518, [16], p. 113).
Hereafter, χ denotes either the KG function ϕ or
a component Wµ of the electroweak theory.

Since the dimension is a stiff property of
a physical variable which does not vary

continuously, one uses the previous results and
derive these conclusions:

[label=CON.0] The [L−4] dimension of
the Lagrangian density proves that the
dimension of χ is [L−1]. The 4-current is
a real quantity whose dimension is [L−3].
Therefore, the 4-current of a second-order
charged particle should be a sum of terms
of the form

jµ = aχ∗
,µχ+ bχ∗χ,µ. (17)

Here the functions χ∗, χ are used
because of the required mathematically
real value of jµ, and the derivative fixes
its [L−3] dimension. The standard form
of the electromagnetic interaction term of
a charged quantum particle is

LInt = ejµAµ. (18)

Relation (17) for the 4-current jµ of the
interaction term (18) contains a derivative
of the quantum function χ. Therefore,
due to the Noether theorem for the 4-
current (10), one finds that this interaction
term yields a new term that belongs to
the 4-current! This new term contains the
factors e and Aµ. For this reason, the new
4-current takes the form

jµ(new) = jµ + e[η(A,χ∗, χ)]µ, (19)

where jµ is the original 4-current and η
is an appropriate function. The second
term of the 4-current jµ(new) of (19) yields
a new electromagnetic interaction term of
the Lagrangian density

Lnew = eAµj
µ
(new) = e2Aµ[η(A,χ

∗, χ)]µ.
(20)

Result (20) is totally unacceptable because
this interaction term is not proportional to the
electric charge e of the particle and it depends
quadratically on the 4-potentialAµ. This outcome
means that it violates the Maxwellian Gauge
Invariance Requirement.
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1.2.3.4.5. Conclusion A. Second-order theories of an elementary charged quantum
particle are inherently wrong.

4 DISCUSSION

The totally uncorrectable result (20), that contains
the second power of the 4-potential Aµ and the
e2 factor are found in the original publication
of the KG theory (see eq. (37), p. 198
of [13]; see also [16], p. 73). Therefore,
the KG theory of charged particles is wrong.
These erroneous products are not found in
quite a few textbooks on the electroweak W±

particles simply because these textbooks adopt
an unusual policy of refraining from a discussion
of the electromagnetic interaction of these
particles. However, ignoring a problem certainly
does not mean that it is settled. And indeed,
there are exceptional textbooks that show the
electromagnetic interaction term of the W±

Lagrangian density of the electroweak theory:
The first term of the second line of eq. (C.18)
on p. 518 of [15] shows a product of two Aµ as
well as the erroneous factor e2. An analogous
expression is presented in eq. (11.31), on p. 113
of [16]. It means that also the electroweak theory
of the W± is wrong. Hence, there are inherent
contradictions in second-order quantum theories
of an elementary charged particle.

The following information provides strong support
for the validity of the contradictions that are
derived above, namely, for conclusion A which
is shown near the end of the previous section. It
means that the SM electroweak theory of theW±

particles is wrong because it lacks a coherent
expression for the electromagnetic interaction of
the electrically charged W± particles.

• The Dirac theory of the electron was
published in 1928 [17]. About one
month later Darwin published a coherent
expression for the 4-current of the Dirac
particle [18]. This example shows that
in the case of a consistent theory, the
required 4-current is found right away.

• The fate of the 4-current of the
electroweak theory of the W± is
completely different. The electroweak
theory was created in the 1960s. About
20 years later several authors published

an effective expression for the W±

electromagnetic interactions [19]. Their
expression is still used by thousands of
people who work in very large research
centers such as Fermilab and CERN
[21, 20]. Their effective interaction term
depends on derivatives of the W function
(see eq. (2.1) of [19]). Items 1 - 5 of the
previous section prove that an application
of a 4-current of an electrically charged
particle that contains a derivative of the
quantum function is a gross theoretical
error.

• In contrast to the case of the Dirac
particle of the first item of this list,
where the 4-current was found after
one month, more than 50 years have
elapsed since the publication of the
electroweak theory, but there is still no
coherent theoretical expression for the
W± 4-current that is required for its
electromagnetic interaction.

These points strongly indicate that it is
really impossible to describe consistently the
electromagnetic interactions of the electroweak
theory of the W± particles.

5 RELEVANT PROBLEMS

It is proved above that dimension problems
emerge from the Lagrangian density of second-
order quantum theories. Incoherent expressions
for electromagnetic interactions demonstrate
these problems. However, a rule of thumb
says that it is very likely that an erroneous
structure of a theory should yield more than one
specific error. This section supports this opinion.
It discusses another aspect of the erroneous
structure of second-order quantum theories. A
typical attribute of these theories is the mass term
of their Lagrangian density whose form is

LMass = −bm2χ∗χ, (21)

where m is the particle’s mass and b is a
numerical constant. The product χ∗χ is a
mathematically real expression whose dimension
is [L−2]. Therefore, the [L−4] dimension of the
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Lagrangian density yield the second power of the
mass of (21)

Let us see how this term affects the structure
of the energy-momentum tensor Tµν of second-
order theories. One example of the importance of
this tensor is that Tµ0 is the energy-momentum
density of the system (see [9], pp. 84, 85; [6]
p. 19). Hence, the spatial integrals of Tµ0

are the system’s energy-momentum. Energy-
momentum are quantities that are used in
quantum mechanics and classical physics. For
example, the physical energy-momentum are
used in the de Broglie expression for the phase
of a free particle

Φ ∝ ei(k·x
k·xk·x−ωt). (22)

Here, kkk is the particle’s momentum ppp, and ω
is its energy (see [1], pp. 3, 18; [3], pp. 119,
120). Therefore, the generalized correspondence
principle says that every acceptable QFT should
provide a consistent definition of the energy-
momentum tensor.

Another example of the need for this tensor is the
Einstein equation for the gravitational fields (see
[9], p. 297)

Rµν − 1

2
gµνR = 8πkTµν . (23)

Here Rµν is the curvature tensor and k is the
gravitational constant (see [9], p. 288). The
ordinary energy-momentum tensor Tµν that is
obtained for a flat space-time coordinates where
the metric is uniform, agrees with the general
relativistic expression (see [9], p. 292). Let
us utilize the Noether theorem that shows how
the required energy-momentum tensor is derived
from the theory’s Lagrangian density

Tµν = gµαψ,α
∂L
∂ψ,ν

− Lgµν (24)

(see [4], p. 311; [6], p. 19).

The discussion analyzes the theory’s mass term,
and it follows the order of section 3. It begins
with an examination of the first-order Dirac theory
of a quantum function of a massive particle
that is used in the QED Lagrangian density (6),
and it shows the coherent interrelations between
theoretical elements. Later, the analysis proves
that unsettled problems exist with second-order
quantum theories.

5.1 The First-Order Dirac Theory
of a Quantum Function

The Noether expression for the energy-
momentum tensor Tµν of (24) changes the
form of terms that depend on derivatives of
the quantum functions ψ,ν . On the other hand,
derivative-independent terms just change sign
and are multiplied by the metric tensor gµν . The
mass term of the QED Lagrangian density (6)
is derivative-free, and it yields this term of the
corresponding energy-momentum tensor

Tµν
QED = ψ̄mψgµν + ... (25)

This term is consistent with the mass term of the
standard form of the energy-momentum tensor
(see [9], p. 92). In particular, the component
T 00 is the energy density of the system (see [6],
p. 19; [9], p. 92). This analysis shows that
the mass term of the Dirac QED equation (25) is
a mathematically positive expression that agrees
with the linear dependence of energy on mass.
Therefore, the Dirac linear equation of a spin-1/2
massive particle agrees with the required form of
the energy-momentum tensor.

5.2 Second-Order Theories of a
Quantum Function

It is already stated above that the mass term
of the Lagrangian density of a second-order
theory of a quantum function (21) takes the form
am2ϕ†ϕ. Here a is a numerical constant. Hence,
the energy-momentum tensor of a second-order
theory of a quantum function is

Tµν
2ND = bm2gµνF (χ†, χ) + ..., (26)

where F (χ†, χ) is a scalar expression
that depends on the quantum functions.
This quadratic mass expression is totally
unacceptable because it violates the linear
dependence of energy on mass.

It should be noted that the Higgs theory goes
from bad to worse. Indeed, the mass term of the
Higgs Lagrangian density is a positive expression

LHiggs = m2ϕ∗ϕ+ ... (27)

8
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(see [6], p. 715; [15], p. 515; [22]). Hence, the
Higgs energy-momentum tensor is

Tµν
Higgs = −m2gµνϕ∗ϕ+ ... (28)

It means that for either a positive or negative
Higgs mass ±m, the energy density T 00 of the
Higgs theory is negative. In other words:

The Higgs theory says that Nature contains a particle whose energy density
is negative and its entire energy is negative!

This result is totally inconsistent with experiment. In particular, it denies the claim that the 125 GeV
particle is a Higgs boson [11].

6 CONCLUDING REMARKS

The unit system used herein reduces the number of dimensions of a physical quantity to unity and
it takes the form [Ln]. Furthermore, the dimension of a physical quantity takes a unique value
throughout every process. Therefore, the dimensional analysis that is carried out above is quite
simple, and the correctness of the mathematical arguments is beyond doubt.

This work regards the QED Lagrangian density (6) as the fundamental expression of the quantum
description of an interacting system that comprises elementary massive charged particles and electro-
magnetic fields. This expression relies on the first-order Dirac equation of a charged spin-1/2 massive
particle. As stated in section 2, experiments strongly support the QED Lagrangian density (6). The
specific analysis of this work supports the theoretical structure of QED.

An examination of electromagnetic interactions yields two quite new theoretical elements that are
explained and utilized above:

• The quantum function of a Lagrangian density has dimensions. The dimension of the quantum
function ψ of the Dirac linear theory is [L−3/2]. This dimension yields the coherent expressions
of QED. In contrast, second-order quantum theories use a function ϕ whose dimension is
[L−1]. Unsettled problems emerge from this dimension. For example:

A coherent 4-current cannot be constructed for second-order quantum
theories. Hence, the ordinary QED Lagrangian density (6) of a charged Dirac
particle and electromagnetic fields cannot be extended to include second-
order quantum theories.

• Terms of a Lagrangian density that depend on a power n > 1 of the electromagnetic 4-potential
Aµ are unacceptable because they violate the gauge invariance of electrodynamics. One
reason proving that second-order quantum theories are wrong is that they have terms of this
kind. This restriction is still not well-known and some textbooks explicitly disobey it. It follows
that the publication of this work is badly needed.

Section 5 examines the energy-momentum tensor of quantum theories. It proves that besides the
analysis of electromagnetic interactions, this tensor supports the QED Dirac equation. On the other
hand, this section proves inherent contradictions of the energy-momentum tensor of second-order
quantum theories. In particular, the Higgs theory yields the totally unacceptable result of an energy-
momentum tensor whose energy density and its total energy are negative!

It is interesting to remark that the conclusions of this work agree with Dirac’s lifelong objection to
second-order quantum theories (see [23], pp. 1-8).
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