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Abstract

Antibody-based therapeutics must not undergo chemical modifications that would impair

their efficacy or hinder their developability. A commonly used technique to de-risk lead

biotherapeutic candidates annotates chemical liability motifs on their sequence. By analyz-

ing sequences from all major sources of data (therapeutics, patents, GenBank, literature,

and next-generation sequencing outputs), we find that almost all antibodies contain an aver-

age of 3–4 such liability motifs in their paratopes, irrespective of the source dataset. This is

in line with the common wisdom that liability motif annotation is over-predictive. Therefore,

we have compiled three computational flags to prioritize liability motifs for removal from lead

drug candidates: 1. germline, to reflect naturally occurring motifs, 2. therapeutic, reflecting

chemical liability motifs found in therapeutic antibodies, and 3. surface, indicative of struc-

tural accessibility for chemical modification. We show that these flags annotate approxi-

mately 60% of liability motifs as benign, that is, the flagged liabilities have a smaller

probability of undergoing degradation as benchmarked on two experimental datasets cover-

ing deamidation, isomerization, and oxidation. We combined the liability detection and flags

into a tool called Liability Antibody Profiler (LAP), publicly available at lap.naturalantibody.

com. We anticipate that LAP will save time and effort in de-risking therapeutic molecules.

Introduction

Antibodies are glycoproteins produced by the immune system to identify and neutralize for-

eign pathogens such as viruses, bacteria, and other infectious agents. The protective function

of antibodies has been harnessed for therapeutic purposes, particularly to selectively target

cancer cells. There are currently more than 160 monoclonal antibody drugs approved for use

in the world, with many more in development in a market estimated to be worth close to $200

billion [1].
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In addition to their therapeutic efficacy, the developability of antibodies is an essential con-

sideration in their production and clinical use [2,3]. Developability refers to a set of character-

istics that determine whether an antibody is suitable for large-scale production, formulation,

long-term storage, and administration. These characteristics include factors such as stability,

solubility, polyreactivity, ease of manufacturing, and physicochemical integrity of the drug

product during manufacturing, shipping, etc. Antibodies that possess favorable developability

properties are expected to be successfully developed and brought to market [4]. Moreover,

they are more likely to have a long shelf-life, reduced manufacturing costs, and improved

patient outcomes [4].

A critical step in the development of therapeutic antibody products is the precise definition

and predictive characterization of their amino acid sequences and structures. The slightest

oversight in the annotation of sequences, or identification of mutations or residues that may

be important in the stability and efficiency of antibodies could lead to a reduction in the effec-

tiveness of any promising lead candidates [5]. Thus, it is necessary to create highly effective

and precise bioinformatics tools to ensure the development of antibody products as safe and

potent medicines with minimal drug product heterogeneity [6].

Though there is a range of computational methods for de-risking the developability of anti-

bodies [2,6–8], one of the staple early methods remains the identification of ‘sequence liabili-

ties’ [9]. Undesirable chemical modifications can be associated with a range of sequence motifs

that can be two or more amino acid residues long, or be associated with specific amino acids

(e.g. Met, Trp oxidation, Asn, deamidation, Asp, Isomerization, and so on). Such liabilities

include, among others, factors such as glycosylation [10], deamidation [11] isomerization [12],

and more. By identifying such sequence liabilities early in the drug development process, sci-

entists can design and engineer antibodies with improved developability and efficacy, increas-

ing chances for desirable drug function (antigen recognition or effector function) or good

stability of the product during manufacturing, shipping, and storage (shelf-life).

It is well known that the identification of sequence liabilities purely based on the sequence

motifs is over-predictive [9]. Physical or chemical reaction mechanisms, rate, and structural

information such as solvent exposure provide us with the key information on the severity of

these liabilities. Not all susceptible motifs will undergo a chemical reaction [7]. Structural con-

formation [13] or chemical conditions such as pH stress [7] all impact the rate at which the

sequence motifs will undergo modifications. There were multiple efforts to predict the rate of

degradation of certain motifs via computation [13–15]. Such efforts produce good results,

however, they are still hampered by small datasets and applicable only to a select set of modifi-

cations (e.g. in vitro liabilities only).

Here, we have undertaken a survey of sequence liabilities from major sources of information

from the public domain, namely therapeutics, patents, natural antibodies, GenBank, and litera-

ture. We provide occurrence statistics for sequence liabilities in antibodies sourced naturally as

well as those destined for therapeutic applications. Our results show that sequence liabilities have

very high occurrences within all datasets, which is in line with previous information that most

such liabilities are highly over-predictive. Therefore, methods to reduce the number of false posi-

tives are desirable to focus engineering efforts on the liabilities that can carry higher risk.

To address the over-predictability issue, we have benchmarked computational methods to

ignore certain sequence liabilities, based on germline signature, success in clinical trials, and

structural information. We demonstrate that such flags reduce the significant amount of all lia-

bilities detected by simple sequence analysis and they find correlation with experimental data-

sets. For convenience, we combine the methods into a single online tool, LAP (https://lap.

naturalantibody.com), which we hope will facilitate the identification of liabilities that pose

actual risk of chemical degradation.
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Results

Mapping sequence liability prevalence in major sources of antibody

information

We defined an Antibody Liability Reference (Table 1) based on a compilation of the motifs

described in the literature and definitions used in pharmaceutical and biotechnology compa-

nies (see Methods). Such liabilities are detected employing sequence information alone, so it is

fundamental to investigate their prevalence across globally available antibody datasets. For this

purpose, we studied the frequency of liabilities across a large dataset of antibody sequences,

sourced across the natural and therapeutic spectrum. We have defined deamidation with 3 lev-

els of severity (high, medium, and low) and fragmentation with 2 levels (high and medium);

others have only 1 severity level.

For each heavy and light sequence in our datasets, we applied our Antibody Liability Refer-

ence. Each sequence where any liability was detected (e.g. isomerization), was marked as hav-

ing a sequence liability and we noted the total number of such motifs, their type, and severity

in each sequence. The number of all sequences we detected across our datasets, as having any

sequence liabilities is given in Fig 1. Hardly any sequences are free of sequence liabilities, with

the lowest percentage marked at 89.8% of light chain from the literature. There does not

appear to be a marked difference between liability frequency between human and non-human

sequences. A number of sequence liabilities associated with a therapeutic do not appear to be

strongly distinct between molecules that are already marketed and those still in clinical trials.

The marketed antibodies have a slightly higher percentage of sequences with liabilities (96.8%)

rather than all therapeutics (96.1%), which could be indicative of the progress in the field. Test-

ing the statistical difference in the number of liabilities between the different datasets is some-

times insignificant (please see S1 Fig).

We calculated how many liabilities one could expect per sequence in any of our datasets

(Fig 2). The mean number of liabilities per sequence does not appear to be strongly associated

with any dataset, with single sequence datasets having means in the range of 3–3.4 liabilities

per sequence and 5.8–6.5 liabilities per molecule in the case of paired datasets (Table 2). There

does not appear to be a staggering difference between organism sources of a sequence consid-

ering the mean number of liabilities (Table 2). As before, marketed therapeutics have a slightly

higher number of liabilities (6.13) than all therapeutics (5.85), which could be the effect of

newer therapeutics accumulating more developability product knowledge. The only notable

difference is the slightly higher number of liabilities in heavy chains with respect to light

chains, which could be explained by the greater diversity and length of the former.

Finally, we contrasted the distribution of specific liabilities across datasets (Fig 3). The dis-

tributions are not identical to each other, however, the patterns are broadly similar. A notable

exception is the severe extra cysteine (xCys) that is rarer in the therapeutic dataset (1% whereas

for other datasets 2.80%-7.59%). Upon examination, we noticed that extra cysteines in thera-

peutics had an engineered structural role, by bridging the heavy and light chains. It is impor-

tant to keep in mind that additional Cys residues, especially unpaired, often do not appear in

therapeutic antibodies since they can promote aggregation and impede product development

by forming intermolecular crosslinks. There are exceptions though, such as palivizumab that

has an unpaired buried Cys.

Since we did not note radical differences in numbers or types of liabilities across the data-

sets, we hypothesized that many of these features could be a result of the most prominent com-

mon feature among the datasets, that is germline origin. We calculated how many liabilities

one sees on average in each of the heavy human germline subgroups (Table 3). The mean

number of liabilities across all datasets is 3.2 (corrected for paired datasets) and is lower than

PLOS COMPUTATIONAL BIOLOGY Liability antibody profiler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011881 March 5, 2024 3 / 20

https://doi.org/10.1371/journal.pcbi.1011881


Table 1. Antibody Liability Reference. Liabilities are identified within the IMGT-defined regions in IMGT-numbered sequences.

Name Short name/

Tag

Severity Motif Description Citations

Deamidation (high) DeAmdH High N[GS] in CDRs Deamidation of Asparagine occurs in the following motifs: NG motif

(Asparagine followed by Glycine) and NS motif (Asparagine followed

by Serine). Such motifs are known to be associated with deamidation

(type of degradation) and can result in reduced "shelf-life".

[7,16]

Fragmentation (high) FragH High DP in CDRs Fragmentation occurs as cleavage at the interface between Aspartate

and Proline. It is an example of a common motif that is susceptible to

hydrolysis in response to pH.

[17]

Isomerization Isom High D[DGHST] in CDRs Isomerization of Aspartate occurs in the following motifs: DD

(Aspartate followed by aspartate), DG motif (Aspartate followed by

Glycine), DH (Aspartate followed by Histidine), DS motif (Aspartate

followed by Serine) and DT (Aspartate followed by Threonine). Such

motifs are known to be connected to isomerization (type of

degradation) and can cause a shorter “shelf-life” of antibodies.

[18]

Missing Cyst (C) mCys High C not present at 23 or 104

IMGT positions

Missing Cysteine occurs as cysteine absence at IMGT 23 or 104. Certain

antibody sequence regions containing unpaired cysteines may result in

structural changes, surface charges, or hydrophobicity.

[19]

Extra Cys (C) xCys High C present at different

position then 23 or 104

IMGT positions

Extra Cysteine occurs as cysteine present at a different position than

IMGT 23 or 104. Certain antibody sequence regions containing

unpaired cysteines can change an antibody’s structure, apparent surface

charges, or hydrophobicity.

[20]

N-linked glycosylation

(NXS/T, X not P)

Ngly High N[^P][ST] in variable

fragment

N-linked glycosylation occurs as an addition of a sugar molecule.

Reduced conformational stability and shorter "shelf-life" of antibody

products are connected to asparagine linked glycosylation. Incidence of

glycosylation in the CDRs can also directly impair antigen recognition

and therefore lead to lower efficacy.

[21]

Deamidation (medium) DeAmdM Medum N[AHNT] in CDRs Occurs in the following motifs: NA (Aspargine followed by Alanine),

NH (Aspargine followed by Histidine), NN (Aspargine followed by

Aspargine) and NT (Aspargine followed by Threonine). This type of

deamidation is less common in comparison to the NG and NS motifs.

[7,16]

Hydrolysis Hydro Medium NP in CDRs Hydrolysis gives rise to the DP motif as a result of the deamidation of

Asparagine (N) to Aspartate (D).

[17]

Fragmentation

(medium)

FragM Medium TS in CDRs Occurs as pH-dependent cleavage at the Threonine—Serine interface. [17]

Trp (W) oxidation TrpOx Medium W in CDRs Tryptophan oxidation is one of the Post-translational modifications

(PTMs).

[22]

Met (M) oxidation MetOx Medium M in CDRs Methionine oxidation occurs in the CDRs. Reduced binding affinity

and quicker degradation of the antibody product are linked to oxidation

in these particular spots.

[23]

Deamidation (low) DeAmdL Low [STK]N in CDRs Occurs in the following motifs: SN (Serine followed by Aspargine), TN

(Threonine followed by Aspargine), and KN (Lysine followed by

Aspargine). This type of deamidation is less common than others.

[7,16]

Integrin binding IntBind Low GPR|RGD|RYD|LDV|DGE|

KGD|NGR in fragment

variable

Motifs for following integrin binding:

αVβ3 (RGD|RYD|KGD|NGR),

α4β1 (LDV), α2β1 (DGE)

CD11c/CD18 (GPR).

eight human integrins act as RGD receptors: α5β1, α8β1, αVβ1, αVβ3,

αVβ5, αVβ6, αVβ8 and αIIbβ3

[24]

We used antibody sequences from therapeutics, patents, GenBank, literature, and a large paired next-generation (NGS) sequencing dataset. The therapeutics and patents

can be thought of as representatives of the clinical spectrum of sequences [25,26]. GenBank and literature are a mix of antibodies developed for scientific/therapeutic

purposes [27,28]. The NGS dataset is a sample of the natural diversity [29]. We extracted unique heavy and light chain sequences from each source and we stratified

them by detected organisms (human or non-human closest germline). In the case of the NGS and therapeutics datasets, the heavy and light chains were already paired.

All other datasets were unpaired with heavy or light chain sequences.

https://doi.org/10.1371/journal.pcbi.1011881.t001
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the mean of 4.12 across germline datasets (Tables 2 and 3). The distribution of liabilities in the

germline subgroups is unequal with IGHV1, IGHV3, and IGHV4 having between 2.21 and

3.34 liabilities with IGHV7 as many as 5.85 (Table 3). We checked the germline usage of the

subgroups in therapeutics to reveal that the three subgroups with a lower number of liabilities

(heavy IGHV1, IGHV3, IGHV4, and kappa IGKV1, IGKV3) are indeed the most commonly

Fig 1. Per-dataset prevalence of sequence liabilities for five open-source databases: Genbank, literature, NGS, patents, and therapeutics. Please note that

the NGS dataset and therapeutics were paired, so the number of liabilities can not be directly compared to the single-chain datasets. Genbank, patents, and

literature datasets contained unpaired heavy and light sequences. In the top portion (sequences) counts are given as a percentage of the total number of

sequences in a dataset. In the lower portion (liabilities), the total count of liabilities in the dataset is given. In each case, we show the number of remaining

sequences of liabilities or total liabilities after applying individual flags or their combinations.

https://doi.org/10.1371/journal.pcbi.1011881.g001

Fig 2. Per-sequence prevalence of liabilities. Please note that the NGS dataset and therapeutics were paired, so the number of liabilities can be roughly 2x as

many as in single-chain datasets. Unpaired heavy and light sequences were found in the literature, patent, and Genbank datasets. Left. Average per-sequence

counts of any liability identified in our datasets. Right. Average per-sequence counts of any liability identified in our datasets that did not match any of our

three flags, therapeutic, germline, or surface (for paired data sets only). Abbreviations after the underscore mean respectively: “H”—heavy chain, “L”- light

chain, “all”—all sequences, “human”—only human antibody sequences, “nonhuman”—only non human antibody sequences, “cst”—clinical stage therapeutics,

“market”—therapeutics on the market.

https://doi.org/10.1371/journal.pcbi.1011881.g002

PLOS COMPUTATIONAL BIOLOGY Liability antibody profiler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011881 March 5, 2024 5 / 20

https://doi.org/10.1371/journal.pcbi.1011881.g001
https://doi.org/10.1371/journal.pcbi.1011881.g002
https://doi.org/10.1371/journal.pcbi.1011881


used across therapeutics (Fig 4). Similarly clear distinction is not the case for lambda chains

(Fig 4).

We also checked which antibody region harbored the liabilities in the germlines. As

expected, most of them are located in the Complementarity-Determining Regions (CDRs),

confirming the typical approach of focusing on CDRs for liability detection that can reduce

drug efficiency (see Fig 5). It is known that the definition of CDRs and the Vernier zone varies

between numbering schemes [30]. This raises a question to what extent our choice of IMGT

numbering for CDR definition affects liabilities being missed in the Vernier zone. Fig 5 shows

that there are indeed liabilities in the Vernier zones, namely CDR-H3 to FW-H3,

FW-L1-CDR-L1, and CDR-L2-FW-L2. In each case liability within the boundary meant one

residue in the CDR and the other in the framework. Otherwise, the number of liabilities

beyond CDRs and such one-residue boundaries is very low. Therefore, employing the IMGT

definition accounting for +1 residue around the CDRs accounts for most of the liabilities.

Altogether, our results demonstrate that identifying liabilities by simple sequence motifs

reveals a multitude of potential issues with many of these, likely to be of germline origin. There

appears to be no dataset-specific pattern. The large proportion of universally present liability

motifs confirms that the majority of them are likely to be false positives if the predictions are

made using the amino acid sequences of the antibody light and heavy chains alone. Despite

this limitation, sequence-based physicochemical liability predictions are a useful tool at the

earliest stages of biological drug discovery where a large number of potential hits need to be

prioritized for the initial experimental characterization. Such predictions could be further

refined by considering the importance of the chemical degradation liability and its location in

the antibody sequence. Furthermore, performing antibody structure predictions and

Table 2. The mean number of liabilities per sequence for each dataset in our study. For most of the datasets, we

calculated the mean number of liabilities for unpaired sequences. The NGS and therapeutics subsets offer paired data,

which are not directly comparable to single-sequence datasets. Abbreviations after the underscore mean respectively:

“H”—heavy chain, “L”- light chain, “all”—all sequences, “human”—only human antibody sequences, “nonhuman”—

only non human antibody sequences, “cst”—clinical stage therapeutics, “market”—therapeutics on the market, “std”—

standard deviation.

Dataset mean std median

genbank_H 3.59 1.96 4

genbank_L 3.07 1.95 3

genbank_all 3.43 1.97 3

genbank_human 3.37 2.04 3

genbank_nonhuman 3.57 1.79 4

NGS_all (both H+L) 6.55 2.96 6

literature_H 3.35 1.94 3

literature_L 3.00 2.02 3

literature_all 3.23 1.98 3

literature_human 3.08 2.12 3

literature_nonhuman 3.36 1.83 3

patents_H 3.31 1.94 3

patents_L 2.95 1.92 3

patents_all 3.16 1.94 3

patents_human 3.06 2.01 3

patents_nonhuman 3.38 1.75 3

therapeutics_all (both H+L) 5.85 2.62 6

therapeutics_cst (both H+L) 5.91 2.61 6

therapeutics_market (both H+L) 6.13 2.66 6

https://doi.org/10.1371/journal.pcbi.1011881.t002
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estimating solvent accessibility of the chemical degradation motifs can also help reduce the

rate of false positives in the sequence-based liability predictions.

Leveraging therapeutic, germline, and structural information to reduce the

number of potential false positives

The high prevalence of sequence liability motifs across all databases, including therapeutics,

suggests that a considerable proportion of these could be false positives. To focus on de-risking

Fig 3. Prevalence of specific sequence-based liabilities across our datasets. Abbreviations after the underscore mean

respectively: “H”—heavy chain, “L”- light chain, “all”—all sequences, “human”—only human antibody sequences,

“nonhuman”—only non human antibody sequences, “cst”—clinical stage therapeutics, “market”—therapeutics on the

market. A. Liability distribution per dataset without applying any flags. B. Liability distribution per dataset after

applying all three flags at once. C. Liability distribution per dataset after applying the ‘buried’ flag (Note that only the

rightmost datasets with paired heavy/light chains are affected). D. Liability distribution per dataset after applying the

‘germline’ flag. E. Liability distribution per dataset after applying the ‘therapeutic’ flag.

https://doi.org/10.1371/journal.pcbi.1011881.g003

Table 3. Prevalence of liabilities in human germline immunoglobulin heavy subgroups. For each set of germline

sequences associated with a particular subgroup, we counted the number of liabilities it harbored.

subgroup Mean liabilities Std liabilities Median liabilities

IGHV4 2.21 1.07 2

IGHV3 2.60 1.22 2

IGHV1 3.34 1.48 3

IGHV6 4.36 0.49 4

IGHV5 5.25 1.10 5

IGHV2 5.36 1.07 5

IGHV7 5.85 0.71 6

https://doi.org/10.1371/journal.pcbi.1011881.t003
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molecules one needs to constrain the set of examined liabilities only to those that have a higher

probability of detrimental chemical modifications, in the experimental characterization stud-

ies. Here, we employed three intuitive liability flags that are used within the industry for filter-

ing the sets of liabilities. These are germline, surface, and therapeutic flags (Fig 6).

The germline flag examines whether a given sequence motif is present in the germline gene

sequence at the same position. If so, it is plausible to assume that it may not significantly hin-

der the function of naturally occurring antibodies derived from it, even though such liabilities

may still contribute to drug product heterogeneity, which is a major concern during drug

development. The surface flag employs structural information to examine whether a given

sequence motif is exposed to solvent or not (fully or partially buried). Water is known to drive

Fig 4. The median number of germline liabilities in therapeutics. We counted the number of detected liabilities in each therapeutic sequence. These were

further stratified by detected germlines. We show the number of liabilities for A) Heavy chains B) Light lambda chains and C) Light Kappa chains.

https://doi.org/10.1371/journal.pcbi.1011881.g004

Fig 5. The number of liabilities in different germline regions. The boundary region indicates liabilities that are two-amino acids long where the first was

found in the framework and the second in the CDR region. Left. The number of liabilities in a heavy chain. Right. The number of liabilities in a light chain.

https://doi.org/10.1371/journal.pcbi.1011881.g005
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the chemical degradation of proteins [31] and therefore access of a liability motif to water can

increase its susceptibility to chemical degradation. Consistently, solvent accessibility has been

shown to be a good predictor thereof [13]. This flag requires a reasonably accurate structural

model to be produced, which can be achieved by one of many structural modeling tools avail-

able these days [32,33]. Prevalence in therapeutics is a flag introduced by Jacobitz et al. [9].

Here, the authors propose that if a sequence motif occurs at a specific position in marketed

antibodies, it should potentially pose a lower risk because the therapeutic made it through the

clinic and manufacturing process despite its presence due to successful formulation develop-

ment. However, one should keep in mind that such liabilities may still contribute towards the

drug product heterogeneity and therefore affect batch-to-batch comparability studies.

Sequence-structural context of a physicochemical degradation motif specific to a particular

drug candidate may still lead to it being labeled as a critical quality attribute (CQA) for the

drug candidate, even though it is already found in the approved biotherapeutics. Approval of

novel biotherapeutic drugs is often granted on a case-to-case basis after comprehensive reviews

of multi-factorial risk versus benefits analyses performed by the regulatory agencies and regu-

latory expectations continue to evolve. Therefore, care should be taken when considering the

presence of a given chemical liability motif in approved biotherapeutic(s) as benign.

For any liability flag to be useful, it must considerably reduce the number of liabilities one

needs to examine via experiments. For this reason, we benchmarked the ability of different

flags, individually and in combination, to constrain the number of liabilities one would have to

investigate.

Fig 6. Liability detection and low-risk flags. We use our Antibody Liability Reference to detect sequence liability

motifs in query antibody sequence. We cataloged 70 liability motifs with different severity levels (the colors mean: red

—high severity, orange—medium severity, and yellow—low severity). Afterwards, three flags are applied, which are

designed to convey an intuitive association with lower risk despite motif presence. Germline presence flag is set to true

if the liability is also found in a germline reference for the given sequence. Therapeutic flag indicates how common a

motif is in marketed therapeutics. Surface accessibility flag indicates whether the motif is buried, partially buried, or

exposed according to a three-dimensional model.

https://doi.org/10.1371/journal.pcbi.1011881.g006
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Employing the human germline flag reduces the number of human sequences with any lia-

bilities by ca. 5–20 percentage points across the databases (Fig 1). The reduction is much more

pronounced considering the total number of liabilities removed. Between 40–60% of all liabili-

ties across our databases can be marked with the germline flag. This indicates that a significant

portion of the sequence liability motifs present across antibodies occurs naturally.

Using the therapeutic flag reduces the number of sequences with any liabilities by a similar

amount to germline flags (5–20%). This comes with the caveat for numbers presented for ther-

apeutics in Fig 1, as the ‘training’ set for the flag is included in this dataset. In terms of the total

number of liabilities removed, the therapeutic flag appears to reduce a lower number than

germline, ca. 40 percentage points. Despite the relatively small number of marketed therapeu-

tics, motifs present in these appear prevalent in other datasets.

The therapeutic and germline flags are sequence-based annotations and thus can be applied

to single sequences in the absence of a cognate heavy/light chain pairing. Application of the

surface flag requires the presence of the cognate heavy/light chain pairs, otherwise, residues on

the heavy/light interface would be incorrectly assigned as exposed. Therefore we only applied

the surface flag to datasets where we had the paired data, namely the therapeutic dataset and

the natural, 1.3 million paired sequences from Jaffe et al. study [29]. For structural modeling

we employed ABodyBuilder2 as it offers good quality and is freely available, facilitating the

reproduction of our results [34].

Employing the surface flag, the total number of sequences without any liabilities decreases

by around 2 percentage points for natural sequences and by approximately 2 percentage points

for the therapeutic ones when the surface flag is used. When individual liabilities are taken

into account, the effect is stronger; for both the natural and therapeutic datasets, the decline is

in the range of 30 percentage points (Fig 1). Therefore, the surface flag has a non-trivial capac-

ity to flag liabilities, however, it is less likely to leave a molecule without any liabilities. On the

same datasets, the surface flag reduces fewer liabilities overall than germline or therapeutic

flags, at a much higher computational overhead because of the higher cost of creating the

structural model (comparing the results on the paired datasets for consistency).

We established that each of the flags has the ability to mark a non-trivial number of poten-

tially false-positive liabilities. If the flags mark the different types of residues, then employing

them simultaneously could bring additional benefits. Therefore we checked the ability of the

combinations of the flags to study the extent to which they overlap in reducing the number of

residues to examine. We checked the combination of therapeutic and germline as it was not

obvious whether frequent positions in therapeutics were simply a recapitulation of the germ-

line frequency. We then use all three flags at once to check the benefit of enriching the

sequence-derived flags (therapeutics and germline) with structural information.

Employing both the germline and therapeutic flags reduced the number of sequences with

any liabilities by ca 10–20 percentage points with respect to using any of the flags individually.

The drop was more dramatic considering individual liabilities where combining the flags can

reduce the total number of positions to examine to only 30% (Fig 1). Therefore, germline and

therapeutic flags hold sufficiently dissimilar sequence information, so using them both appears

to provide more potential benefit than using any of them individually.

Introducing structural information in the form of the surface flag to the combination of

therapeutic and germline flags further reduces the total number of sequences with any liabili-

ties than using the combination of the sequence flags alone. The number of natural sequences

whose liabilities do not fit our flags is 73.7% (dropped from 1.332.050 to 981.658) whereas for

therapeutics it is 77.8% (from 618 to 481). The combination of the three flags reduces the total

number of liabilities one would have to examine to just 22.6% (1.973.043 out of 8.731.105) in

natural sequences and to 27.9% in all therapeutics (1010 out of 3615). Overlap among different
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flags for both paired and unpaired datasets is presented in S2 Fig, demonstrating that all flags

appear to complement each other. Therefore, structural information complements sequence

information, providing the largest reduction in the total number of pertinent liabilities to be

examined.

On the individual sequence level, all the flags bring the median of the total number of liabil-

ities from 3–4 to 1–2 (Fig 2). This drop appears to be consistent across datasets, flags

employed, and their combinations.

The number of sequences with liabilities (Fig 1, row “sequences remaining filtering” for lit-

erature heavy chain, therapeutics all and Clinical Stage Therapeutics (CST) are slightly higher

than for others (they have more than 76% whereas all others are below 74%). This is consistent

with box plots in Fig 2 as those three datasets have higher 1st quartile values (value of 1

whereas all others have 0). The flags employed do not appear to favor a single liability type

over another as shown in Fig 3. After applying all the flags, the total number of liabilities drops

by 60% in most cases, however, the distribution of the liability types remains broadly

consistent.

Our results demonstrate that our flags identify close to 60% of all liabilities as innocuous,

independent of dataset and liability type. In practical terms, it reduces the number of identified

liabilities to examine from ca. 3–4 per sequence to 1–2 per sequence, that are presumed to be

higher risk.

Benchmarking flagged liabilities on their ability to predict positions less

susceptible to chemical modifications

We established that employing our three liability flags filters out a significant proportion of lia-

bilities and leaves only the ones that are presumed to be higher risk. To check whether such a

distinction is indeed the case, we benchmarked the ability of LAP flags to remove liabilities

with lower susceptibility to chemical modifications on an experimental dataset. For this pur-

pose, we employed Lu et al. Isomerization/Deamidation dataset [7], which consists of clinical

stage biotherapeutics with measured deamidation and isomerization events under pH stress.

We employed data for three measurements: isomerization at low pH, deamidation at high

pH, and deamidation at low pH. Each event was associated with a list of therapeutics and their

modifications. We removed the therapeutics that were employed in the creation of our thera-

peutic flag. Likewise, certain sequence motifs are not part of our liabilities reference, and these

were left out. Table 4 gives a breakdown of the original number of therapeutics and modifica-

tions and the ones we employed in benchmarking the flags.

For each of the sequence liabilities, we note whether LAP would flag it as being lower risk.

In Fig 7 we show the percent of modification of the sequence motifs without applying LAP,

Table 4. The number of therapeutics and liabilities used to assess the predictive power of the LAP flags on the Lu et al. Isomerization/Deamidation dataset [7]. Since

the therapeutic flag employs some of the therapeutics that were screened in Lu et al. Isomerization/Deamidation dataset [7], we had to check LAP performance with and

without these sequences. The numbers in the table below show the number of therapeutics and the associated measured liability data points with or without the therapeu-

tics that were employed in the construction of the LAP therapeutic flag. “LAP” stands for Liability Antibody Profiler and “CST” stands for Clinical Stage Therapeutics.

LAP CSTs removed Keeping all CSTs

Liability Therapeutics to start

with

Therapeutics

used

All

liabilities

Used

liabilities

Therapeutics to start

with

Therapeutics

used

All

liabilities

Used

liabilities

Deamidation high

pH

33 17 39 14 33 33 39 28

Deamidation low

pH

18 12 21 11 18 18 21 16

Isomerization low

pH

28 17 31 15 28 28 31 23

https://doi.org/10.1371/journal.pcbi.1011881.t004

PLOS COMPUTATIONAL BIOLOGY Liability antibody profiler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011881 March 5, 2024 11 / 20

https://doi.org/10.1371/journal.pcbi.1011881.t004
https://doi.org/10.1371/journal.pcbi.1011881


applying all LAP flags, and applying one flag at a time. Note that we have not detected any bur-

ied residues in this dataset so the surface flag does not apply here.

Fig 7 shows that the sequence liabilities that were flagged have lower susceptibility to chemi-

cal modification. This is more pronounced for the deamidation at low pH and isomerization

at low pH cases, which generally have lower rates of modification, as expected. We do not see

an effect in the deamidation at high pH. Presence in the germline appears to be the strongest

individual flag that consistently indicates lower frequency modifications even in the high

severity deamidation. Therapeutic-derived modifications do not show a strong effect in the

deamidation at high pH. Here, there appears to be no pronounced benefit of combining both

germline and therapeutic flags. For comparison, we have plotted the same graphs but without

removing the therapeutics that were part of the therapeutic flag training set, which does not

change the results radically. For each flag combination (all flags, germline, therapeutic) we

compared the set of frequencies with or without CSTs using two-sample t-tests. The lowest p-

value we obtained was 0.51 in Isomerization Low case, indicating that though the distributions

could appear to have seemingly different shapes their means are not statistically different.

We did not have the opportunity to benchmark the surface flag on the Lu et al. Isomeriza-

tion/Demidation dataset [7] since there were no buried motifs there. For this reason, we also

employed the Yang et al. Oxidation dataset [35]. Here, the authors subjected 121 clinical stage

antibodies to forced oxidation (0.1% H2O2 for 24 hours). Authors benchmarked a machine

learning surface exposure predictor on its ability to link surface exposure of methionine (com-

monly associated with oxidation event) with the oxidation of the molecule.

Fig 7. Benchmarking the predictive ability of the Liability Antibody Profiler (LAP) flags to filter innocuous liabilities. The y axis

shows the distribution of the percentage of each liability undergoing modification. In most cases, liabilities are associated with one or

more LAP flags. We only show the germline and therapeutic flag individual distributions as no liabilities in the Lu et al. Isomerization/

Deamidation dataset and Liability dataset were detected to be buried. “CST” stands for Clinical Stage Therapeutics.

https://doi.org/10.1371/journal.pcbi.1011881.g007
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Here we benchmarked our three flags on their ability to also link the oxidation event with

methionines we detected, with results given in Table 5. We only counted the therapeutics

where we annotated methionines according to our Antibody Liability Reference. Predicting

no oxidation event where there is no methionine would otherwise count such cases as true

negatives which would be reflected as the better predictive power of our method whereas no

prediction was performed. We tested the ability of each of the three flags, in turn, to sort the

oxidation/no oxidation molecules by virtue of methionine flagging and their combination.

Flagging a methionine should be considered as calling lower risk of oxidation. Each of the

resulting 2x2 tables was subjected to Fisher’s exact test, with only the germline flag (which per-

formed quite poorly), failing the significance test. The surface flag did the best job of correctly

annotating most of the methionines in molecules associated with oxidation, with roughly 50%

accuracy on those that did oxidize. Combining all the flags appears to maintain the best anno-

tation of methionines with molecules that do not oxidize as flagged and those that oxidize as

not flagged.

Altogether, our results show that our simple flags, though not streamlined nor trained on

any particular experimental dataset, offer reasonable performance in predicting a range of

positions and their susceptibility to modifications.

Online tool for liability annotation

To facilitate access to our LAP protocol we built a web application available at https://lap.

naturalantibody.com. Users can submit individual sequences of heavy and light chains, which

will be IMGT-numbered, CDRs annotated according to the IMGT definition. All the detected

liabilities are annotated on the sequence. If a single heavy or light sequence is submitted, only

the germline and therapeutic flags will be applied. If both heavy and light chains are supplied,

the structural model is created using ABodyBuilder2 [34], and the surface flags are calculated.

The liabilities contextualized to the structure can then be inspected in a 3D molecular viewer.

Discussion

Biotherapeutics need to be not only functional but also developable (safe, effective, and manu-

facturable) for their successful clinical applications. Therefore, delivering a biologic drug prod-

uct to the market requires multi-faceted optimization including therapeutic concept,

pharmacology, and developability (safety, efficacy, and manufacturability). Annotation of

sequence liabilities is a widespread practice across early-stage antibody discovery and engi-

neering. Entire phage libraries can be designed as liability-free [36] and much effort is exerted

to engineer these out of individual sequences during the lead optimization stages [11,37,38].

Despite the centrality of physicochemical degradation challenges towards maintaining

molecular integrity of the drug substance during manufacturing, storage, and shipping, deliv-

ery, and administration, there does not exist a ‘golden reference’ for sequence motifs that

underpin chemical liabilities and their severities for biotherapeutics. Our compilation of these,

Table 5. Benchmarking the performance of prediction of methionine oxidation. For each subtable (oxidation/no oxidation versus with flag/no flag) we performed the

Fisher’s exact test. The result for the germline flag is deemed not to be statistically significant as per Fisher’s exact test.

Germline Flag (not statistically

significant)

Surface Flag Therapeutic Flag (not applied to

those in training set)

All flags (therapeutic flag not

applied to those in training set)

With flag No Flag With flag No Flag With flag No Flag With flag No Flag

Oxidation 5 26 10 21 5 26 12 19

No Oxidation 4 17 17 4 10 11 19 2

https://doi.org/10.1371/journal.pcbi.1011881.t005
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though aimed at consolidating knowledge from fragmented sources, is far from ideal. Different

manufacturers have distinct qualifications for the severity of different liabilities. Commonali-

ties exist, such as unpaired cysteines that are considered universally detrimental. The list of

motifs employed here is not exhaustive as motifs outside of this compilation were also noted to

undergo chemical modifications [7]. Moreover, this list is likely to continually grow as newer

technologies for bioanalytical characterization of drug product heterogeneity of biotherapeu-

tics emerge either independently or in response to regulatory guidelines.

Based on our Antibody Liability Reference, our analysis of liability motif frequency from all

major sources is in line with observations coming from phage libraries noting that hardly any

sequence is free of sequence liability motifs [39]. Therefore identification of chemical liabilities

purely by sequence occurrence is an oversimplification that can lead to many false positives.

Engineering sequences without any liabilities is challenging and might not account for previ-

ously unknown chemical degradation motifs that are not part of any reference [7]. However,

one should note that Teixeira and coworkers [36] have recently created antibody display

libraries with maximal developability and liability free CDRs.

The other side of the extreme of removing all sequences with liability motifs is predicting

which ones one can tolerate despite their presence [9]. For example, the location of a chemical

liability motif in the protein 3D structure, its interactions with the neighboring residues, sol-

vent, and characteristics of the drug product formulation can significantly lower its ability to

undergo chemical modification during the shelf-life of the drug product. Deciding on which

motifs can be tolerated and which ones must be removed during the lead optimization stages

of the lead candidates can be facilitated by the machine learning based predictions [13,14,35].

However, the machine learning methods are currently focused on individual modifications

rather than covering their entire spectrum. Insofar as they provided an excellent proof of con-

cept, however, the full application of machine learning in liability detection relies on large

proteomic datasets that cover a comprehensive spectrum of chemical modifications.

Though larger experimentally derived chemical degradation datasets for therapeutic anti-

bodies are welcome, one needs to be aware of their caveats. It is challenging for mass spectrom-

etry-based methods to pinpoint individual liability motifs that are in fact degrading, especially

when two motifs occur close together in sequence. For instance, double-motif NGNT is often

found in the light chain CDRs of the antibodies but it is hard for mass spectrometry to reliably

decipher which asparagine is degrading. Furthermore, forced degradation data might not

translate into real-time chemical degradation data from the stability studies. Formulation com-

position can also significantly alter the physicochemical degradation rates for an antibody. For

instance, citrate-free formulation of Humira is superior to the original one [40]. All such con-

siderations need to be taken into account when interpreting the experimental dataset bench-

marking of this or any other liability study. Even a strong predictor will likely be tied to

specific experimental conditions on which it was trained.

Here, we benchmarked a solution offering a balance between over-predictive annotation of

all sequence motifs and machine learning methods operating on narrow available datasets.

Our three flags, with intuitive interpretations of structural (surface), natural (germline), and

therapeutic (marketed occurrence) were shown to considerably reduce the number of liabili-

ties to be examined by close to 60% when all of them are considered at once.

We envisage further modifications to the liability scoring schemes, employing novel tech-

niques such as language models trained on plentiful NGS-derived data of natural provenance

[26,41,42]. However, at this stage we avoided such techniques and data in favor of simple-to-

interpret flags. With regard to natural antibody data, we employed the simpler germline flag as

we questioned whether any NGS-observed naturally occurring mutations exhibit a favorable

liability profile, suggesting that this might vary based on observed frequencies. Certain motifs
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may be less frequent due to the potential for heterogeneous binding caused by chemical modi-

fications, but this phenomenon would need to be quantified experimentally. Considering that

germlines represent a uniform element in the diverse and individualized array of immuno-

globulins, we propose that the acceptance of certain components in the germline indicates a

substantial biological rationale.

Another modification that we envisage is model-driven, especially making use of the lan-

guage models [43]. The annotations that we offer are devoid of the larger sequence context

which language models capture. However to make full use of such models, one would require

plentiful experimental annotations. Whilst lacking in plentiful experimental data, our intro-

duced flags make the best use of the datasets available at the moment, not for training but

benchmarking purposes.

We hope that our study of liabilities across diverse datasets and tools we develop will facili-

tate this one facet of engineering novel biologics.

Materials and methods

Public datasets

We employed five public generalistic datasets, patents, GenBank, literature, therapeutics, and

NGS. Literature, Patent, and Genbank datasets consisted of unpaired heavy and light

sequences.

Similarly to [25], patent sequences were imported from WIPO, USPTO, DDBJ, and PSIPS

in heterogeneous formats. WIPO File Transfer Protocol (FTP) contained multiple data for-

mats of which only sequence listings were selected.

Amino acid sequences of length below 40 or above 1000 were discarded.

Furthermore, sequences were discarded based on any of the following conditions: containing

codons different than 20 standard aa, containing ambiguous codons, and containing the ‘!’ sign.

Sequences were numbered using ANARCI, and sequences meeting any of the following cri-

teria were removed: no germline could be assigned to the sequence, no heavy or light chain

was found in input sequence, two chains were of the same type (e.g. heavy+heavy), not all

CDR’s were present in the numbered sequence. This procedure rendered a patent dataset

which consisted of 174.207 heavy and 120.851 unique light chain sequences (Table 6).

Similarly to what was described previously [44], GenBank files were imported from NCBI

FTP server, then coding region annotations were extracted to obtain AA sequences. Sequences

obtained this way followed the same filtering and numbering pipeline as described above, to

produce 129.434 heavy and 58.599 unique light chain sequences (Table 6). The GenBank and

Patent sequences were further stratified by the human and non-human gene annotations.

Literature dataset is a heterogeneous collection of sequences manually mined from litera-

ture at NaturalAntibody and consists of a total of 4,757 antibodies (Table 6). For this dataset,

additionally, IgBLAST was used to obtain AA sequences from nucleotides.

NGS and therapeutics datasets consisted of paired heavy and light data. The NGS dataset

consisted of 1,332,050 paired human antibody sequences from a single study [29] (Table 6).

Therapeutic antibody sequences are collected from the WHO INN lists as described previously

Table 6. Number of unique sequences per dataset. Unique sequences were calculated on the basis of the uniqueness of their variable region sequences for single-chain

datasets and the concatenated chains for the paired datasets.

Patents GenBank Literature NGS Therapeutics all

Heavy chains 174.207 129.434 3.022 1.325.126 608

Light chains 120.851 58.599 1.707 498.646 590

https://doi.org/10.1371/journal.pcbi.1011881.t006
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[26] that are not discontinued. Clinical Stage Therapeutics (CST) are further defined as a sub-

set being post phase I and consequently Market Stage Therapeutics (MST) are those being

approved. In all cases, tetraspecific molecules are considered as two independent bispecifics,

and bispecifics are treated as two independent antibodies. Therefore we had three therapeutic

datasets, all, CST, and marketed with 618, 479, and 124 molecules respectively.

Experimental liabilities datasets

We extracted therapeutic sequences associated with three liabilities, deamidation at low pH,

deamidation at high pH, and isomerization at low pH from a previous study [7], termed the

Lu et al. Isomerization/Deamidation dataset. Each liability motif was associated with an IMGT

position and percentage occurrence of a given chemical modification. The therapeutics were

further stratified by the ones that occurred in the dataset used for the therapeutic flag with the

numbers given in Table 4.

Yang et al. Oxidation dataset was extracted from a study of oxidation effects on 121 thera-

peutics [35]. We have removed sonepcizumab from this dataset as we did not have it in our

WHO-INN therapeutic database. Authors measured oxidation of the Fab portion as well as

the constant portion. Since our analysis only encompasses the variable portion, we employed

oxidation annotations that authors labeled as ‘Fd’.

Identification of Liabilities—Antibody Liability Reference

To the best of our knowledge, there is no ‘golden reference’ for sequence liabilities. Rather, dif-

ferent organizations have distinct approaches to annotating these, though the changes are not

radical (motifs and severities overlap to a large extent). For this reason, we have created our

consensus Antibody Liability Reference liability by sourcing epistemological knowledge from

colleagues and co-authors. The resulting Table 1, aimed at keeping the commonalities between

various definitions.

The motifs presented in Table 1. are based on two types of sources. The first are internal

databases of co-authors’ liabilities motifs that are used in their organizations. The other one is

a compilation from scientific literature [7,9,13,36,45,46].

We cataloged a total of 70 motifs, of which we used 30 for further analysis that were

repeated between sources or had strong scientific evidence for their characteristics. In case of

any ambiguity, we consulted with co-authors to decide on the classification of a given motif.

Liability annotations and flags

All the sequences are IMGT-numbered using ANARCI [47] employing the VDJBase germline

sets [48]. We used a single version of the numbering software throughout all database and LAP

annotations, as differences in annotation versions and underlying germline datasets can result

in inconsistencies in resulting numberings [49]. The numberings delineate the IMGT CDR

regions that are employed for liability annotations. We are aware that different CDR defini-

tions can result in different liability annotations and the IMGT scheme was used for consis-

tency. Sequence liabilities are annotated using Antibody Liability Reference motifs in Table 1

if they occur within any of the regions associated with a given motif. Each of the motifs is then

subjected to one of the three flags, germline, therapeutic, or structural.

Germline

If a given motif is found in a human germline sequence at the same IMGT position, it is

flagged as ‘matched’. Such motifs are conjectured to have natural provenance and should pose
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a smaller risk within the context of a living organism. Please note that this flag only considers

the V and J regions because of the lower fidelity of the D region identification and the reliabil-

ity of the subsequent alignment. Thus, most of the CDR-H3 is not captured for consideration

by the germline flag. However, CDRs-L1, L2, L3, H1, and H2 are included in the germline flag,

as also the framework regions.

Therapeutic

If a given motif is found in more than 5% of marketed therapeutics at the same IMGT position,

it is flagged as ‘matched’. The protocol was adapted from previous work by Amgen [9]. Such

motifs are believed to pose less risk since molecules with the same motif, though perhaps dif-

ferent sequence contexts, passed all the clinical hurdles.

Surface

The structural model is created employing ABodyBuilder2 [34] because it is state of the art

and has a permissive license allowing for distribution via our website. Employing the 3D struc-

ture, We detect whether a given position is more than 7.5% relative solvent accessible surface

area (SASA), in which case a position is labeled as exposed, otherwise, it is buried. If a motif

has multiple positions, one of which is exposed and the other buried, the entire motif is flagged

as ‘partial’. This protocol was loosely adapted from a previous study on the effects of surface

accessibility on chemical modification propensity [13].

Supporting information

S1 Fig. Statistical comparison of the number of liabilities in datasets using chi-squared test

(chi2) test with Bonferroni correction applied. Chi2 test was applied to test the difference in

number of liabilities per sequence between any two datasets. Because there were multiple tests,

Bonferroni correction was applied. Abbreviations after the underscore mean respectively:

“H”—heavy chain, “L”- light chain, “all”—all sequences,“human”—only human antibody

sequences, “nonhuman”—only non humanantibody sequences, “cst”—clinical stage therapeu-

tics, “market” -therapeutics on the market.

(TIF)

S2 Fig. Overlap of different flags for NGS dataset (left) and all therapeutics (right).

(TIF)
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32. Wilman W, Wróbel S, Bielska W, Deszynski P, Dudzic P, Jaszczyszyn I, et al. Machine-designed

biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody

discovery. Brief Bioinform. 2022; 23. https://doi.org/10.1093/bib/bbac267 PMID: 35830864

33. Kończak J, Janusz B, Młokosiewicz J, Satława T, Wróbel S, Dudzic P, et al. Structural pre-training
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