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Prevalence of persistent SARS-CoV-2 in  
a large community surveillance study

Mahan Ghafari1,2,3 ✉, Matthew Hall1,3, Tanya Golubchik1,4, Daniel Ayoubkhani5,6, Thomas House7, 
George MacIntyre-Cockett1,8, Helen R. Fryer1, Laura Thomson1,3, Anel Nurtay1, 
Steven A. Kemp1,2,3, Luca Ferretti1,3, David Buck8, Angie Green8, Amy Trebes8, Paolo Piazza8, 
Lorne J. Lonie8, Ruth Studley5, Emma Rourke5, Darren L. Smith9,10, Matthew Bashton9,10, 
Andrew Nelson10, Matthew Crown9,10, Clare McCann10, Gregory R. Young9,10, 
Rui Andre Nunes dos Santos10, Zack Richards10, Mohammad Adnan Tariq10, 
Roberto Cahuantzi5, Wellcome Sanger Institute COVID-19 Surveillance Team11,  
COVID-19 Infection Survey Group*, The COVID-19 Genomics UK (COG-UK) Consortium*, 
Jeff Barrett12, Christophe Fraser1,3,8,12, David Bonsall1,3,8,13, Ann Sarah Walker14,15,16,17 & 
Katrina Lythgoe1,2,3 ✉

Persistent SARS-CoV-2 infections may act as viral reservoirs that could seed future 
outbreaks1–5, give rise to highly divergent lineages6–8 and contribute to cases with 
post-acute COVID-19 sequelae (long COVID)9,10. However, the population prevalence 
of persistent infections, their viral load kinetics and evolutionary dynamics over the 
course of infections remain largely unknown. Here, using viral sequence data collected 
as part of a national infection survey, we identified 381 individuals with SARS-CoV-2 
RNA at high titre persisting for at least 30 days, of which 54 had viral RNA persisting  
at least 60 days. We refer to these as ‘persistent infections’ as available evidence 
suggests that they represent ongoing viral replication, although the persistence of 
non-replicating RNA cannot be ruled out in all. Individuals with persistent infection 
had more than 50% higher odds of self-reporting long COVID than individuals with 
non-persistent infection. We estimate that 0.1–0.5% of infections may become 
persistent with typically rebounding high viral loads and last for at least 60 days.  
In some individuals, we identified many viral amino acid substitutions, indicating 
periods of strong positive selection, whereas others had no consensus change in the 
sequences for prolonged periods, consistent with weak selection. Substitutions 
included mutations that are lineage defining for SARS-CoV-2 variants, at target sites 
for monoclonal antibodies and/or are commonly found in immunocompromised 
people11–14. This work has profound implications for understanding and characterizing 
SARS-CoV-2 infection, epidemiology and evolution.

The emergence of highly divergent variants of SARS-CoV-2 has been a 
defining feature of the COVID-19 pandemic. Although the evolutionary 
origins of these variants are still a matter of speculation, multiple pieces 
of evidence point to chronic persistent infections as their most likely 
source5,7,15. In particular, infections in immunocompromised patients 
who cannot clear the virus may lead to persistence for months6,7,16,17 
or even years8,18 before potentially seeding new outbreaks in the com-
munity3. Persistence of SARS-CoV-2 during chronic infections exposes 

the viral population to host immune responses and other selective 
pressures as a result of treatments over prolonged periods of time. 
Persistent infections also release the virus from undergoing the tight 
population bottlenecks that are characteristic of SARS-CoV-2 trans-
mission19,20, making the viral population less vulnerable to stochastic 
genetic drift and allowing it to acquire more evolutionary changes 
over a longer timescale. These adaptive intra-host changes can lead 
to elevated evolutionary rates, particularly in key regions of the spike 
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protein (encoded by S) that are often associated with immune escape 
and increased rates of transmission13,14.

Despite the substantial public health implications of persistent infec-
tions, uncertainty still surrounds how common these infections are 
among the general population, how long they last, their potential for 
adaptive evolution and their contribution to long COVID.

In this work, we used genetic, symptom and epidemiological 
data from the Office for National Statistics COVID Infection Survey 
(ONS-CIS)21, a large-scale community-based surveillance study carried 
out in the UK. We identified individuals with high-titre SARS-CoV-2 
samples spanning 1 month or more and representing the same viral 
population. We have provided several lines of evidence suggesting that 
these individuals are persistently infected with replicating virus, and 
hence refer to these as persistent infections; however, the presence of 
non-replicating SARS-CoV-2 RNA cannot be categorically ruled out in 
all cases. We characterized various aspects of viral dynamics during 
these persistent infections, including evolutionary changes in the virus, 
RNA viral titre kinetics (hereafter referred to as viral load), number of 
reported symptoms and prevalence of long COVID, the last in compari-
son with individuals without identified persistent SARS-CoV-2 infection.

Identifying persistent infections
We considered 93,927 high-quality sequenced samples from the 
ONS-CIS collected between 2 November 2020 and 15 August 2022, 
and representing 90,146 people living in 66,602 households across 
the UK (see Extended Data Fig. 1). Households representative of the 
UK population were recruited in the survey using a rolling recruitment 
strategy. Most participating individuals (approximately 98%) were 
sampled once a week for the first 4 weeks of their enrolment, and then 
approximately monthly thereafter, regardless of symptoms or testing 
history. To identify persistent infections, we first limited the dataset 
to individuals with two or more PCR with reverse transcription (RT–
PCR)-positive samples with cycle threshold (Ct) values ≤ 30 in which 
sequencing was attempted (a proxy for viral load), taken at least 26 
days apart, and where the consensus sequences were of the same major 
lineages of B.1.1.7 (hereafter referred to as Alpha), B.1.617.2 (hereafter 
referred to as Delta), or the two Omicron lineages BA.1 or BA.2 (BA.4, 
BA.5 and XBB were not considered). This included a total of 500 indi-
viduals (18 Alpha, 122 Delta, 130 BA.1 and 230 BA.2) with two or more 
sequences of the same major lineage (including those with at least 
one undetermined lineage; see Extended Data Table 1). If sequences 
from the same individual also shared the same rare single-nucleotide 
polymorphisms (SNPs) at one or more sites relative to the major-lineage 
population-level consensus, we classified them as having a persistent 
infection. Because we used sequence data to identify persistent infec-
tions, we could only identify persistent infections with at least two high 
viral load (Ct ≤ 30) samples.

We defined a rare mutation for a given lineage as one observed in 
400 or fewer samples of that lineage within the ONS-CIS dataset, giv-
ing a false-positive rate of identifying persistent infections of 0–3% 
depending on the major lineage (see Methods; Extended Data Fig. 2). 
We note that the rare SNP method provides a conservative estimate for 
the true number of persistent infections, as some persistent infections 
may not have rare mutations. To evaluate the robustness of our method 
for identifying persistent infections, we considered the phylogenetic 
relationship between the sequences from persistent infections relative 
to other sequences of the same major lineage that belonged to individu-
als with only a single sequence within the ONS-CIS dataset. The great 
majority of sets of sequences identified as belonging to the same per-
sistent infection formed monophyletic groups with strong bootstrap 
support (Fig. 1a and Extended Data Fig. 3). However, seven sequences 
did not group with the other sequence (or sequences) from the same 
persistent infection. All of these had high Ct values (Ct ≈ 30) and low 
genome coverage, which could explain their lack of clustering on the 

phylogeny as lower-coverage sequences are more likely to lack infor-
mation at lineage-defining sites and they may be more prone to errors 
when calling the consensus19. In particular, two of these sequences 
were collected at intermediate time points of two persistent infec-
tions where the first and last sequences of each persistent infection do 
cluster on the phylogeny, whereas the sequence at the intermediate 
time point does not.

We identified 381 persistent infections with sequences spanning at 
least 26 days (11 Alpha, 106 Delta, 97 BA.1 and 167 BA.2). The relatively 
low number of persistent infections that we identified for Alpha is 
probably because fewer individuals were infected with Alpha than the 
other major lineages, but also because a smaller proportion of positive 
samples with Ct ≤ 30 were sequenced before December 2020, which 
captures the beginning of the Alpha wave, than after this date (see  
supplementary figure S1 in ref. 22). Of all the persistent infections that 
we identified, 54 spanned at least 56 days (3 Alpha, 13 Delta, 15 BA.1 and 
23 BA.2). This represents nearly 0.07% (54 of 77,561) of all individuals 
with one or more sequences (with Ct ≤ 30) of the four major lineages 
that we investigated in this study (Fig. 1b; see also Table 1). Of note,  
2 Alpha, 19 Delta and 8 BA.1 persistent infections were sampled weeks 
after the corresponding major lineage had dropped to a frequency of 
1% or less (Fig. 1c,d); the longest infection was with BA.1 and lasted for 
at least 193 days (see Fig. 1b).

The actual duration of persistent infections is likely to be at least 3–4 
days longer than the time between when the first and last sequenced 
samples were collected, as it typically takes 3–4 days since the start 
of infection for viral loads to be sufficiently high to be sequenced 
(Ct ≤ 30)23,24 and, similarly, viral loads will be too low (Ct values too 
high) to sequence at the tail end of infection. As individuals were typi-
cally sampled weekly during the first 4 weeks of enrolment, followed 
by approximately monthly sampling thereafter, it is unsurprising that 
most persistent infections had observable durations clustering around 
30 or 60 days (Extended Data Fig. 4).

Identifying reinfections
We considered a pair of sequences from the same individual to indi-
cate a reinfection with the same major lineage if they were sampled at 
least 26 days apart, had at least one consensus nucleotide difference 
between the sequenced sampling time points and shared no rare SNPs 
(see Methods). This criterion may overestimate the true number of 
reinfections with the same major lineage as some persistent infections 
may not have a rare SNP, and within-host evolution can lead to the loss 
of a rare SNP and/or the gain of other mutations leading to differences 
in the consensus sequence between the samples. We cannot rule out 
samples being attributed to the wrong individuals, which would also 
overestimate the true number of reinfections, although we took several 
measures to control for sample mix-ups (see Methods). We identified 
three individuals for which pairs of sequences from different sampling 
time points had no identical rare SNPs and at least one consensus differ-
ence, but whose viral load trajectories were consistent with a persistent 
chronic infection. We therefore excluded these individuals from the 
reinfection group (Extended Data Fig. 5).

Overall, we identified 60 reinfections with the same major lineage  
(7 Alpha, 11 Delta, 14 BA.1 and 28 BA.2; Table 1). Sequences from indi-
viduals identified as reinfected, collected at the point of primary infec-
tion and reinfection, did not form monophyletic groups and mostly 
belonged to distantly related subclades, and hence supports our 
method for identifying reinfections (Fig. 1a and Extended Data Fig. 3).

Of all the cases classed as either persistent infections or reinfec-
tions with the same major lineage, 9–39% were classed as reinfections 
(Table 1), rising to 12–50% if only samples collected at least 56 days apart 
were included (Fig. 1b). This suggests that for Delta, BA.1 and BA.2, the 
number of individuals reinfected with the same major lineage is low 
compared with the number of individuals with persistent infection. 
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Alpha seems to be an exception with over one-third of cases classed as 
reinfection for samples that were 26 days or more and half of cases for 
samples that were 56 days or more apart. This may be because of the 
lower number of Alpha samples sequenced, but other factors such as 
the timing of vaccination roll out could also have contributed.

Periods of stasis at the consensus level
Of the 381 persistently infected individuals that we identified, 68% (259 
of 381) displayed no nucleotide differences at the consensus level dur-
ing infection. By contrast, when we determined the number of consen-
sus nucleotide differences between 16,000 random pairs of sequences 
from the ONS-CIS, and with each pair from the same major lineage, 
only 6 pairs had no consensus differences (Extended Data Fig. 6). This 
provides further support that the sequences that we identified from 
persistent infections belong to the same infection.

The lack of consensus changes between many pairs of samples taken 
from the same infection, most of which are less than 2 months apart, is 
consistent with neutral evolution or weak selection, and indicates that 
there was limited within-host adaptation. In support of this, we identi-
fied 17 persistent infections with three or more sequences, of which the 
first two sequences (typically about 1 month apart) had zero consensus 
differences, but, crucially, 41% (7 of 17) gained a consensus change 
later in the infection. This suggests that the virus evolves measurably 
at the consensus level as time progresses since the onset of infection. 
However, shifting populations of RNA-producing cells (and sampling 
differences) could also potentially lead to differences in the consensus 
between different time points in the absence of ongoing replication. 
Among the remaining 59% (10 of 17) with no consensus change through-
out infection, we often found substantial sub-consensus activity with 
intra-host single-nucleotide variant frequencies going up to high fre-
quencies (approximately 40%) and returning to below 5% at a later 
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Fig. 1 | Individuals identified with persistent SARS-CoV-2 and reinfections 
with the same major lineage within the ONS-CIS. a, Phylogenetic relationship 
between samples from individuals with persistent SARS-CoV-2 RNA (hereafter 
referred to as persistent infections) (top), and reinfections with a representative 
background population of Alpha (B.1.1.7; see Extended Data Fig. 2 for the 
analysis on the other three major lineages) (bottom). The dashed lines connect 
every pair of sequences from the same individual. Pairs from individuals with 
persistent infections cluster closely together, whereas reinfections do not.  
All sequences from the same individual are given the same colour. b, Number  
of days between the earliest and latest genomic samples from persistent 
infections and reinfections. Each point represents a single individual. The solid 
vertical lines show the 26-day and 56-day cut-offs. The numbers on the side of 
each bar show the total counts per category for each major lineage. c, Total 

number of sequences in the ONS-CIS per major lineage over time. d, Timing of 
persistent infections (black) during the UK epidemic. Some individuals with 
persistent infections can be identified up to weeks after the lineage has been 
replaced at the population level. The coloured boxes indicate the interquartile 
range, which spans from the 25th to the 75th percentile, with the centre being 
the median calendar date corresponding to each major lineage. The medians 
for Alpha, Delta, BA.1 and BA.2 are 13 January 2021, 16 October 2021, 20 January 
2022 and 30 March 2022, respectively. The extremities (displayed as grey 
horizontal lines) denote the minimum and maximum values within each 
category. The coloured numbers on the side of each box show the total number 
of sequences within the ONS-CIS for each major lineage. The black numbers 
represent the total number of sequences from persistent infections 
corresponding to each major lineage.
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time point, indicating that the virus population is probably replicating 
during infection despite acquiring no consensus change (Extended 
Data Fig. 7a,b).

A strong signal for positive selection
Despite long periods with little or weak positive selection, we also found 
evidence for positive selection. Among the 381 persistently infected 
individuals, we observed 317 changes in the consensus nucleotide 
representing 277 unique mutations and 31 deletions representing 18 
unique deletions. Many of these mutations have previously been iden-
tified as either lineage-defining mutations for variants of concern or 
variants of interest25 (8 mutations and 2 deletions), recurrent mutations 
in immunocompromised individuals12–14 (15 mutations and 4 deletions) 
or key mutations with antibody escape properties and target sites for 
various different monoclonal antibodies11,26 (7 mutations) (see Source 
Data Fig. 2 and Table 2).

Several of the consensus changes that we observed were at the same 
genomic positions in multiple individuals. For example, three individu-
als infected with BA.2 from different households acquired a mutation at 
codon position 547 in the spike protein (Fig. 2), two of which were the 
T547K mutation, which is a lineage-defining mutation for BA.1, and one 
the K547T mutation (Table 2; also see Source Data Fig. 2). Twelve indi-
viduals acquired a deletion (open reading frame (ORF) 1ab (ORF1ab): 
Δ81–87) in the NSP1-coding region. A similar deletion has previously 
been observed during the chronic infection of an immunocompromised 
individual with cancer16 and has also been associated with lower type I 
interferon response in infected cells27.

Overall, we observed a strong signal for positive selection in S, with 
nearly ninefold more non-synonymous than synonymous mutations 
(Fig. 2b). With a total of seven non-synonymous mutations, ORF8 had 
the highest per base (0.036 per base) number of non-synonymous 
mutations, followed by S with 61 non-synonymous mutations (0.016 
per base). The high number of non-synonymous mutations in ORF8 
may be due to premature stop codons scattered along ORF8, mean-
ing the downstream non-synonymous mutations are released from 
negative selection28.

Frequently observed mutations
We determined the number of times each of the consensus change 
mutations that we observed during persistent infections appeared 
on representative global and English phylogenies, and compared this 
with the number of times any mutations observed on the phylogenies 
occurred (see Methods; Extended Data Fig. 8a,b). In general, mutations 
that emerged during persistent infection appeared more frequently 
on the global and English phylogenies, and with mutations emerging 
multiple times during persistent infection appearing more frequently 
still (Extended Data Fig. 8c).

Mutations leading to consensus change during persistent infections 
also tended to be more beneficial at the population level, where here 
fitness is defined by their ability to spread among individuals29, than 
other mutations found in the global phylogenies of B.1.1.7, B.1.617.2, 

BA.1 and BA.2 (Extended Data Fig. 8d). Moreover, mutations observed 
to appear in multiple persistent infections tended to have a stronger 
positive fitness effect than those observed in only a single persistent 
infection (Extended Data Fig. 8e). This indicates that mutations that 
are selected during persistent infections also tend to be better at trans-
mitting between individuals. Of note, however, are two mutations that 
emerged twice during persistent infections and were mildly deleterious 
based on the global phylogeny. These were T1638I (also known to be 
recurrent in immunocompromised individuals13) and T4311I in ORF1ab. 
This suggests that these mutations may be beneficial at the within-host 
level, at least in some individuals, but deleterious at the between-host 
level; however, it is important to recognize that the ability of immune 
escape mutations to spread among individuals could change through 
time due to the changing immune landscape of the population.

One BA.1 persistent infection particularly stood out. This infec-
tion lasted for at least 133 days during which 33 unique mutations (23 
mutations in ORF1ab, 6 in S, 1 in ORF3a, 1 in M (encoding the mem-
brane protein) and 2 in ORF7) were observed (Extended Data Figs. 3 
and 7c); 11 of the ORF1ab mutations and all of the mutations in S, ORF3a 
and ORF7 were non-synonymous. Contamination could be ruled out 
because intra-host single-nucleotide variants were shared across mul-
tiple time points (Extended Data Fig. 7c), and co-infection is unlikely 
as we could not identify a likely co-infecting variant after examining 
all of the ONS-CIS sequences. Given the mutational signature from 

Table 2 | Recurrent mutations and deletions identified during 
persistent SARS-CoV-2 infections

Gene Mutation n Lineage Description

S T547K 2 BA.2 Lineage-defining for BA.1

S L452R 2 BA.2 Lineage-defining for Delta 
and BA.4/5a

S T376A 2 BA.1 Lineage-defining for 
BA.2/4/5

S T95I 1 BA.2 Lineage-defining for BA.1a

S G446V/D 2 Delta and BA.2 Target for monoclonal 
antibodies

S D215G 1 BA.2 Lineage-defining for Betaa

S ΔA243/L244 3 Alpha and BA.2 Lineage-defining for Betaa

S ΔY144 1 BA.2 Lineage-defining for 
Alpha and BA.1

ORF1ab L5905F 2 BA.1 and BA.2 Commonly found in Mu 
and Delta

ORF1ab T4175I 2 BA.1 Commonly found in BA.2

ORF1ab T1638I 2 BA.2 a

ORF1ab D4532D 1 BA.2 a

ORF1ab Δ81–86 12 Delta, BA.1 and 
BA.2

a

ORF8 I121L 1 BA.1 a

See Source Data Fig. 2 for more information about all mutations. Δ, deletion. aRecurrent in 
immunocompromised patients.

Table 1 | Number of persistent infections and reinfections per major lineage

Major 
lineage

Reinfection 26 days 
or longer

Persistent infection  
26 days or longer

Reinfection (%)a  
26 days or longer

Reinfection 56 days 
or longer

Persistent infection  
56 days or longer

Reinfection (%)a  
56 days or longer

Alpha 7 11 39 3 3 50

Delta 11 106 9 4 13 24

BA.1 14 97 13 2 15 12

BA.2 28 167 14 15 23 40
aReinfection (%) = reinfection/(reinfection + persistent infection) × 100.
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this persistent infection with 17 G-to-A mutations and very few C-to-A 
mutations, it is possible that these mutations are induced after a mol-
nupiravir treatment30.

Persistence with rebounding viral load
Of the 381 persistent infections, 65 had three or more RT–PCR tests 
taken over the course of their infection. We classified these infections 
as ‘persistent rebounding’ if they had a negative RT–PCR test dur-
ing the infection (n = 20) and the rest as ‘persistent chronic’ (n = 47) 
(Fig. 3a,b). Given the weekly or approximately monthly sampling of 
individuals enrolled in the ONS-CIS, infections classed as persistent 
chronic may have unsampled periods of very low viral load, meaning 
the persistent-rebounding category is likely to be an underestimate.

Nonetheless, the observation of rebounding viral load dynamics in 
over 30% of cases is striking given that, in the absence of genetic infor-
mation, they could have been misidentified as reinfections, depending 
on the definition used. Of the 27 cases identified as reinfections with 
three or more RT–PCR tests, all showed rebounding viral load dynamics 
(Fig. 3c). Also striking is that persistent-chronic infections often showed 
similar dynamics; of the 47 infections classed as persistent chronic, 35 
had a low viral load (high Ct) test between two high viral load (low Ct) 

tests. Overall, 55 of 67 (82%) of persistent infections in which we had 
sufficient data showed a resurgence in viral load after an initial drop 
(Extended Data Fig. 5a). These rebounding viral load dynamics support 
the presence of replicating viruses during these infections. There are 
also several studies that find a strong correlation between high viral 
load samples (similar to those that we observed here) and the presence 
of viable SARS-CoV-2 in viral cultures24,31–33, which further supports that 
these samples are taken from replication-competent viruses. However, 
variation in viral load samples may also occur due to reasons unrelated 
to the presence of replication-competent virus such as variation in 
measured Ct values with respect to time and quality of sampling33.

As the sampling strategy of ONS-CIS is based on testing representa-
tive individuals across the UK regardless of symptoms, we can estimate 
the percentage of SARS-CoV-2 infections that are persistent and last for 
longer than 60 days in the general population. This requires making 
assumptions about how many persistent infections are missed among 
ONS-CIS participants due to the approximately monthly (and weekly) 
sampling. More precisely, estimating the proportion of infections that 
are persistent depends on the proportion of days the infection has 
sequenceable virus during the infection (would have Ct ≤ 30 if tested); 
the fewer the number of days the infection has sequenceable virus, 
the more likely it is that a persistent infection is missed. By taking two 
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extreme scenarios for the proportion of days that the virus is sequence-
able during persistent infection (0.7 and 0.14; see Methods), we esti-
mate that approximately 0.7–3.5% and 0.1–0.5% of infections become 
persistent for more than 30 and 60 days, respectively.

Difference in viral load and symptoms
For the majority of persistent infections, Ct values (inversely propor-
tional to viral load34) were higher at the last sequenced time point than 
at the first sequenced time point (Fig. 3d), with the Ct value being more 
than +6.7 (interquartile range (IQR) +3.2–10.2) units higher at the last 
time point (two-sided paired Student’s t-test P = 2 × 10−9). For reinfec-
tions with the same major lineage, the last sequenced sample also had 
higher Ct values than the first, but the magnitude of the difference 
was smaller than persistent infections (Fig. 3d), with only +2.5 (IQR 
−1.1 to +7.4) units difference between primary infection and reinfec-
tions (two-sided paired Student’s t-test P = 0.0003). In both cases, the 
rise in Ct value (decrease in viral load) during infections or between 
reinfections could be a consequence of host immunity or within-host 
compartmentalization. In addition, the rise in Ct for reinfections could 
be due to the disproportionate sampling of individuals with older 

infections, which tend to have lower viral loads, towards the end of 
an epidemic wave35,36.

Individuals with persistent infections remained largely asympto-
matic during the later stages of infection, reporting on average two 
fewer symptoms in the preceding 7 days at the last time of sampling  
(at which a sequence was obtained) than the first time of sampling, with 
a median of 1 (IQR 0–4) fewer reported symptoms (two-sided paired 
Wilcoxon P = 5 × 10−30). They also consistently reported very few or 
no symptoms after the first positive sample (Fig. 3e). In comparison, 
individuals reinfected with the same major lineage reported on average 
only one fewer symptom at the reinfection sampling time point than 
at the primary sampling time point (Fig. 3e), with a median of 0 (IQR 
0–3) fewer reported symptoms (two-sided paired Wilcoxon P = 0.005). 
In addition, the proportion of individuals reporting more symptoms 
at the last sampling is higher among the reinfections than among the 
persistent infections.

Prevalence of long COVID
From February 2021, as well as reporting symptoms, participants were 
asked whether they describe themselves as having long COVID and if 
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Fig. 3 | Comparison of RNA viral load dynamics and the number of reported 
symptoms in individuals with persistent SARS-CoV-2 and reinfections with 
the same major lineage. a–c, RNA viral load trajectories of individuals with 
persistent SARS-CoV-2 RNA (hereafter referred to as persistent infections) with 
rebounding (that is, a negative RT–PCR test during the infection) (purple; a) 
and chronic persistent viral load (purple; b) and reinfections with at least three 

PCR tests taken over the course of infection or until reinfection (cyan; c).  
For a–c, only individuals with three or more RT–PCR tests during the course  
of infection were included. d,e, Change in Ct value (d) and total number of 
symptoms reported between the first and last time points (e) with sequenced 
samples for all 381 persistent infections and 60 reinfections.
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they were still experiencing symptoms more than 4 weeks after they 
first had COVID-19 (see Methods). We estimated the prevalence of 
self-reported long COVID in individuals with persistent infection com-
pared with individuals with non-persistent infection, accounting for 
several confounding variables (see Methods). In the persistent infection 
group, 9.0% of respondents (32 of 356) self-reported long COVID at their 
first visit 12 weeks or longer since the start of infection, and 5.8% (19 of 
326) reported long COVID at 26 weeks or longer. However, among the 
non-persistently infected group, only 5.4% (4,291 of 78,902) reported 
long COVID at their first visit 12 weeks or longer, and 4.1% (3,000 of 
72,608) reported long COVID at 26 weeks or longer.

Correcting for confounders, we found strong evidence for a 55% 
higher odds of reporting long COVID at 12 weeks or more post-infection 
among individuals with persistent infection than individuals with 
non-persistent infection (P = 0.004 for the unadjusted model; 
P = 0.021 for the adjusted model), but no evidence of a difference for 
long COVID at 26 weeks or more post-infection (P = 0.127 for the unad-
justed model; P = 0.367 for the adjusted model) (Table 3). The lower 
probability of reporting long COVID 26 weeks post-infection than at 12 
weeks post-infection could be because the majority of the persistent 
infections that we identified lasted for less than 3 months, and hence 
persistence of an infection may no longer be a contributing factor to 
long COVID beyond 3 months.

Discussion
We developed a robust approach for identifying persistent SARS-CoV-2 
RNA in individuals with sequenced samples spanning 1 month or longer. 
Evidence suggests that these represent persistent infections; however, 
persistence of non-replicating viral RNA cannot be categorically ruled 
out in all cases. Because viral genetic data are needed to confirm persis-
tent infection, we can only identify persistent infections in individuals 
with at least two high viral load (Ct ≤ 30) samples. Given this, the num-
ber of persistent infections that we identified should be considered a 
lower bound. Of the 381 persistent infections that we identified among 
participants of the ONS-CIS, 54 lasted at least 2 months and two over 
6 months; in some cases, the infecting lineage had gone extinct in the 
general population. By contrast, we only identified 60 reinfections 
by the same major lineage as the primary infection, suggesting that 
immunity to the same variant remains strong after infection, at least 
until the lineage has gone extinct (Table 1).

The large number of persistent infections that we uncovered is 
striking, given the leading hypothesis that many of the variants 
of concern emerged wholly or partially during long-term chronic 
infections in immunocompromised individuals1. As the ONS-CIS is a 
community-based surveillance study, our observations suggest that 
the pool of people in which long-term infections could occur, and hence 
potential sources of divergent variants, may be much larger than gener-
ally thought. However, we do not know whether the individuals with 
persistent infection that we identified have other health conditions 

that may make them more susceptible to these long infections. We 
estimate that 1 in 1,000 of all infections, and potentially as many as 1 
in 200, may become persistent, with intermittent high viral loads, for 
at least 2 months.

Our results are consistent with a household study37 in which 6% of 
infections (7 of 109) have been reported to have viral shedding after 
30 days since the onset of symptoms, but only two had a Ct ≤ 30 after 
25 days, and none after 30 days. By contrast, a study of hospitalized 
individuals38 has reported prolonged shedding in 18% (17 of 92) of 
patients. This much higher rate than individuals sampled in the com-
munity regardless of symptoms, as in our study, probably represents 
the severity of infection among the hospitalized individuals.

The harbouring of persistent infections in the general community 
may also help to explain the early detection of cryptic lineages circu-
lating in wastewaters39,40 long before they spread in the population at 
large. In support of the hypothesis that variants of concern may emerge 
during prolonged infections, several studies have shown elevated 
evolutionary rates driven by selection during chronic infections of 
immunocompromised individuals6–8. Among many of the individuals 
with persistent infection that we identified, we observed long periods 
of evolutionary stasis at the consensus level, indicating little to no 
directional selection during infection. In HIV, zero synonymous con-
sensus differences between sequences spanning prolonged periods 
of within-host infection have also been observed, probably because 
synonymous mutations are under little or no selective pressure37,38. 
However, in other persistent infections, we found strong evidence for 
positive selection and parallel evolution, particularly in S and ORF1ab. 
In the most extreme cases, we observed one persistent infection with 
zero consensus change for over 150 days, whereas another persistent 
infection had 33 substitutions over a 4-month period, 20 of which were 
non-synonymous, and where the great majority of these mutations 
emerged during the first 30 days after the first positive sequence.

Most of the persistent infections in our study with at least three posi-
tive PCR samples over the course of infection showed a pattern of viral 
rebound (high to low to high viral load). This suggests that the mecha-
nism of persistent infection is not due to delayed clearance of the virus 
by the host, but points to possible presence of actively replicating virus. 
Other studies have also reported viral rebound both during acute41 and 
chronic42 infections. These rebounding dynamics also exacerbate the 
difficulty of distinguishing between persistent and reinfections in the 
absence of sequence data. A common criterion for identifying reinfec-
tions is to only consider positive PCR samples that are at least 90 days 
apart43. An advantage of the genetic approach used in our study is not 
only the ability to detect reinfections over shorter timescales of less 
than 60 days but also to rule out reinfection over longer timescales 
(more than 90 days). Our findings are in broad agreement with recent 
systematic reviews showing lower rates of reinfection during the first 
12 weeks since the initial infection44.

Individuals with persistent infections report fewer symptoms later 
in a persistent infection than at their first positive sample, or remain 

Table 3 | Prevalence of long COVID in individuals with persistent infection. Individuals with non-persistent infections are 
set as reference for odds ratio calculations

Group Total n n with long COVID (%) Median follow-up (IQR) Unadjusted OR (95% CI) Adjusted OR (95% CI)

Long COVID at first assessment 12 weeks or longer post-infection

Persistently infected 356 32 (9.0) 101 (91–113) 1.27 (1.19–2.47) 1.55 (1.07–2.25)

Non-persistently infected 78,902 4,291 (5.4) 100 (91–115) Reference Reference

Long COVID at first assessment 26 weeks or longer post-infection

Persistently infected 326 19 (5.8) 312 (271–390) 1.44 (0.90–2.29) 1.24 (0.77–2.00)

Non-persistently infected 72,608 3,000 (4.1) 320 (272–384) Reference Reference

CI, confidence interval; IQR, interquartile range; OR, odds ratio.
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asymptomatic throughout infection, but have more than 50% higher 
odds of long COVID than a group of individuals with non-persistent 
infection. Although the link between viral persistence and long COVID 
may not be causal, these results suggest that persistent infections 
could be contributing to the pathophysiology of long COVID10,45, as 
also evidenced by the observation of circulating SARS-CoV-2 S1 spike 
protein in a subset of patients with long COVID months after first infec-
tion46. There is also a growing body of evidence of the persistence 
of replication-competent virus throughout the body months after 
the start of an infection47,48, and very recently that this persistence is 
strongly associated with higher risk of long COVID49.

The association between persistent infection and long COVID does 
not imply that every persistent infection can lead to long COVID (only 
9% of individuals with persistent infection reported having long 
COVID) nor does it mean that all cases of long COVID are due to a per-
sistent infection. Indeed, many other possible mechanisms have been  
suggested to contribute to long COVID, including autoimmunity/ 
inflammation, organ damage, Epstein–Barr virus reactivation and 
microthrombosis (see ref. 10 for a recent review).

Together, our observations highlight the continuing importance of 
community-based genomic surveillance both to monitor the emer-
gence and spread of new variants, and to gain a fundamental under-
standing of the natural history and evolution of novel pathogens and 
their clinical implications for patients.
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Methods

ONS-CIS
This work contains statistical data from ONS, which is Crown Copy-
right. The use of the ONS statistical data in this work does not imply the 
endorsement of the ONS in relation to the interpretation or analysis 
of the statistical data. This work uses research datasets that may not 
exactly reproduce National Statistics aggregates.

The ONS-CIS is a UK household-based surveillance study in which 
participant households are approached at random from address  
lists across the country to provide a representative sample of the pop-
ulation21. All versions of the study protocol are available at https://
www.ndm.ox.ac.uk/covid-19/covid-19-infection-survey/protocol-and- 
information-sheets. All individuals 2 years of age and older from 
each household who provide written informed consent provide swab 
samples (taken by the participant or parent or carer for those under  
12 years of age), regardless of symptoms, and complete a question-
naire at assessments. The survey offered participants the option of 
only having one enrolment assessment (taken by approximately 1%), 
or weekly assessments for only 1 month (taken by approximately 1%; 
Extended Data Fig. 1). All other enrolled participants (approximately 
98%) were assessed weekly for the first month of their enrolment in the 
survey and then approximately monthly (originally for 1 year; all such 
participants were approached for re-consent for ongoing follow-up 
beyond 1 year). The survey had rolling recruitment to meet its target 
for taking a certain number of swabs from the population each month, 
but in practice, most recruitments occurred between September and 
December 2020 (Supplementary Information; also see supplementary 
table 4 in ref. 50). The rolling recruitment enabled the study to achieve 
its overall sample numbers (required to address its surveillance objec-
tives) while accounting for participants withdrawing from the study. 
As is standard, the protocol also allowed a 14-day window around the 
approximately monthly assessments (shifting any following assess-
ments to avoid swabbing participants again at very short (and variable) 
notice); crucially, assessments were not missed to meet survey targets.

As the vast majority of recruitment comes from invitations sent to 
households randomly selected from address lists that we do not have 
relevant demographic information, we are not able to compare char-
acteristics of those agreeing and not agreeing to participate. From 
26 April 2020 to 31 July 2022, assessments were conducted by study 
workers visiting each household; from 14 July 2022 onwards, assess-
ments were remote, with swabs taken using kits posted to participants 
and returned by post or courier, and questionnaires completed online 
or by telephone. For this analysis, we included data from 2 November 
2020 to 15 August 2022, spanning a period from Alpha to Omicron 
BA.2 sequences within the ONS-CIS dataset (Extended Data Table 1).

To date, of 535,731 participants recruited into the ONS-CIS, 109,417 
(20%) have either completed their participation after a single enrol-
ment visit, visits only for the first month or only for the first year (7%) 
or withdrawn (13%; see Supplementary Information). Moving house 
was a major reason for completing participation in the survey (as this 
leads to participants no longer being eligible for follow-up as it is the 
original address that is sampled), a small number of participants died 
(0.4%), and in July 2022, the survey moved to a remote data collec-
tion approach at which point some participants chose to end their 
participation. For the time period of this study, 96.2% of swabs had a 
negative result and 1.9% had a positive result (1.9% were void). For those 
with positive test results, the mean time since the previous assess-
ment was 35.2 days and to the next assessment was 37.1 days. For those 
with a negative test, the associated numbers were 31.8 days and 33.0 
days. By definition, 100% of first positive samples from each persis-
tent infection had a subsequent assessment. There was no statistical 
difference in the time between sampling for individuals with persis-
tent infection compared with those testing positive (Supplementary  
Information).

Sequencing
From December 2020 onwards, sequencing was attempted on all posi-
tive samples with Ct ≤ 30; before this date, sequencing was attempted 
in real time wherever possible, with some additional retrospective 
sequencing of stored samples. The vast majority of samples were 
sequenced on Illumina Novaseq, with a small number using Oxford 
Nanopore GridION or MINION. One of two protocols were used: the 
ARTIC amplicon protocol51 with consensus FASTA sequence files gener-
ated using the ARTIC nextflow processing pipeline (v1)52, or veSeq, an 
RNA sequencing protocol based on a quantitative targeted enrichment 
strategy19,53 with consensus sequences produced using shiver (v1.5.8)54. 
During our study period, we identified 94,943 individuals with a single 
sequence and 5,774 individuals with two or more sequences. Here we 
only included sequences with 50% or more genome coverage.

Identifying candidate persistent infections
We first identified individuals with two or more sequenced samples 
taken at least 26 days apart. We chose this cut-off because the major-
ity of individuals with acute infection shed the virus for less than 20 
days and no longer than 30 days in the respiratory tract24,55. Given the 
extreme heterogeneity in the shedding profiles during some acute 
infections24,55, we also considered a more conservative 56-day cut-off 
for some analyses. Selection was based on availability of sequences, 
which were required for genetic analysis; it was not possible to allow 
for failure to identify any long-term shedding due to participants not 
having assessments/swabs or tests failing or subsequent positives hav-
ing Ct > 30, and therefore not being sent for sequencing. However, this 
means that some persistent infections are likely to have been missed 
and so our estimates should be considered a lower bound.

Candidate persistent infections were defined in one of two ways: 
(1) pairs of sequenced samples that belonged to the same major lin-
eage, and (2) pairs of sequenced samples where one or both had no 
defined phylogenetic lineage, but where the genetic distance between 
them was lower than that required to differentiate two major lineages 
(Extended Data Fig. 9). The major lineages that we considered were 
Alpha (B.1.1.7), Delta (B.1.617.2), Omicron BA.1 and Omicron BA.2, 
including their sublineages. We assumed pairs belonging to differ-
ent major lineages were either co-infections or reinfections with two 
different virus lineages. Only candidate persistent infections were 
considered in further analysis.

Identifying persistent infections
We determined whether two sequences from the same individual are 
from the same infection by whether they share a rare SNP at two or more 
consecutive time points relative to the population-level consensus. 
If an intermediate sequence from that individual had an unknown 
nucleotide at a site (due to poor coverage), whereas the first and 
last sequences shared a rare SNP, then the intermediate sequence 
was also assumed to be part of the same infection. Rare SNPs were 
defined as those that were shared by fewer than a threshold number 
of sequences, belonging to each major lineage, within the full ONS-CIS 
dataset (Extended Data Fig. 2). The thresholds were chosen to maximize 
the number of persistent infections identified while minimizing the 
number of false positives (see below).

To determine the false-positive rate, for each major lineage, we gen-
erated a dataset of 1,000 randomly paired sequences from different 
individuals in the ONS-CIS, each sampled at least 26 days apart. We 
determined the proportion of these pairs that would have been incor-
rectly identified as persistent infections as a function of the threshold 
for determining whether a SNP is rare (Extended Data Fig. 2). Although 
the total number of persistent infections that we identified (among 
the list of candidate persistent infections) grew as the threshold for 
determining whether a SNP is rare increased, at very high thresholds, 
the rate of false positives (among the list of randomly paired sequences) 
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was also high. In our study, we chose a threshold of 400 sequences (cor-
responding to all sequences of the same major lineage within the full 
ONS-CIS dataset) for all of the major lineages, giving a false-positive 
rate (identifying an infection as persistent when it was not) of 0–3%. 
Using this threshold, approximately 92–98% of all sequences from 
the four major lineages had a rare SNP relative to the major-lineage 
population-level consensus.

Identifying reinfections with the same major lineage
Any pair of sequences from the same individual, of the same major 
lineage and at least 26 days apart were considered as candidate rein-
fections. Of these, pairs that had at least one nucleotide difference at 
the consensus level, and did not share any rare SNPs, were classed as 
reinfections. Pairs that had no identical rare SNPs, nor any nucleotide 
differences at the consensus level, were classed as undetermined.

Sample mix-ups could inflate the true number of reinfections. In 
the ONS-CIS, each sample has a unique barcode, a small minority of 
barcodes are positive, and even fewer still have a Ct ≤ 30; therefore, 
random swapping of barcodes is unlikely to result in a wrong posi-
tive sample with Ct ≤ 30 being sent for sequencing. For each weekly 
sampling batch, we also checked concordance between lineage from 
the sequencing laboratory and S gene target failure from the testing 
laboratory; concordance between Ct from the testing laboratory and 
genome coverage from the sequencing laboratory (high coverage is 
expected for low Ct, and low coverage for high Ct); and for veSeq, a 
log-linear relationship between the number of mapped reads from the 
sequencing laboratory and Ct from the testing laboratory19.

Phylogenetic analysis
For each of the four major lineages, we chose 600 consensus sequences 
with at least 95% coverage from the ONS-CIS dataset using weighted 
random sampling, with each sample of major lineage i collected in 
week j given a weight 1/nij, where nij is the number of sequences of major 
lineage i collected during week j22. These sequences were added as a 
background set to the collection of all consensus sequences for samples 
from persistent infections and reinfections. Mapping of each sequence 
to the Wuhan-Hu-1 reference sequence was already performed by shiver, 
and thus a full alignment for each of the four lineages could be con-
structed using only this.

Maximum likelihood phylogenetic trees were constructed using 
IQ-TREE (v1.6.12)56 using the GTR+gamma substitution model and 
ultrafast bootstrap57. Each tree was rooted using the collection dates 
of the samples and the heuristic residual mean square algorithm in 
TempEst58. Visualization used ggtree59.

Measuring the number of independent appearances of 
mutations and their fitness effects
To find the frequency with which mutations (not including deletions) 
that we identified during persistent infections are represented in 
cross-sectional samples from the population and their between-host 
level fitness, we used the results from ref. 29 on the estimated num-
ber of appearances of mutations from a representative global data-
set of approximately 6.5 million SARS-CoV-2 sequences (for number 
of appearances: https://github.com/jbloomlab/SARS2-mut-fitness/
blob/main/results/mutation_counts/aggregated.csv; for estimat-
ing the fitness effect of mutations: https://github.com/jbloomlab/
SARS2-mut-fitness/blob/main/results/aa_fitness/aamut_fitness_by_
clade.csv), as well as a subset of those sequences that are only sam-
pled from England (arguably more relevant to our sequences from 
the ONS-CIS). When doing this, we controlled for major lineage, 
meaning, for example, if a mutation occurred in a BA.1 persistent 
infection, we only considered the number of times it appeared on the 
BA.1 phylogeny. To map between Pangolin lineages and Nextstrain 
clades, we assumed B.1.1.7 ≡ 20I, B.1.617.2 ≡ {21A,21I,21J}, BA.1 ≡ 21K 
and BA.2 ≡ {21L,22C,22D}. We also compared the frequency and fitness 

effect of mutations that appeared in two persistent infections (that is, 
recurrent mutations) and those that appeared in only one persistent 
infection (that is, single mutations) as reported in ref. 29.

Estimating the percentage of infections that are persistent
We identified 381 and 54 infections that lasted 30 days or longer and 
60 days or longer, respectively. Comparing this with the number of 
individuals that had sequenced samples belonging to Alpha, Delta, 
BA.1 or BA.2, we identified approximately 0.49% (381 of 77,561) and 
0.07% (54 of 77,561) of infections with at least one sample that could 
be sequenced as persistent for 30 days or longer and 60 days or longer, 
respectively. As the ONS-CIS is a representative sample of individuals 
from the general population, we can estimate the percentage of all 
SARS-CoV-2 infections that became persistent for 1 month or longer, 
and that have intermittent high viral loads. To do this, we need to deter-
mine the probability that a persistent infection with one sequenced 
sample has at least one more sequenced sample. As most persistent 
infections probably last 1–3 months, and without knowing the true viral 
kinetics during persistent infection, this can be approximated as the 
probability that a persistent infection has virus that can be sequenced 
on any given day of sampling.

At one extreme, if a typical persistent infection has a virus sample that 
can be sequenced for only 4 days per month (assuming viral dynamics 
similar to one acute infection each month), only 14% of persistent infec-
tions would be detected through approximately monthly sampling. 
Correcting for this, we would estimate the percentage of detected 
infections that are persistent in the general population for 30 days or 
longer to be 3.5%, calculated as the ratio of the estimated prevalence 
of persistent infections (0.49%) to the detection rate (14%). Similarly, 
for infections persisting 60 days or longer, the estimated percent-
age would be 0.5% (0.07%/0.14). At the other extreme, if we assume 
typical persistent infections have sequenceable virus for 20 days per 
month and, therefore a detection rate of 71%, we would estimate the 
percentage of detected infections that are persistent infections in the 
general population for 30 days or longer to be 0.7% (0.49%/0.71) and 
for 60 days or longer to be 0.1% (0.07%/0.71).

Comparing viral load activities and symptoms
To quantify the changes in viral load activities during persistent infec-
tions, we compared Ct values at the last time point a sequence was 
obtained to when the first sequence was collected. Likewise, for rein-
fections, we compared the changes in Ct value between the primary 
infection and reinfection. We used a paired Student’s t-test to calculate 
P values in both cases as the distribution of differences in Ct values 
were normally distributed for both persistent infections (W = 0.99, 
P = 0.28) and reinfections (W = 0.99, P = 0.78) as determined by the 
Shapiro–Wilk test60.

We also tracked 12 symptoms consistently solicited from all par-
ticipants at every assessment. Symptoms were fever, weakness/tired-
ness, diarrhoea, shortness of breath, headache, nausea/vomiting, 
sore throat, muscle ache, abdominal pain, cough, loss of smell and 
loss of taste. At each follow-up assessment, participants were asked 
whether these 12 symptoms had been present in the past 7 days (manda-
tory question completed at all assessments where a swab was taken). 
Symptom discontinuation was defined as the first occurrence of two 
successive follow-up visits without reporting symptoms. To compare 
symptom counts during persistent infections and reinfections, we 
used the two-sided paired Wilcoxon test as the distribution of symp-
tom differences is not normally distributed (Fig. 3e). For calculation 
of P values and visualization of histograms and box plots, we used  
Mathematica (v13.1.0.0).

Long COVID analysis
Attributing persistent symptoms to a previous SARS-CoV-2 infec-
tion is difficult in the absence of a diagnostic test for long COVID, 
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and long COVID cases are known to be under-recorded in electronic 
health records61. Long COVID status was therefore self-reported by 
study participants, so we cannot exclude some participants’ symp-
toms being caused by a medical condition other than COVID-19. From  
February 2021, at every assessment, participants were asked “would 
you describe yourself as having long COVID, that is, you are still expe-
riencing symptoms more than 4 weeks after you first had COVID-19, 
that are not explained by something else?”.

When estimating long COVID prevalence in this analysis, we con-
sidered the first assessment at least 12 weeks and at least 26 weeks 
after infection. Our comparison group comprised all individuals with 
a positive PCR test and Ct ≤ 30 at the first positive test, excluding the 
individuals with persistent infection identified in this study, over the 
same time span as persistent infections such that first positive test was 
within the range of dates of the first positive test among the persistent 
infection group. Although the underlying study design for ONS-CIS is 
a cohort study, this specific analysis of long COVID focuses on com-
paring persistent to non-persistent infections in terms of the risk of 
subsequent self-reported long COVID (binary outcomes, at least 12 
weeks and at least 26 weeks following the first positive test). Some 
missing data were inevitable, given the timeframe of the study and 
participant completion or withdrawal (see above); overall, the long 
COVID question was not completed at 368,161 of 6,797,789 (5.4%) of 
assessments during the study period from 4 February 2021 when it was 
introduced, with 93% and 86% of participants without persistent infec-
tion but with a positive test with Ct < 30 having a response to the long 
COVID question at least 12 and 26 weeks after infection, respectively 
(Extended Data Fig. 1). Analysis used complete cases, that is, excluded 
those who did not have a response to the long COVID question in this 
timeframe (Extended Data Fig. 1). As these are binary outcomes rather 
than a time-to-event outcome, either an odds ratio or a relative risk 
could be used to evaluate the risk of long COVID in individuals with 
persistent infection; here we used odds ratio. The fact that some per-
sistent infections were probably missed due to sequencing only being 
attempted in high viral load samples and due to missed assessments 
means that our estimates of the impact of persistent infection are likely 
to be biased towards the null, that is, the true effects of persistent infec-
tion are probably larger than we estimate. Follow-up from the start of 
infection to first long COVID response was similar between persistent 
and non-persistent infections (Table 3).

In calculating the odds ratio of long COVID in individuals with persis-
tent infection relative to the comparison group, we used a binary logis-
tic regression model and accounted for confounding variables such as 
age at the last birthday, sex, Ct value, calendar date, area deprivation 
quintile group, presence of self-reported long-term health conditions 
(binary), vaccination status (unvaccinated or single vaccinated, fully 
vaccinated or booster vaccinated 14–89 days ago, fully vaccinated 
or booster vaccinated 90–179 days ago, fully vaccinated or booster 
vaccinated 180 or more days ago) and days from first positive test to 
long COVID follow-up response. All variables except the last one were 
defined at the time of the first positive test. Continuous variables (age, 
Ct value, calendar date and days to follow-up response) were modelled 
as restricted cubic splines with a single internal knot at the median of 
the distribution and boundary knots at the 5th and 95th percentiles. 
Vaccination status was derived from a combination of CIS and National 
Immunisation Management System (NIMS) data for participants in 
England, and CIS data alone for participants in Wales, Scotland and 
Northern Ireland. Given the number of potential confounders included, 
we did not test for interaction (effect modification). We did not test for 
goodness of fit because the model was solely used to control for meas-
ured confounders of the relationship between persistent positivity and 
long COVID, which we selected on substantive, rather than empirical, 
grounds (that is, using a causal inference approach).

Although we controlled for many confounders that could potentially 
impact our long COVID analysis, of note, age, sex, vaccination status 

and previous infection, there may still be unknown residual confound-
ers that can influence our results. We were also unable to perform the 
long COVID analysis for the reinfection group due to the low number 
of participants in this cohort who reported new-onset long COVID 12 
weeks or longer or 26 weeks or longer after infections.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All raw consensus sequences have been made publicly available as part 
of the COG-UK Consortium62 (https://webarchive.nationalarchives.
gov.uk/ukgwa/20230505214946/https://www.cogconsortium.uk/ 
priority-areas/data-linkage-analysis/) and are available from the 
European Nucleotide Archive at EMBL-EBI under accession number 
PRJEB37886. These sequences can be accessed using their COG-UK sam-
ple title. All post-aligned consensus sequences (aligned to Wuhan-Hu-1 
reference sequence) are available on figshare to facilitate reproduc-
ibility of our findings (https://figshare.com/s/acdaf46f87e0f9874e38). 
All remaining data, excluding personal clinical information on partici-
pants, are available in the main text and supporting materials. Source 
data are provided with this paper.
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Extended Data Fig. 1 | Flow diagram of COVID-19 Infection Survey (CIS) 
participant in this study. *At enrolment, participants could choose to have 
one assessment only, or 5 assessments over the first month only, or to continue 
approximately monthly follow-up until the end of the study. **158,719 (1.9%) CIS 

swabs failed testing. †One participant is classed as having both a persistent 
infection and reinfection with the same major lineage. ‡ Two-sided ranksum 
p = 0.53.



Extended Data Fig. 2 | Number of persistent infections identified with a 
shared rare SNP as a function of the threshold number of cases for calling  
a rare SNP. A threshold value of 1 for a rare SNP means the rare SNP is only found 
in one sequence of that lineage in the ONS-CIS dataset, excluding sequences 
from any persistently infected individuals. The number of persistent infections 
identified gives the number of persistent infections lasting at least 26 days we 
would identify as persistent in the ONS-CIS using the given threshold (black). 
The false positive percentage gives the percentage of times two random 
samples of the same major lineage taken from the ONS-CIS would be falsely 
identified as belonging to the same persistent infection (magenta; 1,000 pairs 
of samples were considered). As the threshold value for calling a rare SNP 

increases, the number of persistent infections identified (black) increases, but 
so does the false positive rate. We chose a threshold number of 400 (vertical 
dashed line) in this study for identifying persistent infections, since for this 
threshold the percentage of false positives were 0% for BA.1 and BA.2 and 3% for 
Alpha and Delta, but the number of persistent infections identified has begun 
to plateau. The total number of candidate persistent infections (that have at 
least a pair of sequence that are ≥26 days apart) we considered for each lineage 
equals the number of infections identified when there is a false positive rate of 
100% (18 Alpha, 122 Delta,130 BA.1, and 230 BA.2). The exception is a single 
individual with two BA.2 sequences which do not have a shared SNP relative to 
the BA.2 population-level consensus.
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Extended Data Fig. 3 | Phylogenetic relationship between samples from 
persistent infections and a representative background population per 
major lineage. Dashed lines connect every pair of sequences from the same 
individual. All sequences from the same individual are given the same colour. 
Pairs of sequences for (a) Alpha, (b) Delta, (c) Omicron BA.1, and (d) Omicron 
BA.2 that belong to persistent infections cluster closely together while 
reinfections do not. However, some of the sequences in 2 (out of 97) persistent 

infections with BA.1 and 5 (out of 167) persistent infections with BA.2 have poor 
bootstrap support (<80) and do not cluster together or cluster in a basal sister 
relationship. In all of these 7 cases, at least one of the sequences from each 
individual had a Ct value close to 30 with poor coverage. On the other hand, all 
sequences that belong to the same individual and have strong bootstrap 
support (>80) cluster together.



Extended Data Fig. 4 | Days between all pairs of sequences from the same 
individual with two or more sequences. Pairs of sequences are classified as  
(i) pairs with at least one unidentified Pango lineage (green), (ii) pairs with 
identical major lineage (orange), and (iii) pairs from different major lineages 
(blue). The boxes indicate the interquartile range (IQR), which spans from the 
25th to the 75th percentile, with the centre being the median and marked by a 
black vertical line. The medians for categories (i), (ii), and (iii) are 58, 9, and  
180 days, with IQRs of 28–163 days, 7–28 days, and 123–280 days, respectively.  
The extremities (displayed as grey horizontal lines) denote the minimum and 

maximum values within each category. Bottom panel shows the counts of pairs 
in each of these three categories for the first 200-day time span (highlighted in 
a dashed rectangle in the top panel). Pairs include all possible combinations of 
sequences from the same individual, including sequences that are less than  
26 days apart from each other. The number of pairs peaks at the 7-, 30-, and 
60-day periods due to the sampling frequency of ONS-CIS (see Methods). Note 
that pairs with identical major lineage may not necessarily have identical Pango 
lineages (see Methods).
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Extended Data Fig. 5 | RNA viral load dynamics of individuals identified 
with persistent infections and reinfections stratified by duration and viral 
activity. RNA viral load activities of individuals, with 3 or more PCR tests taken 
during infection/until reinfection, identified as having (a) persistent infections 
and (b) reinfections with rebounding (i.e., a negative RT-PCR test during the 

infection) (left column) and persistent chronic (right column) trajectories. 
Three reinfections (two occurring in <60 days and one between 60 to 90 days 
since first sequence) with persistent chronic viral load dynamics are excluded 
from the reinfection group as they are deemed potential persistent infections 
which do not have rare SNPs.



Extended Data Fig. 6 | Number of single nucleotide polymorphisms 
detected in pairs of sequences from persistent infections vs. random  
pairs from a representative background population. Number of consensus 
nucleotide differences per site between all the sequences collected from 
persistent infections (purple) and random pairs from individuals with only a 
single sequence within the ONS-CIS (blue) as a function of the number of days 
between each pair. For each major lineage, a pool of sequences from individuals 
with only one sequence within the ONS-CIS was sub-sampled and 500 random 

pairs generated for every 20 additional days between samples. For some major 
lineages where there were fewer than 500 pairs available beyond a certain time 
point, all possible random pairs within that 20-day period are used. Solid line 
and shaded area show the median and interquartile range, respectively, for 
random pairs over time. Note that the line and shaded area in each graph does 
not represent the rate of evolution but can be deemed as a measure of lineage 
diversity as a function of time difference between samples.
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Extended Data Fig. 7 | Dynamics of intra-host Single Nucleotide Variants 
(iSNVs) over time. Temporal frequencies of iSNVs over time for (a,b) two 
persistent infections with zero consensus change and (c) a persistent infection 
with accelerated within-host evolution. iSNV trajectories in a and b show 
substantial sub-consensus activity whereby de novo mutations reach up to 
40% frequency. In panel c, at the second time point (29 days since the first 

sequence), 30 consensus change mutations are detected. At the first time 
point, 4 iSNVs that are above 20% frequency are shared across at least one later 
time point. Each line represents a unique iSNV and the two horizontal grey lines 
represent the 20% and 80% frequency thresholds. The minimum frequency and 
number of bases to call an iSNV is 20% and 10 bases, respectively, and all iSNVs 
crossing the 20% threshold at least one more time point are included.



Extended Data Fig. 8 | Counting the number of independent appearances of 
mutations in persistently infected individuals and their fitness effect on a 
global phylogeny. (a–c) Comparing the number of independent appearances 
of all SARS-CoV-2 mutations (orange) on global and English phylogenies of 
representative samples from Alpha, Delta, BA.1, and BA.2 major lineages with 
mutations that are found in persistently infected individuals (blue) that only 
emerged in one (pink) or two (green) individuals. (d,e) Distribution of fitness 
effects of mutations on a globally representative phylogeny of the four major 

lineages of Alpha, Delta, BA.1, and BA.2. Mutations from persistent infections 
have an overall higher fitness than other mutations on the global phylogeny. 
Recurrent mutations also generally have a higher fitness than those that are 
found in only a single individual. Independent appearances of mutations on the 
global and English phylogenies are taken from https://github.com/jbloomlab/
SARS2-mut-fitness/blob/main/results/mutation_counts/aggregated.csv and 
the fitness effect of mutations are taken from https://github.com/jbloomlab/
SARS2-mut-fitness/blob/main/results/aa_fitness/aamut_fitness_by_clade.csv.

https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/mutation_counts/aggregated.csv
https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/mutation_counts/aggregated.csv
https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/aa_fitness/aamut_fitness_by_clade.csv
https://github.com/jbloomlab/SARS2-mut-fitness/blob/main/results/aa_fitness/aamut_fitness_by_clade.csv
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Extended Data Fig. 9 | Pairwise differences between sequences from 
individuals with two or more sequences. (Left column) Number of consensus 
differences per site between pairs of sequences from each individual with two 
or more sequences, including sequences that are less than 26 days apart. Pairs 
include all possible combinations of sequences from the same individual. Only 
sites where a nucleotide difference could be called were included. Vertical 
dashed line shows the lowest number of SNPs per base for pairs with different 
major lineages. Any pair with at least one unidentified lineage with a SNP per 
base smaller than the dashed line is selected as a candidate pair from a persistent 
infection as long as the pair is at least 26 days apart from each other. Pairs with 
different major lineages are coloured based on their number of SNPs per base 
into three groups: (i) pairs with one BA.1 and one BA.2 or BA.4 or BA.5 sequence 

(orange; n = 115); (ii) pairs with one BA.2 and one BA.4 or BA.5 sequence (blue; 
n = 628); and (iii) pairs with one Omicron (including all BA.x lineages) and one 
Delta (B.1.617.2), Alpha (B.1.1.7), or B.1.177 sequence (green; 1673) and (iv) all 
other possible combinations (red; n = 70). There was a total of 286 pairs with at 
least one unidentified lineage (cyan), 1470 pairs with the same major lineage 
(magenta), and 2486 pairs with different major lineages. (Right column) 
Proportion of sequences (shown in the stacked form) with different number 
overlapping base pairs. Those with at least one unidentified lineage (n = 286) 
have a lower number of overlapping base pairs relative to pairs with identifiable 
lineage (i.e. pairs with identical or different major lineage; n = 3956) mainly due 
to having lower coverage.



Extended Data Table 1 | Baseline characteristics of SARS-CoV-2 samples from participants in this study, from 2 November 
2020 to 15 August 2022

*The data is in 10-year age-bands, apart from the under 10 s who are represented by two age bands. 
**Total number of individuals with two or more sequences of the same lineage that are at least 26 days apart. This includes individuals with one or more undetermined lineages who have at least 
one sequence with determined lineage. †Start of infection is assigned on sequencing. 
‡ Start of infection is assigned on calendar time since not all infections had a sequence obtained. The fixed dates broadly represent the period when each major lineage was most prevalent 
across the UK.
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