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 Tendons transmit forces from muscles to bones through joints. Typically, tendons and muscles work 
together to innovate a motion. In addition, tendons are often subjected to much higher stresses than 
the muscles that they serve in any given action. As a result, tendons are susceptible to injuries that may 
lead to a permanent dysfunction in joint mobility due to the fact that the scar tissue that forms after 
healing often does not have the same mechanical properties of the original tissue. It is therefore very 
important to understand the mechanical response of tendons. In this paper the performances are 
examined of two viscoelastic standard nonlinear models in modelling the elastic and plastic behaviour 
of the tendon in the light of a well-known hyperelastic Yeoh model. The use of the Yeoh model is 
more for validating the performances of the viscoelastic models within the elastic region than for 
comparison purposes. The Yeoh model was selected based on its superior performance in modelling 
the elastic phase of soft tissue, as reported in previous studies, combined with its simplicity. The results 
show that the two standard nonlinear solid models perform extremely well both in fitting accuracies 
and in correlating stress results. The most promising result is the fact that the two standard nonlinear 
models can model tendon behaviour in the nonlinear plastic region. It is also noted that the two 
standard nonlinear models are physically insightful since their optimisation parameters can easily be 
interpreted in terms of tendon elasticity and viscoelastic parameters. 

© 2023 Growing Science Ltd.  All rights reserved. 
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1. Introduction 

        
Mechanical properties of soft tissues are vital in the development of accurate and reliable computational models 

(Nemavhola, 2017, 2021; Ndlovu et al., 2020). Tendons are normally understood to have strong tissues that are connected 
together and that transfer muscle forces to the bones (Ferguson, 2001; Lake et al., 2010). They have a complex hierarchical 
structure that spans several length scales from 300 nm long for tropocollagen to a few centimetres for the fascicles (tendon 
tissue). This structural organisation provides characteristics that enable proper functional properties. Tendons exhibit 
anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by their complicated hierarchical 
structure (Fang and Lake, 2016). The natural structure of the tendons makes it possible for the tendons to generate large forces 
with small deformation. This natural phenomenon allows tendons to transmit required forces with less energy required for 
stretching. Because tendons are regarded as viscoelastic in nature, some energy that is transferred to cause deformation in the 
muscles is dissipated. However, they are most represented as elastic tissue that connect muscles to bones across joints. This 
makes them susceptible to quite a lot of tissue damage, especially tendons that work around the glenohumeral (shoulder) joint 
which undertakes complex forms of locomotion in its day-to-day functions. Mechanically, tendons are like ‘tie’ structures, 
and they often act in tension, so this study focused on the tensile behaviour of a supraspinatus tendon.   
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The supraspinatus tendon forms a group of shoulder tendons that are most susceptible to injury called the rotator cuff 

tendons. These tendons insert into the head of the humerus, helping to achieve dynamic stability during abduction, adduction 
and rotation of the arm (see Figure 1). However, the supraspinatus tendon itself ensures stability of the joint during arm 
abduction which involves it to act in tension. In order to understand its pathology and healing process, it is important to 
formulate an accurate model of its tensile behaviour (Lake et al., 2010). A recent study (Maganaris et al., 2017) shows that a 
correct modelling of tendon mechanical behaviour can significantly enhance the understanding of the mechanisms involved 
in its adaptability and mal-adaptability in response to mechanical loading, and to inform the design of patient-specific 
rehabilitation exercises addressing tendon pathologies.  

 

 
Fig. 1. Gleno-humeral (shoulder) joint and a selected number of skeletal muscles, tendons and bones – showing the 
supraspinatus tendon 

 
Generally, the problem of mechanical behaviour of soft tissues has been widely studied (Nemavhola and Sigwadi, 2019). 

Researchers have approached the problem of modelling the mechanical behaviour of tendon tissue in two main ways: 
mathematical and computational approaches. Computational approaches are further classified as tissue-scale models or 
multiscale models. In most applications, these models are incorporated into finite element (FE) programs as solvers. Tissue-
level computational models consider a tendon as an assemblage of elements with properties that are averaged over the tissue 
scale. Herchenhan et al. (2012) highlight the significance of these models by stating that contraction of fibroblasts at lower 
length scale is a sufficient mechanical impulse to building a planar wavy pattern and that the value of the crimp wavelength 
is determined by the mechanical properties of collagen fibrils and the interfibrillar matrix. Multiscale computational models 
disaggregate the tendon tissue into its different constituent length scales and solve its overall tissue response by translating 
responses over different length scales. This is obviously more involved than the previous approach and may require a lot of 
detailed material characterisation from nanoscale to macroscale. The rationale is that the mechanical response of a biological 
material to applied force reflects deformation mechanisms occurring within a hierarchical architecture extending over several 
distinct length scales (Chuong and Fung, 1983; Eppell et al., 2006; Clemmer et al., 2010; Wang et al., 2012; Fung, 2013; 
Mouw et al., 2014). Characterising, and in turn predicting, the behaviour of such a material requires an understanding of the 
mechanical properties of the substructures within the hierarchy, the interaction between the substructures and the relative 
influence of each substructure on the overall behaviour. Computational models have previously been used successfully to 
predict various mechanisms of the diseases (Masithulela, 2015a, b, 2016a, b; Nemavhola, 2019a, b).  

 
    On the other hand, mathematical approaches are classified either as phenomenological or microstructural models (Fang and 
Lake, 2016). Microstructural mathematical approaches account for material structure and attempt to model the tendon by 
generalising the mechanical behaviour of the different components in tendons. Research (Gautieri et al., 2011, 2013) shows 
that availability of such models may enhance the development of novel nano medicine and procedures for treatment of a broad 
class of collagen diseases, as well as lead to the design of novel biomaterials for regenerative medicine. Besides, these models 
may also lead to the development of potent therapies for tissue injury since a decline in mechanical response is a function of 
injury and age (Akintunde & Miller, 2018; Ngwangwa & Nemavhola, 2021). 

 
     Phenomenological modelling is typically grouped into hyperelastic methods (those that do not display time-dependency 
yet exhibit a nonlinear response) and viscoelastic methods (those that incorporate time-dependence effects) (Woo et al., 1993). 
Hyperelastic models are based on the minimisation of strain energy function with respect to strain invariants that are 
themselves expressed as functions of principal stretches and non-physical parameters. Their solutions involve determining the 
values of these non-physical parameters that minimise the sum of squared errors between measured and model calculated 
stresses. Though they are typically simple numerical procedures, most of them require quite a lot of these non-physical 
parameters to achieve acceptable levels of correlations and fitting accuracies (Ogden et al., 2004; Martins et al., 2006). Some 
of the well-documented challenges in the development of these models have been the formulation of physically insightful 
models, incorporation of anisotropy, nonhomogeneity, geometrical multidimensionality and compressibility.  
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Viscoelastic models seem to have better prospects for formulation of general theoretical frameworks, which could account 
for effects of nonlinearity, multiple dimensionality and finite viscoelasticity. These models provide a natural extension to 
modelling of anisotropy, complex deformations and more accurate prediction of mechanical behaviour under complex loading 
conditions (Johnson et al., 1996; Leeman & Jones, 2008; Shim & Mohr, 2011). Haslach (2005) developed a general continuum 
model for the nonlinear viscoelastic behaviour of soft biological tissue, which was validated with test data from uniaxial 
extension of younger and older human patellar tendons and canine medial collateral ligaments. The model accurately predicted 
cyclic stresses for deformations too large to be adequately modelled by linear models. Revel et al. (2003) demonstrated that 
nonlinear viscoelastic behaviour of the tendon and nonuniformity of the tendon cross-sectional area should be taken into 
account for accurate modelling of tendons. Haslach (2005) used a maximum dissipation function to formulate nonlinear 
viscoelastic evolution differential equations and successfully determined non-equilibrium transient responses (creep, stress 
relaxation and variable loading) in biological soft tissue. Leeman and Jones (2008) particularly recommend the Maxwell-type 
viscoelastic models to provide a good starting point for modelling of soft tissues. However, Shim and Mohr (2011) found that 
viscoelastic constitutive models of the Zener type are not suitable for the modelling of rate-dependent behaviour of polyurea. 
Their model predicts monotonic loading, material relaxation and viscous dissipation during loading and unloading cycle very 
well, but it overestimates stiffness during unloading. Realising the power of a dissipation potential, Upadhyay et al. (2020) 
formulated a visco-hyperelastic constitutive model of short-term memory response for soft materials to capture both linear 
and nonlinear large deformation behaviour over a wide range of strain rates. The model displays great accuracy and avoids 
possible thermodynamic instabilities normally found in quasi-static hyperelastic models that corrupt dynamic stresses.  

 
Thus, viscoelastic models seem to hold quite a lot of promise within the mathematical approaches for accurate modelling of 
soft tissue behaviour. It was therefore the main focus of this study, and in order to bring out its advantages, in this paper, the 
performances of the two models in the elastic region have been shown in the light of the well-known Yeoh model. The choice 
of the hyperelastic Yeoh model was based on its performance and its simplicity in terms of the number of required optimisation 
parameters relative to the other models of comparable performance as reported in a study by Martins et al. (2006). 

2. Materials and Methods 

The research methodology in this study involved two main steps: formulation of the Yeoh model and the two standard 
nonlinear models, and sample preparation, measurement and preparation of the secondary test data. 

 
2.1  Theoretical formulation of the models 

 
In this section, the theoretical formulations of the Yeoh and standard nonlinear models are presented. The two viscoelastic 

models have different configurations derived from the Maxwell and Kelvin-Voigt architecture. 
 

2.1.1 Yeoh material model 
 
Hyperelasticity implies that the structure can elongate under load >0.5 of its original length: a behaviour which can only 

be correctly estimated by nonlinear methods that assume finite elongations rather than the infinitesimal elongations as assumed 
by linear mathematical methods. Hooke’s law does not satisfy the mechanical behaviour of soft tissue as tendons. Therefore, 
Yeoh’s material model (Yeoh, 1993) was chosen in this study because of its reported superior performance in a previous study 
(Martins et al., 2006), and because it requires only three optimisation parameters. This model assumes material isotropy and 
incompressibility.  

 
For uniaxial loading, such as during uniaxial tensile testing, a strain energy function can be given as 
 𝜓 = 𝑓ሺ𝐼ଵሻ (1) 

 
where I1 is a strain invariant in the direction of the load which can be further expressed as a function of the principal stretch 

in that direction, λ1 as 
 𝐼ଵ = 𝑔ሺ𝜆ଵሻ (2) 
 
Yeoh (1993) derived the strain energy function expression for hyperelastic behaviour as 
 𝜓 = ෍𝑐௜ሺ𝐼௜ − 3ሻ௜ଷ

௜ୀଵ  (3) 

 
where ci are the parameters to be estimated through optimisation. Although these parameters may have units of stress, they 

cannot be constrained to fall within values of measured stress because, as is shown in Eq (4), they are parameters within a 
rather implicit function that also contains higher orders of strain invariants I1 and principal stretches. 
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The principal Cauchy stress was then determined as (Yeoh, 1993; Martins et al., 2006) 

 𝜎௒௘௢௛ = 2 ቀ𝜆ଵଶ − ଵఒభቁ ሺ𝑐ଵ ൅ 2𝑐ଶሺ𝐼ଵ − 3ሻ ൅ 3𝑐ଷሺ𝐼ଵ − 3ሻଶሻ    (4) 

 
where the strain invariant 𝐼ଵ = 𝜆ଵଶ − ଶఒభ. 
 

2.1.2 Standard nonlinear solid (SNS) material models 
 

Although some studies have modelled tendons as hyperelastic materials, others have shown that the extent of potential 
damage to their tissue depends on both the rate of change of their length and on applied force (Haslach, 2005). This behaviour 
causes them to exhibit both elastic and viscous characteristics when undergoing deformation. This observation presents a 
motivation for investigation into viscoelastic modelling of tendons. The formulation employed in this study can be thought of 
as ‘pseudo-viscoelastic’ since it does not necessarily render itself to dynamic loading; rather, it merely utilises the topology 
for a static application. 

 
There are several viscoelastic model structures presented in the literature. However, in this study two variants of the 

standard nonlinear solid (SNS) model were employed owing to its simplicity and its ability to model both creep and stress 
relaxation effects considering nonlinearity effects. These two effects were exploited for modelling on plasticity in the initial 
phases of material yielding. These models are: (1) one spring parallel with a series connection of another spring and a viscous 
damper (a modified Maxwell’s model); and (2) a parallel connection of a spring and damper in series with another spring (a 
modified Kelvin-Voigt model). The latter combination was used by Groth and Granata (2008) in predicting non-equilibrium 
responses in a lumbar intervertebral disk and was found to yield very good results, especially under very low frequency cyclic 
loading. The study particularly focused on approximation of stress relaxation up to a time period of 15,000 s.  

 
In this study, both models were adopted to model tendon behaviour during linear and plastic failure at a uniform strain 

rate. Fig. 2 shows the architectures of the SNS models under study. 
 

 
 

Fig. 2.  Architecture of SNS models (a) Maxwell model in parallel with a spring E1 (b) Kelvin-Voigt model in series with 
a spring E2 

 
Mathematically, Fig. 2(a) and Fig. (b) can be expressed as Eqs (5) and (6), respectively (Christensen, 1980). 
 𝜎 ൅ ఎாమ 𝜎ሶ = 𝐸ଵ𝜀 ൅ ఎሺாభାாమሻாమ 𝜀ሶ   (5) 
 𝜎 ൅ 𝜂𝐸ଵ ൅ 𝐸ଶ 𝜎ሶ = 𝐸ଵ𝐸ଶ𝐸ଵ ൅ 𝐸ଶ 𝜀 ൅ 𝜂𝐸ଶ𝐸ଵ ൅ 𝐸ଶ 𝜀ሶ (6) 

 
where σ is the stress, ε is the engineering strain, Ei, i=1,2 denote the two elasticity parameters represented as moduli of 

elasticity, η is the damping characteristic and the dot over the variables represents the time rate of those variables. Both the 
moduli of elasticities and the damping parameter are assumed to be nonlinear functions of strain. Eqs (5) and (6) show that 
under constant stress, the models will deform to some instantaneous strain but under elongated loading, the material will 
continue to deform and asymptotically approach some steady-state strain, which is the retarded elastic portion of strain. It is 
hypothesised that strain does not really remain constant during the yielding phase. Thus, the material will only obey Hooke’s 
law during the elastic phase.  
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Due to the complexity in structural hierarchy and randomness in helical organisation of tendon tissue, its stress-strain 
curve from the toe region to the point of the ultimate tensile stress is typically governed by an s-shaped process. This may 
imply that the material properties within the tendon tissue do not necessarily remain constant but rather that they continually 
vary during the testing process. For example, stiffness in the toe region is dominated by the straightening of fibril helical 
crimp: in the linear region it is dominated by stretching of the fibrils, and in the nonlinear plastic region, it is dominated by a 
combination of stretching and fracture of fibrils. Therefore, in order to account for these changes in material properties during 
testing, it has been assumed that both Eqs (5) and (6) are governed by the s-shaped curve for soft tissue stress-strain behaviour 
given by a function 

 𝜎 = 𝑘଴ ቂ ௔భ௔భା௘ష್ഄ + ௔మ௔మା௘ష್ഄ − ௔య௔యା௘ష್ഄቃ  (7) 
 
where 𝑎௜, 1,2,3, b and k0 are the optimisation parameters. Then we use these optimisation parameters to derive expressions 

for the material properties. Upon basic mathematical calculations, the elasticity and damping parameters in Eqs (5) and (6) 
are obtained as 

 
Parameters for SNS Maxwell version of Eq (5) 
 𝐸ଵ = 𝑘଴𝑎ଵሺ𝑎ଵ + 𝑒ି௕ఌሻ𝜀 (8) 

 𝐸ଶ = 𝜂ሺ𝑎ଷ + 𝑒ି௕ఌሻ𝜎ሶ𝑘଴𝑎ଷ  (9) 

 𝜂 = 𝑘଴ሺ𝑎ଶሺ𝑎ଷ + 𝑒ି௕ఌሻ𝜎ሶ −  𝑎ଷ𝐸ଵሺ𝑎ଶ + 𝑒ି௕ఌሻ𝜀ሶሻሺ𝑎ଶ + 𝑒ି௕ఌሻሺ𝑎ଷ + 𝑒ି௕ఌሻ𝜀ሶ𝜎ሶ  (10) 

 
Parameters for SNS Kelvin-Voigt version of Eq (6) 
 𝐸ଵ = ௔భ௔మ௞బఙሶ ൫௔యା௘ష್ഄ൯௔మఌఙሶ ൫௔భା௘ష್ഄ൯൫௔యା௘ష್ഄ൯ି௔భ௔య௞బఌሶ ൫௔మା௘ష್ഄ൯   (11) 
 𝐸ଶ = 𝑎ଶ𝜎ሶሺ𝑎ଷ + 𝑒ି௕ఌሻ𝑎ଷ𝜀ሶሺ𝑎ଶ + 𝑒ି௕ఌሻ (12) 

 𝜂 = 𝑎ଶ𝐸ଵ𝜀ሺ𝑎ଵ + 𝑒ି௕ఌሻ𝑎ଵ𝜀ሶሺ𝑎ଶ + 𝑒ି௕ఌሻ  (13) 

 
For both the Yeoh and SNS models, the parameters are solved using a nonlinear least squares curve fitting routine in 

MATLAB employing a default ‘trust-region-reflective’ algorithm. This algorithm is a subspace trust region algorithm for 
large-scale problems, which is based on the interior-reflective Newton method (Mathworks® Inc., 2019). Each iteration 
involves the approximate solution of a large linear system using the method of preconditioned conjugate gradients. However, 
this algorithm does not accept underdetermined systems, so in those cases, the Levenberg-Marquardt algorithm is 
recommended. It has the advantage of accepting bound constraints which are not permitted by the other algorithm. This 
algorithm can also be used in small- to medium-scale problems without computing the Jacobian or providing the Jacobian 
sparsity pattern, which makes it much faster than the routines that compute the Jacobian. 

 
2.2 Sample preparation, measurement and test data preparation 

 
The three samples were harvested from frozen shoulders of cadavers of undisclosed age and features. The authors were 

merely granted consent for testing and reporting the results of their measurements. The specimens were of different cross-
sectional areas: 90 mm2, 70 mm2 and 50 mm2 with lengths of 50 ±2 mm, which translates into three different aspect ratios. 
The specimens were temporarily preserved in saline solution before testing under room air temperature and relative humidity 
between 30 and 60%. During testing the specimens were kept at 35-37 oC to mimic body temperature.  

 
They were tested one after another using an MTS EM Tensile Tester up to the point of total tissue rupture. The machine 

was operated in displacement control at constant strain rates on all three tests. Strain rates were kept constant throughout the 
testing procedure on all tests at around 0.0173 per s with variations in the strain rates at different sample points being 3.5% 
for test 1, 3% for test 2 and 5.2% for test 3. The variations in strain rates from one test to another as well as within the same 
test were inevitable due to challenges in achieving perfect tissue clamping, measurement precision errors and changes in 
material properties through the different stress-strain phases. 
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The data from the toe region to the maximum stress value corresponding to ultimate tensile stress were selected for all 
tests. For the Yeoh model, the test data range was only up to the upper limit of the linear elastic region. A simple data cleaning 
procedure by the use of a 4-point moving average filter was applied to all the test data. 

3. Results and Discussions 

In this section, a summary of the test results and a number of distinctive features are presented. The performances of the 
three models in terms of their correlation and fitting accuracies, as well as computational efficiencies are discussed. The 
section concludes with a discussion of the evolution of material properties over the strain process for the two SNS models. 

3.1 Summary of test results 

Three uniaxial tensile tests were conducted on tendons with 90 mm2, 70 mm2 and 50 mm2 in cross-sectional area. Table 1 
summarises the test results. 
Table 1. Values of physical quantities calculated from the stress-strain curves 

Quantity Test 1 Test 2 Test 3 

Tendon cross-sectional 
area (mm2) 90 70 50 

Ultimate tensile stress 
(UTS) (N/mm2) 4.393 2.621 4.374 

Elasticity modulus in the 
linear region (N/mm2) 12.853 29.268 21.314 

Reserve strength after UTS 
in terms of fibre toughness (%) 28 56 60 

The following test parameters are extracted from the test results and presented in the table: moduli of elasticity in the linear 
region, ultimate tensile stress (UTS) and reserve tensile strength after UTS. Tendons in Tests 2 and 3 have larger moduli of 
elasticity and exit the toe region at much lower strain level than the tendon in Test 1. The tendon in Test 2 expectedly reaches 
its UTS at a much lower value of 2.621 N/mm2, but the tendon in Test 3 reaches its UTS at a UTS almost equal to that of Test 
1. However, after reaching the UTS, both Tests 2 and 3 elongate by more than 50% of their original lengths, whereas Test 1 
only elongates by about 28% of its original length before rupture. Apart from the large differences in UTS, Tests 2 and 3 bear 
some marked similarities in almost every aspect. The similarities between Tests 2 and 3 are also evident in the graphs of 
material property trends plotted in Figures 7 and 8 to be discussed later. Both tendons exited the toe region at strains of around 
0.1 and at equal stresses; they had the same moduli of elasticity in the linear region and they also had similar amounts of 
reserve strength after UTS. Furthermore, they displayed similar stress-strain behaviour after UTS. After UTS, they both 
exhibited two consecutive stages of ‘stress relaxation’ type of behaviour, after which they transited into a strain softening 
phase before they finally ruptured. The tendon in Test 1 exited the toe region at a much higher strain and stress of 0.3 and 
1.25 N/mm2, respectively, exhibited the lowest value of modulus of elasticity in the linear region and reached its UTS at 4.393 
N/mm2. Its behaviour after UTS showed two rather sharp consecutive tissue ‘stress relaxation’ stages before final rupture. In 
contrast to Tests 2 and 3, the tendon in Test 1 did not exhibit a distinct strain softening type behaviour before failure. Besides, 
its ‘stress relaxation’ stages were much steeper than in Tests 2 and 3. These differences can be attributed to inherent tissue 
material property differences. From the calculated differences in the moduli of elasticity, and behaviour after UTS, it is clear 
that the tendon in Test 1 was less elastic and lacked enough toughness to sustain it for long after reaching its UTS. This might 
have been caused by differences in tissue treatment or operating conditions prior to or during testing. 

3.2 Model performances 

Fig. 3  to Fig. 5 show correlation plots (in frame (a)) and error plots (in frame (b)) of models’ outputs for all three tests. 
Included in frame (a) on all these figures are the calculated correlation and fitting error percentages. The two versions of the 
SNS model performed similarly on each of the three tests. They range from correlation percentages of 99.8% to 100% having 
fitting errors below 5% on all tests. The two models performed comparably to the Yeoh model in the linear elastic range on 
all tests. The other advantage is that they are able to model tissue behaviour up to the nonlinear plastic region up to the UTS. 

The error plots in frame (b) show that on average the SNS models performed better than the Yeoh model in the toe region. 
The toe region errors are clearly the greatest contributor to the fitting errors for the Yeoh model. Martins et al. (2006) have 
attributed these errors to insufficient capacity for modelling material non-homogeneity. We also hypothesise that measurement 
errors in this region play a role. The error plots on all three tests consistently display spikes in errors at region boundaries, 
first between toe region and linear region, second between linear region and nonlinear plastic region, and finally at the UTS. 
Both the SNS models and the Yeoh model fail to model these discontinuities and have further contributed to the fitting errors. 
For the SNS models, the errors at the UTS are clearly the greatest contributor to their fitting errors. At the UTS the material 
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apparently behaves in an unstable manner and the model is incapable of fitting that behaviour. As already noted, the material 
transits into a stress relaxation type of behaviour after this point so that the test data for the SNS models were limited to the 
UTS on all three tests. Another important observation is that the performances of these models were influenced by the ranges 
of the selected data. This is a normal characteristic of regression type models, in which their accuracies are influenced by how 
well the test data represents the underlying theory. For example, the Yeoh model cannot yield good correlations in the plastic 
region.  

 

 
Fig. 1. Correlations of Yeoh, SNS-Maxwell and SNS-Kelvin-Voigt models with Test 1 results 

 
Fig. 2. Correlations of Yeoh, SNS-Maxwell and SNS-Kelvin-Voigt models with Test 2 results 

 

(a) 

(b) 

(a) 

(b) 
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Fig. 3. Correlations of Yeoh, SNS-Maxwell and SNS-Kelvin-Voigt models with Test 3 results 

3.3 Optimisation performance 

Table 2.  Material parameters for the two models on all three tests 

  Test 1 Test 2 Test 3 

Yeoh material 
model 

Optimisation 
parameters 

-0.135 
1.884 
-0.961 

0.042 
24.968 
-66.340 

0.457 
10.073 
-18.726 

Iterations 1 3 2 
Function evaluations 8 16 12 

SNS material 
model 

Optimisation 
parameters 

28.760 
0.005 
5261.857 
13.633 
4.222 

0.289 
0.004 
0.246 
45.996 
2.668 

93.852 
0.017 
3837.837 
21.741 
4.314 

Iterations 66 54 83 
Function evaluations 402 330 504 

Table 2 summarises the optimisation results in terms of the optimisation parameters, number of iterations and function 
evaluations for the SNS models and Yeoh model for all three tests. For both models the optimisation parameters are non-
physical, with the only exception being that those for the SNS models are parameters of tissue properties such as moduli of 
elasticity and tissue damping. For the optimisation process, the Yeoh model clearly performs much better than the SNS models 
with fewer parameters, number of iterations and function evaluations. The Yeoh model also converges much faster at 0.07 s 
compared to 1 s on average for the SNS models using an Intel(R) Core(TM) i7-3720QM CPU @ 2.60 GHz with 4 cores and 
8 GB (RAM) running on 64-bit Microsoft Windows 10 Enterprise. 

3.4 Material property behaviour 

The optimisation parameters for the SNS models are applied to Eqs (8), (9) and (10) to calculate the moduli of elasticity 
E1 and E2, and the tissue damping factor η for the Maxwell version and Eqs (11), (12) and (13) for the Kelvin-Voigt version. 
The trends of these physical properties are plotted in Fig. 6  to Fig.  8. 

(a) 

(b) 
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Fig. 4. Material properties trends with strain for Test 1 

 

Fig. 5. Material properties trends with strain for Test 2 

 

A closer look at the evolution of the material properties E1, E2 and η plotted in Fig. 6 to Fig. 8 reveals more detailed 
information about the tendon behaviour in each test. Despite a number of aesthetic similarities, especially between Tests 2 
and 3, it is important to note that the differences in the actual values of the properties imply that these tendons were not exactly 
the same. Mechanically, the properties serve different physiological functions such as material compliance, force isolation 
and energy dissipation. The two SNS models distribute these functions differently between their two elastic components (E1 
and E2) depending on their different architectures. In the following sections, we attempt to explain these functions in the light 
of the property trends as plotted in Fig. 6  Fig. 8. 

 

(a) 

(b) (c) 

(f) 

(c) 

(f) 

(b) 

(e) (d) 

(a) 

(e) (d) 
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Fig. 6. Material properties trends with strain for Test 3 

3.5 Material compliance 

Material compliance is represented by E1 and E2 in the Maxwell and Kelvin-Voigt models, respectively. In the Kelvin-
Voigt model, the trend of E2 on each strain level is the same for each test as shown in Figures 6(e), 7(e) and 8(e). The tissues 
have low elasticities in the toe region, then increase towards a maximum at the mid-point of the linear region and finally 
decrease towards the UTS. This behaviour is rather expected from a practical point of view since the tissue is expected to be 
more compliant in the toe region and towards its UTS, but exhibits greater stiffness in the middle of its linear region. For the 
Maxwell model, material compliance is represented by E1 and it is shown in Figures 6(a), 7(a) and 8(a). However, the 
previously discussed tissue behaviour in Kelvin-Voigt model is not represented by the Maxwell model in these figures, except 
the characteristic decrease in elasticity towards the UTS and the maximum at the mid-point of the linear region in Test 1. 
From these results, it may be concluded that the Kelvin-Voigt model is more stable in modelling the tendon elasticity than the 
Maxwell model. 

3.6 Force isolation 

This property measures how the tendon transmits external forces to the adjoining parts. It is dominated by negative 
elasticity in the models, represented by E1 for the Kelvin-Voigt model and E2 for the Maxwell model. In the Maxwell model, 
Fig. 6(b), Fig. 7(b) and Fig. 8(b) typically show similar tissue behaviour in all tests, with the only difference being in their 
exact values of elasticity. However, the Kelvin-Voigt model shows similarities only in Tests 2 and 3 (Fig. 7(d) and Fig. 8(d)). 
Fig. 6(d) shows effective force isolation only in the toe region, which is actually the tendon’s physiological range. Therefore, 
it may be concluded that the Maxwell model is more stable in modelling force isolation than the Kelvin-Voigt model. 

3.7 Damping or energy dissipation 

Typically, this property is represented by η in Figures 6(f), 7(f) and 8(f) and gives an indication of the tendon’s energy 
dissipation capacity. A desirable damping property in the tendon tissue should therefore be either very low or negative values, 
especially in the physiological state, though this may cause material behaviour instabilities under certain loading conditions. 
For both the Kelvin-Voigt and Maxwell models the tissues exhibit similar behaviour for Tests 2 and 3. Test 1 exhibits higher 
levels of damping in both models in the linear and plastic regions. This further confirms the similarities between Tests 2 and 
3.  

However, it must be mentioned that there are numerous areas around tendon material property evolution during tensile 
testing that require further study. Some of these issues are the exact mechanisms within the tendon that cause the complicated 
nature of its variations over the strain process and the exact evolution of the material properties in the toe region. 

4. Conclusion  

In this paper two models whose structures are derived from viscoelastic topology were evaluated in the light of the well-
known Yeoh model. The rationale behind this was to exploit viscoelasticity to model unstable yield behaviour only up to the 
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ultimate tensile stress, and to elucidate the material property evolution during the strain process. It has been observed that the 
two viscoelastic models are able to accurately fit the tendon stress-strain behaviour in the linear region quite comparable to 
the Yeoh model. It has further been shown that the two viscoelastic models can predict the stress-strain beyond the linear 
elastic limit up to the ultimate tensile stress point.  

 
On understanding the material property behaviour, the two viscoelastic models promise to be physically insightful. It has 

been shown that the Kelvin-Voigt architecture is more stable in modelling tendon stiffness, whereas the Maxwell architecture 
is more stable in modelling the tendon’s force isolation property. Although it is difficult at this stage to cascade the information 
obtained into microscale tendon behaviour, it can be satisfactorily employed to understand several influences of the ground 
substance that influence tendons’ dissipative characteristics on the macroscale.  

 
There are still a few more areas that require further study. For example, the variation of material with tissue treatment and 

different testing conditions; more stable ways of modelling damping in tendon tissue; and designing of reliable testing 
procedures of tendons in the toe region. 
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