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Abstract

Saliva is a readily accessible and inexpensive biological specimen that enables investigation

of the oral microbiome, which can serve as a biomarker of oral and systemic health. There

are two routine approaches to collect saliva, stimulated and unstimulated; however, there is

no consensus on how sampling method influences oral microbiome metrics. In this study,

we analyzed paired saliva samples (unstimulated and stimulated) from 88 individuals, aged

7–18 years. Using 16S rRNA gene sequencing, we investigated the differences in bacterial

microbiome composition between sample types and determined how sampling method

affects the distribution of taxa associated with untreated dental caries and gingivitis. Our

analyses indicated significant differences in microbiome composition between the sample

types. Both sampling methods were able to detect significant differences in microbiome

composition between healthy subjects and subjects with untreated caries. However, only

stimulated saliva revealed a significant association between microbiome diversity and com-

position in individuals with diagnosed gingivitis. Furthermore, taxa previously associated

with dental caries and gingivitis were preferentially enriched in individuals with each respec-

tive disease only in stimulated saliva. Our study suggests that stimulated saliva provides a

more nuanced readout of microbiome composition and taxa distribution associated with

untreated dental caries and gingivitis compared to unstimulated saliva.

Introduction

Worldwide, approximately 3.5 billion people are affected by oral diseases like dental caries

and periodontitis, with an estimated direct cost for treatment approaching 300 billion USD
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annually [1, 2]. Oral diseases have a disproportionate impact on low-resourced populations,

leading to negative health outcomes including pain, sepsis, poor quality of life, and prema-

ture death [1, 3]. Early diagnosis and cost-effective interventions are needed to prevent life-

threatening complications caused by oral diseases. An important aspect of developing

such interventions is understanding microbiological mechanisms underlying prevention

efforts [4].

Oral diseases like caries and gingivitis are mediated by bacterial dysbiosis. The formation of

caries is primarily associated with excessive carbohydrates in the diet [5]. Increased sugar con-

sumption leads to a shift in oral bacterial metabolism that favors the secretion of acidic bypro-

ducts. Reduced pH in the local environment results in irreversible loss of the protective

enamel coating of the teeth and dysbiosis of the bacterial microbiota favoring acid-tolerant

microbes [1, 5, 6]. Gingivitis is associated with inflammation of the tissues that surround and

support the teeth, which results from dysbiosis and increased abundance of dental plaque

forming bacteria. While the pathogenesis of caries and gingivitis are complex, poor oral

hygiene is the main risk factor [7, 8].

The application of genomic detection approaches have improved our understanding of the

oral microbiota and how it can reflect both health and disease [9]. In particular, the use of mas-

sively parallel bacterial 16S ribosomal RNA (rRNA) gene sequencing (16S sequencing) meth-

ods have enhanced our understanding of the oral microbiome [10, 11]. 16S sequencing

typically targets one or more phylogenetically discriminating regions of the bacterial 16S

rRNA gene allowing for the relative quantification of discrete bacterial taxa present in polymi-

crobial communities [12]. 16S sequencing is a rapidly evolving field in which technological

and informatic improvements continue to increase the sensitivity and accuracy of microbiome

studies [13, 14]. Multiple factors influence 16S sequencing results including sampling methods,

DNA extraction, primer design, library preparation, sequencing depth, and analysis pipelines

[15]. To date, there is no consensus on which parameters are ideal in the context of oral

health-related disease studies.

Saliva is an easy-to-collect, inexpensive, and non-invasive biological specimen. There are

different methods to collect saliva samples including with/without stimulation of saliva pro-

duction among others [16]. Spontaneous or unstimulated saliva is often collected after sev-

eral mouth rinses to avoid bias from recently ingested meals; however, recovery volume is

often a challenge which can limit multi-omics approaches and multiple end-point assays. In

contrast, stimulated saliva is also collected after mouth rinse but involves an external stimu-

lus, such as chewing paraffin wax, which improves saliva production; however, there are

concerns that saliva stimulation may result in saliva dilution and bias results [17]. There is a

dearth of research on whether the saliva sampling method (stimulated vs. unstimulated)

influences microbiome results. Although there are at least two prior studies that have ana-

lyzed the influence of saliva sampling method on microbiome composition, the results are

conflicting. One study showed differences in taxa distribution based on the sampling

method used [17], while the second study reported no differences [18]. The variability in

these findings may be explained by methodological differences and small cohort size. Fur-

thermore, no prior studies have assessed the correlation between sampling method and oral

disease status.

In this study, we investigated saliva bacterial microbiome composition in the context two

major oral diseases (gingivitis and dental caries) by comparing paired unstimulated and stimu-

lated saliva samples in a cohort of 88 subjects, aged 7–18 years, collected at the time of an oral

health exam.
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Materials and methods

Study population

This study is part of a large population-based clinical study that identified participants using

Medicaid files in Washington State from 2014 or 2015, enrolled them, and followed the partici-

pants longitudinally to investigate the occurrence of health outcomes in individuals with spe-

cial health care needs [18]. Study participants were individuals with special health care needs

aged 7–18 years registered in Medicaid. Medicaid is a public health insurance program for

low-income populations. Study participants were identified as having an episodic, life-long,

malignancy, or catastrophic chronic condition based on Clinical Risk Grouping methods

based on Washington state Medicaid files in 2014 or 2015 [18]. Inclusion criteria were a home

address located in one of three counties in Washington state: King, Pierce, or Snohomish, and

a telephone number listed in the Medicaid enrollment files. For this sub-study, participants

recruited between December 28, 2016, and March 4, 2017, were enrolled. Inclusion criteria

included participants previously enrolled in the ongoing clinical study and consent to provide

both unstimulated and stimulated saliva samples. Study participants who were unable to com-

plete the full saliva collection procedure were excluded from this study (n = 5) [19]. In total, 88

participants were included in the analysis (S1 Fig).

Ethics approval and consent to participate. Informed written consent was obtained

from adult participants; for minor participants, a parent or a legal caregiver provided signed

consent plus verbal assent was obtained from the minor. The study was approved by Washing-

ton State Institutional Review Board and the University of Washington Institutional Review

Board. No personal identifiable information was analyzed nor will be published. All partici-

pants were aware and voluntarily agreed that dental health status and microbiological data

from this study will be published without any personal identifier.

Saliva sample collection

Sequential unstimulated and stimulated saliva samples were collected from each participant

using a previously published protocol developed to collect saliva from children with special

health care needs [20, 21]. Participants were asked to refrain from eating or drinking for�2

hours prior to sample collection. Participants were seated in a passive position, and each saliva

sample was collected over a 15-minute period. Immediately before sample collection, partici-

pants were asked to swallow any saliva. For the unstimulated sample, participants expectorated

into a sterile 50mL tube once per minute. After a short rest period, stimulated saliva samples

were collected following similar procedures except that participants were asked to chew, for 15

minutes continuously, an unflavored piece of paraffin wax, and expectorated stimulated saliva

was collected once per minute on a 50mL tube [16]. Saliva samples were placed on ice and

transported to a laboratory for storage at -80˚C.

Dental screening for gingivitis and untreated dental caries

After saliva collection, a dental screening was conducted by a trained and calibrated pediatric

dentist or dental hygienist. The dental screening was designed to assess dental caries and gingi-

vitis. Participants with unmet dental treatment needs were given a referral for treatment.

Dental caries were measured by visual inspection of the teeth after brushing all tooth sur-

faces with a dry toothbrush. Each primary and permanent tooth surface was classified as

decayed, filled, or missing using the NIDCR Early Childhood Caries Collaborative Centers

(EC4) Criteria [22]. Untreated dental caries were defined as the presence of at least one
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decayed tooth surface. A demographic questionnaire was applied to determine variables such

as sex, age, and previous antibiotic use (in the last 2 months).

Gingivitis was assessed by the presence of bleeding on probing. Using a manual UNC-15

periodontal probe, bleeding on probing was assessed at four sites (distal, buccal, mesial, and

lingual) on six teeth (maxillary right first molar, maxillary right lateral incisor, maxillary left

first molar, mandibular left first molar, mandibular right lateral incisor, mandibular right first

molar) consistent with previously used methods [23]. Gingivitis was defined as the presence of

bleeding on probing in at least 10% of the examined sites [24]. If a participant required a pro-

phylactic antibiotic for dental exams, dental probing was not conducted.

DNA extraction, library preparation, and sequencing

Saliva samples were thawed on ice and 1.0 ml of saliva was centrifuged at ~16,000 x g for 2

minutes. Pellets were resuspended, and DNA was extracted using DNeasy PowerSoil DNA kit

(Qiagen) following the manufacturer protocol. After DNA isolation, libraries for next-genera-

tion sequencing were prepared using Quick-16S™ NGS Library Prep Kit (Zymo Research

Corp). 20ng of DNA per sample was amplified using the 16S V1-V2 primer set (Zymo

Research Corp.) due to high sensitivity and specificity in respiratory samples [25], and the fol-

lowing cycling conditions: 95˚C x 10 min., 95˚C x 30 sec., 55˚C x 30 sec., and 72˚C x 3 min.

(20 cycles). To verify that sufficient amplification occurred, a fluorescence threshold was set

based on manufacturer guidelines (~500,000 fluorescence threshold). Following amplification,

samples were barcoded using Zymo Indexes primers ZA5xx and ZA7xx. Barcoding occurred

using the following cycling parameters: 95˚C x 10min., 95˚C x 30sec., 55˚C x 30sec., and 72˚C

x 3 min. (5 cycles). Final quality control checks for amplification, and sample pooling were

performed using manufacturer recommendations. Pooled libraries were sequenced on an Illu-

mina MiSeq instrument analyzing 300x2 paired-end 100.000 reads at the University of North

Carolina at Chapel Hill High-Throughput Sequencing Facility. Sequence data are available

from the NCBI Sequence Read Archive (accession code PRJNA1072698), in addition, individ-

ual samples metadata is publicly available at the Carolina Digital Repository (https://cdr.lib.

unc.edu/) under the name of “Saliva Stimulation and microbiome project”.

Microbiome sequencing analyses

Sequence analysis was performed using the UNC Longleaf informatic environment and meth-

ods previously described [26]. Specifically, the DADA2 module and QIIME2 v.2022.10 was

used to merge and denoise sequences and generate amplicon sequence variants (ASVs) as

microbiome read-outs. Taxa were assigned based on matching ASVs with at least 95%

sequence similarity as compared to the to the Human Oral Microbiome database (HOMD)

v.15.23 reference [27] using the QIIME2 taxa classifier. Further analyses including alpha- and

beta-diversity metrics were performed using QIIME2 tools. Taxa abundances were trans-

formed to centered log ratio (CLR) and horizontal bar plots were used to show taxa enriched

on each condition as compared to the average abundance in both conditions. Analysis of com-

positions of microbiomes with bias correction (ANCOM BC-2 analysis) [27] was performed to

determine the statistical differential abundance of taxa among our comparison groups (anno-

tated with asterisks in the differential abundance bar plots).

Data curation and statistical analyses

A total of 176 paired samples were collected (88 stimulated saliva and 88 unstimulated) from

88 participants. As part of our quality checks, rarefaction curves were plotted (S2 Fig) to verify

that stimulated and unstimulated samples reach similar sequencing depth. Four samples (2
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stimulated saliva and 2 unstimulated saliva from different subjects) that contained less than

20,000 reads were eliminated because of low sequencing depth. Decontamination was per-

formed by removing all ASVs present in the negative library preps controls (87 out of 12,333

ASVs). After quality control, a total of 86 stimulated and 86 unstimulated saliva samples were

included in the microbial diversity analyses. For the disease-based analyses, a “healthy group”

was created (n = 37) representing participants who had no untreated caries and no gingivitis,

to avoid bias when comparing each disease group (participants who had either untreated den-

tal caries or gingivitis) with the healthy group. Faith’s phylogenetic alpha diversity (Faith’s PD)

and principal components PERMANOVA analyses (beta diversity Bray Curtis) were used to

initially assess microbial diversity among groups. Beta diversity ANCOM metrics were used to

determine relative abundance of taxa between saliva sample types and diseases groups. In addi-

tion, microbial diversity among demographic and clinical factors were also explored to identify

possible confounding factors. Additionally, Faith’s PD and Bray Curtis microbial composition

distance analysis were used to determine pairwise differences within subjects (stimulated vs.

unstimulated) as compared to across subjects, and whether pairwise differences by subjects

were also informative of the diversity differences driven by oral diseases. Data outputs were

generated in python and relabeled and sized in Adobe Illustrator for presentation.

Results and discussion

Study population

A total of 88 participants were included in this study. Demographic and relevant clinical fea-

tures of the cohort are summarized in Table 1. Forty-two percent were female, 6.8% Black or

African American, 35.2% White, 11.4% American Indian or Alaska Native, 6.8% Asian or

Pacific Islander, and 35.2% reported as Multiracial. Thirty-five percent also self-identified as

Hispanic. Approximately 16% of participants had used antibiotics within two months of saliva

collection. At the time of sampling, 17% were found to have untreated caries and 35.3% had

gingivitis.

Table 1. Clinical/demographic characteristics of the study population.

Item n

Total subjects, no. 88

Female sex (%) 37 (42%)

Age, average (standard deviation) 12.4 (3.2)

Race, no. (%)

Black or African American 6 (6.8%)

White 31 (35.2%)

American Indian or Alaska Native 10 (11.4%)

Asian or Pacific Islander 6 (6.8%)

Other or Multiracial 31 (35.2%)

Not reported 4 (4.5%)

Hispanic, no. (%) 31 (35.2%)

Antibiotic use (<2 months), no. (%) 14 (15.9%)

Oral health*
Untreated dental caries, no. (%) 15 (17.0%)

Gingivitis, no. (%)** 31 (35.3%)

Healthy controls, no. (%) 37 (42.0%)

* 2 subjects had untreated dental caries and gingivitis

** 9 missing values

https://doi.org/10.1371/journal.pone.0301016.t001
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As a first step, we analyzed antibiotic use (in the past 2 months), sex, and age as variables that

could impact oral bacterial microbiome metrics; however, none were significantly associated

with microbial composition in both stimulated and unstimulated saliva samples (S3–S5 Figs).

Saliva stimulation is associated with differences in oral microbiome

composition

We evaluated the association between saliva sampling method (stimulated vs unstimulated)

and bacterial microbiome composition across the study population. Our data indicates a statis-

tically significant difference (p<0.01) in alpha diversity (Faith’s PD) between the average taxa

composition in unstimulated versus stimulated saliva samples with stimulated saliva showing

greater diversity (Fig 1A). Taxonomic beta diversity analysis at the genus level and

Fig 1. Diversity metrics comparing microbiome composition using stimulated (Stim) versus unstimulated (US) saliva. A) Alpha diversity (Faith’s

PD) comparison of Stim and US showing statistically significant differences in microbial composition. B) Relative abundance of taxa at genus level

comparing Stim versus US saliva. C) Beta diversity (Bray Curtis) Principal components plot comparing Stim vs US saliva by PERMANOVA statistical

test. D) Beta diversity centered log ratio (CLR) fold change between Stim and US at genus taxonomic level (Asterisk mark ANCOM statistically

significant differences, p<0.05).

https://doi.org/10.1371/journal.pone.0301016.g001
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PERMANOVA Bray Curtis revealed differential abundance of taxa in stimulated saliva com-

pared to unstimulated saliva samples (Fig 1B and 1C). Specifically, we found several taxa, such

as Kingella, Riemerella, Haemophilus, among others that were significantly more abundant in

stimulated saliva. In contrast, TM7, Rothia, Selenomas among others were significantly higher

in unstimulated saliva (Fig 1D). As expected, we found that the difference in microbial compo-

sition within subjects (paired stimulated versus unstimulated samples) was significantly less

than that between subjects (p<0.01) (S6A Fig).

Bacterial taxa related to gingivitis status are enriched only in stimulated

saliva

We determined whether the saliva sampling method reflects changes in the bacterial micro-

biome composition in subjects with gingivitis. Initial alpha diversity metrics (Faith’s PD) indi-

cate differences between the saliva bacterial microbiome in participants with gingivitis

compared to healthy controls (without gingivitis and without untreated dental caries), how-

ever, the differences were only statistically significant in stimulated saliva (p<0.01) but not in

unstimulated saliva (p = 0.12) (Fig 2A and 2B). Additional analysis using beta diversity metrics

(PERMANOVA-Bray Curtis) revealed different taxa distribution in the study group with gin-

givitis as compared to healthy controls (Fig 2C and 2D, also S7A and S7B Fig); however, this

difference was only statistically significant in stimulated saliva (p<0.05). We observed that

Fig 2. Comparison of microbiome composition between participants who had gingivitis versus healthy controls (no caries, no gingivitis) using either

stimulated (Stim) or unstimulated (US) saliva. Alpha diversity (Faith’s PD) comparison of microbiome in Stim (A) and US (B) showing statistically

significant different diversity only in Stim (p<0.05) but not on US. Principal components plot comparing subjects with untreated gingivitis versus healthy

controls in both Stim (C) and US (D) saliva; PERMANOVA beta diversity analysis indicates significantly different taxonomic composition (p<0.05) in Stim

based on gingivitis status. Beta diversity centered log ratio (CLR) fold change showing differential enrichment of taxa at the genus level comparing subjects with

gingivitis (yes) and healthy controls (no) in both Stim (E) and US (F) samples.

https://doi.org/10.1371/journal.pone.0301016.g002
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taxa previously associated with gingivitis including Peptostreptococcus [28], were enriched in

the group of subjects with gingivitis only when assessed using stimulated saliva. Faith’s PD

alpha diversity differences between paired stimulated and unstimulated samples for each sub-

ject (ΔFaith’s PD) and Bray Curtis distance (Paired Beta diversity) were not significantly differ-

ent (p>0.05) between gingivitis affected subjects and healthy controls (S6B and S6D Fig).

Oral microbiome differences were observed with untreated dental caries in

stimulated saliva

We next examined whether saliva collection method is associated with differences in bacterial

microbiome composition between study participants with untreated caries and healthy con-

trols. Our analysis showed no difference in alpha diversity, regardless of saliva collection

method (Fig 3A and 3B). However, microbial community composition differed significantly

in saliva between subjects with untreated caries compared to healthy controls by PERMA-

NOVA beta diversity analysis (Fig 3C and 3D, also S7C and S7D Fig). While the composition

of the saliva bacterial microbiome (beta diversity) was significantly different between untreated

caries and healthy control groups in both saliva sample types, the number of taxa showing dif-

ferential relative abundance at the genus level was substantially greater in stimulated saliva

(Fig 3E and 3F). Additionally, taxa previously reported to be associated with dental caries

including Capnocytophaga [29], and Aggregatibacter [30], were enriched in subjects with

untreated dental caries in stimulated saliva but not in unstimulated saliva samples. Finally, the

untreated caries group was further compared to healthy controls using Faith’s PD alpha

Fig 3. Comparison of microbiome composition between participants with untreated caries versus healthy controls (no caries, no gingivitis) using either

stimulated (Stim) or unstimulated (US) saliva. Alpha (Faith’s PD) diversity comparison of microbiome based on untreated caries status in Stim (A) and US

saliva (B). Principal components plot comparing subjects with untreated dental caries Healthy controls in both Stim (C) and US saliva (D); PERMANOVA beta

diversity analysis indicates significantly different taxonomic composition based on caries status. Beta diversity centered log ratio (CLR) fold change depicting

differential enrichment of taxa at the genus level comparing subjects with untreated caries (yes) and healthy controls (no) in both Stim (E) and US (F) samples.

https://doi.org/10.1371/journal.pone.0301016.g003
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diversity differences between stimulated and unstimulated for each subject (ΔFaith’s PD, S6C

Fig) and Bray Curtis distance (Paired Beta diversity, S6E Fig); however, no significant differ-

ences were found (p>0.05).

Discussion

In the present study, we found that saliva sampling method (unstimulated versus stimulated

saliva) is associated with differences in oral bacterial microbiome metrics in general and in the

context of oral diseases (gingivitis and untreated dental caries). Our main findings indicate

that unstimulated and stimulated saliva show significant differences in taxa composition and

that the influence of oral diseases in the bacterial microbiome composition is dependent on

the sampling method used. Furthermore, several taxa known to be associated with dental car-

ies or gingivitis were only enriched in stimulated saliva in our study.

There are multiple sample types used to measure oral microbiome composition such as

supragingival plaque, subgingival/submucosal plaque, infected root canals, mucosal surfaces,

and saliva [31–33]. The collection of many of these sample types is invasive and/or requires a

trained healthcare provider and dedicated equipment. However, saliva collection is non-inva-

sive, does not require special training and can be collected at home, preserved and sent to

researchers to measure the oral microbiome composition and microbial changes that accom-

pany diseases like dental caries and gingivitis [34–36]. Saliva collection can be performed

using different methods including unstimulated and stimulated saliva. Stimulated saliva allows

the collection of a larger sample volume in a shorter amount of time [37]. Our results suggest

that stimulated saliva provides a better representation of taxa associated with common oral dis-

eases, which may be explained by the fact that mechanical stimulation (chewing paraffin wax)

not only increases saliva production but also could cause the displacement of taxa present on

teeth and in periodontal pockets [38].

Although previous reports have found major effects of antibiotic use on oral microbiome

composition [39], we did not see a similar outcome in our study. This may be explained by dif-

ferences in the timing of antibiotic use relative to saliva sample collection. Previous studies

have shown that the saliva microbiome is resilient and returns to baseline quickly after antibi-

otic cessation [40]. Subjects in this study were not on antibiotics at the time of sample collec-

tion and were only asked to report if they had used antibiotics in the prior 2 months.

Our study demonstrates that there are significant differences in oral microbiome composi-

tion by comparing average unstimulated versus average stimulated saliva from the same partic-

ipants. Additionally, our results indicate the use of stimulated saliva provides more robust

detection of taxa-related oral health status. Specifically, taxa previously associated with gingivi-

tis are better represented in stimulated saliva, which suggests that the collection of stimulated

saliva for oral microbiome studies allows for a more complete assessment of microbes than

unstimulated saliva. Although no significant differences in alpha or beta diversity were found

comparing disease groups versus healthy controls using pairwise differences of unstimulated

versus stimulated paired by subjects, we do see significant differences by comparing the aver-

age microbial composition between stimulated as compared to unstimulated. This may be

explained by the reduction in statistical power in the paired comparison given that 4 subjects

only had one type of sample (2 stimulated only and 2 unstimulated only).

Our study has several potential limitations including 1) a small number of participants with

untreated dental caries, reduced our which statistical power, 2) the study population had spe-

cial health care needs which could limit the generalizability of our findings to the larger com-

munity, 3) the use of V1-V2 primers for library preparation may decrease taxa representation

beyond commonly found taxa in oral microbiome, 4) the order of sample collection
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(unstimulated followed by stimulated) may have altered the composition of the stimulated

saliva; however, we observed that microbial diversity increases in stimulated samples (Fig 1),

and 5) the age group of our study population limit the generalizability of the findings to older

and younger individuals.

Although larger prospective studies may be needed to further validate our findings, given

the current shift to at home testing, stimulated saliva could be useful for health diagnosis,

research, and epidemiological surveillance of oral health in rural, remote, and at-risk

populations.

Conclusions

In summary, we found that the use of unstimulated or stimulated saliva to determine oral

microbiome composition provides significantly different results. We demonstrated that oral

microbiome metrics are significantly different when comparing oral disease groups (untreated

dental caries and gingivitis). In addition, taxa previously known to be associated with caries or

gingivitis are specifically enriched using stimulated saliva in participants diagnosed with the

respective oral disease. Our data indicate that stimulated saliva provides a better representation

of oral health-related taxa compared to unstimulated saliva and that saliva sampling method is

an important consideration in study designs.
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