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By combining the notions of G-metric space and b-metric space, in this paper, we present coincidence fixed-point theorems for
p-hybrid mappings in Gb-metric spaces. An example is given to demonstrate the novelty of our main results. Henceforth, the
illustrative applications are given by using nonlinear fractional differential equations.

1. Introduction

In 1922, Banach [1] initiated the study of constructive theory
in metric space. The constructive theory is used for nonlin-
ear functional analysis, approximation theory, optimization
theory (saddle function), variation inequalities, game theory
(Nash equilibrium), and economics (Black-Scholes theo-
rem). In addition, it is used in many practical and research
problems in various fields beyond mathematics. It can
reduce to fixed-point problems, which include biology,
chemistry, physics, computer science, economics, engineer-
ing, global analysis statistics, and operations research.

In 1969, Nadler [2] proved the multivalued version of
Banach’s contraction principle [1]. Naimpally et al. [3] gen-
eralized Goebel’s [4] result in a hybrid contraction mapping.
The method of hybrid fixed points can be used to derive
another classical fixed-point theorem result. The concept of
hybrid pair of mapping is very consequential for the theory
of fixed point, and it has an important role in game theory,
optimization theory, and differential equations.

Definition 1 (see [3]). Let P : W ⟶CLðW Þ and Q :
W ⟶W be such that PW is a complete subspace of W
and QW ⊂PW . Further, assume there exists θ, 0 < θ < 1
such that for every κ, μ ∈W ,

H P κ,P μð Þ ≤ θd Qκ,Qμð Þ: ð1Þ

Then, P and Q have a coincidence; that is, there exists
ν ∈W such that Qν ∈P ν.

Later, Chauhan et al. [5] proved the results in unified
common fixed-point theorems for a hybrid pair of mappings
via an implicit relation involving altering distance function.
Imdad et al. [6, 7] generalized the hybrid fixed-point theo-
rems in symmetric spaces via common limit range property
and joint common limit range property in metric spaces.
Nashine et al. [8] gave the proof using (JCLR) property
for hybrid fixed-point theorems via quasi F-contractions.
Wangwe and Kumar [9, 10] proved the common fixed-
point theorem for a hybrid pair of mappings in weak partial
b-metric spaces and G-metric space with some applications.

Bakhtin [11] and Czerwik [12] generalized the concept
of metric space to b-metric space due to some problems,
especially the convergence issue of measurable functions
to a measure that led to a generalization of a metric’s
notion. Czerwik [12] established b-metric spaces by intro-
ducing a parameter s ≥ 1 in the triangle inequality as a
coefficient and generalized Banach’s contraction principle
to these spaces. Later, Czerwik [13] proved the multiva-
lued results in b-metric spaces. These findings motivated
several potential researchers to perform and analyze con-
traction condition variants using single- and multivalued
maps in b-metric space. One can refer to [14–18] and
the references therein.
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The concepts ofG-metric space were initiated by Mustafa
and Sims [19, 20] due to the shortcoming of the fundamental
topological structure on D-metric spaces. Also, they replaced
the tetrahedral inequality with an inequality involving the
repetition of indices. Further, several researchers generalized
the results for single-valued mapping and multivalued map-
pings in G-metric spaces. For more results, we refer the
reader in [21–25] and the references contained. Furthermore,
Aghajani et al. [26] using both concepts of b-metrics and
G-metrics initiated the results on Gb-metric spaces. Since
then, several results followed for single- and multivalued
mappings for various abstract spaces. For more literature,
we refer the reader to [27–32] and the references contained.

This paper is aimed at proving a coincidence fixed-point
theorem for p-hybrid contraction mappings in Gb-metric
space with some application to the fractional differential
equation. In particular, we modify and extend the works
due to Karapinar et al. [33, 34], Wangwe and Kumar [10],
and Aghajani et al. [26]. The results proved to have a novelty
in the study of fixed-point theory.

2. Preliminaries

This part introduces some preliminary results of definitions
and theorems, which will help develop the main result.

Bakhtin [11] and Czerwik [12] established a new metric
on a nonempty set, known as a b-metric.

Definition 2 (see [12]). Let W be a nonempty set and s ≥ 1
be a given real number. Suppose that a function db : W ×
W ⟶ ½0,∞Þ satisfies

(B1) dbðκ, μÞ = 0 iff κ = μ
(B2) dbðκ, μÞ = dbðμ, κÞ
(B3) dbðκ, μÞ ≤ s½dbðκ, νÞ + dbðν, κÞ�, for all κ, μ, ν ∈W
Then, db is said to be b-metric and ðW , db, sÞ is a

b-metric space. s ≥ 1 is defined as a parameter of ðW , db, sÞ.

We give some examples which satisfy b-metric space
axioms.

Example 1 (see [11, 12]). Consider the set W = ½0, 1�
endowed with the function db : W ×W ⟶ ½0,∞Þ defined
by dbðκ, μÞ = jκ − μj2 for all κ, μ ∈W . Thus, ðW , db, 2Þ is a
b-metric space for s = 2.

Mustafa and Sims [20] gave the following axioms for
G-metric space.

Definition 3 (see [20]). LetW represent a nonempty set with
G : W ×W ×W ⟶ℝ+ as a function which satisfies the
following axioms:

(G1) Gðκ, μ, νÞ = 0 for κ = μ = ν
(G2) Gðκ, κ, μÞ > 0, ∀ κ, μ ∈W if ν=μ
(G3) Gðκ, κ, μÞ ≤Gðκ, μ, νÞ ∀ κ, μ ∈W if ν=μ
(G4) Gðκ, μ, νÞ =Gðκ, ν, μÞ =Gðμ, ν, κÞ =⋯
(G5) Gðκ, μ, νÞ ≤Gðκ, a, aÞ +Gða, μ, νÞ, ∀ κ, μ, ν, a ∈W
Then, G is called a metric and ðW ,GÞ is a G-metric

space.

We give an example from [20].

Example 2 (see [20]). Let W =ℝ represent a set of real
numbers. Define G : ℝ3 ⟶ℝ+ as follows:

G κ, μ, νð Þ = κ − μj j + μ − νj j + κ − νj j, ð2Þ

for all κ, μ, ν ∈W .
Recall that if Gðκ, μ, νÞ = 0, then κ = μ = ν.

Example 3 (see [20]). Let W =ℝ. Then, G-metric G is
defined by

G κ, μ, νð Þ = 1
3 κ − μj j + μ − νj j + κ − νj jð Þ, ð3Þ

for all κ, μ, ν ∈W .

On the other hand, Aghajani et al. combining the
concepts from Bakhtin [11], Czerwik [12] and Mustafa and
Sims [20], they established a new generalized space known
as Gb-metric space.

Definition 4 (see [26]). Let W be a nonempty set and s ≥ 1.
Suppose that Gb : W ×W ×W ⟶ ½0,∞Þ is a function
satisfying the following conditions:

ðGb1Þ Gbðκ, μ, νÞ = 0 if κ = μ = ν
ðGb2Þ 0 <Gðκ, κ, μÞ, for all κ, μ ∈W with ν=μ
ðGb3Þ Gðκ, κ, μÞ ≤Gðκ, μ, νÞ for all κ, μ ∈W with ν=μ
ðGb4Þ Gðκ, μ, νÞ =Gðκ, ν, μÞ = Gðμ, ν, κÞ =⋯ (symmetry

in all three variables)
ðGb5Þ Gðκ, μ, νÞ ≤ s½Gðκ, a, aÞ +Gða, μ, νÞ�, for all κ, μ,

ν, a ∈W (rectangle inequality)

The distance metric Gb is called a Gb-metric, and ðW ,
GbÞ is called a Gb-metric space. The real number s ≥ 1 is
called the coefficient of ðW ,GbÞ.

LetW =ℝ be the set of real numbers; then, the mapping
Gb : W ×W ×W ⟶ ½0,∞Þ is defined by

Gb κ, μ, νð Þ = 1
9 κ − μj j + μ − νj j + κ − νj j½ �2, ð4Þ

for all κ, μ, ν ∈ℝ, is a Gb-metric.

Example 4 (see [26]). Let ðW ,GbÞ be a Gb-metric space.
Consider

Gb κ, μ, νð Þ = Gb κ, μ, νð Þð Þp, ð5Þ

for all κ, μ, ν ∈W and p > 1. Therefore, Gb is a Gb-metric
with s = 2p−1.

Example 5 (see [26]). Let ðW ,GbÞ be a Gb-metric space.
Then, for κ0 ∈W , r > 0, the Gb-ball with center κ0 and radius
r is

BG κ0, rð Þ = μ ∈W jG κ0, μ, μð Þ < rf g: ð6Þ
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For example, κ =ℝ, and consider a Gb-metric G
defined by

Gb κ, μ, νð Þ = 1
9 κ − μj j + μ − νj j + κ − νj j½ �2, ð7Þ

for all κ, μ, ν ∈ℝ. Then,

BG 3, 4ð Þ = μ ∈W jG 3, μ, μð Þ < 4f g
= μ ∈W j 19 κ − μj j + μ − νj j + κ − νj j½ �2 < 4
� �

= μ ∈W j 19 3 − μj j + μ − νj j + 3 − νj j½ �2 < 4
� �

= μ ∈W j 19 3 − μj j + 3 − νj j½ �2 < 4
� �

= μ ∈W j 49 3 − μj j2 < 4
� �

= μ ∈W 3 − μj j2�� < 9
È É

= 0, 6ð Þ:

ð8Þ

Aghajani et al. [26] gave the proposition below that
satisfies Gb-metric axioms.

Proposition 5 (see [26]). Let ðW ,GbÞ be a Gb-metric space,
∀ κ, μ, ν, a ∈W ; we have the following:

(i) If Gbðκ, μ, νÞ ≤ Gbðκ, κ, μÞ +Gbðκ, κ, νÞ, then κ =
μ = ν

(ii) Gbðκ, μ, νÞ ≤ s½Gbðκ, κ, μÞ + Gbðκ, κ, νÞ�
(iii) Gbðκ, μ, μÞ ≤ 2sGbðμ, κ, κÞ
(iv) Gbðκ, μ, νÞ ≤ s½Gbðκ, a, νÞ +Gbða, μ, νÞ�

Motivated by Aghajani et al. [26], we recall some proper-
ties in Gb-metric spaces as follows.

Definition 6 (see [26]). Let ðW ,GbÞ be a Gb-metric space. If
fκig ∈W then, we have the following:

(i) Gb is convergence to a point κ ∈W if, for each ε > 0,
there exists a positive integer n0 such that, for all i,
j ≥ n0, Gbðκi, κj, κÞ < ε

(ii) Gb is a Cauchy sequence if, for ε > 0, ∃ a positive inte-
ger n0 such that, for all i, j, k ≥ n0, Gbðκi, κj, κkÞ < ε

Proposition 7 (see [26, 27]). Let ðW ,GbÞ be a Gb-metric
space. Then, the function is given by

dGb
κ, μð Þ =Gb κ, μ, μð Þ + Gb μ, κ, κð Þ, ð9Þ

for all κ, μ ∈W . Define a b-metric on W . It is called a b-
metric induced by the Gb-metric G.

Proposition 8 (see [27]). Let ðW ,GbÞ be a Gb-metric space.
The properties below are similar:

(i) fκig is Gb-convergence to κ

(ii) lim
i⟶∞

Gbðκi, κi, κÞ = 0

(iii) lim
i⟶∞

Gbðκi, κ, κÞ = 0

(iv) lim
i⟶∞

Gbðκi, κj, κkÞ = 0

Proposition 9 (see [27]). Let ðW ,GbÞ be a Gb-metric space.
Therefore, the properties below hold:

(i) fκig is a Gb-Cauchy sequence

(ii) ∀ ε > 0, there exists n0 ∈ℕ such that, ∀i, j ∈ n0, Gðκi,
κj, κkÞ = 0

Definition 10 (see [26]). A Gb-metric space W is called Gb-
complete if every Gb Cauchy sequence is a Gb-convergent
in W .

Further, Makran et al. [29] extended the works due to
Aghajani et al. [26] and Kaewcharoen and Kaewkhao [22]
by introducing the multivalued versions in Gb-metric spaces
as follows:

Let W be a Gb-metric space. We shall denote CBGbðW Þ
as a nonempty, closed, and bounded subsets of W . Let
HGb

ð:,:,:Þ represent the Haursdorff-Gb-metric on CBGb

ðW Þ, and A ,B,C ∈CBGbðW Þ define

HGb
A ,B,Cð Þ

=max sup
κ∈A

Gb κ,B,Cð Þ, sup
κ∈B

Gb κ,C ,Að Þ, sup
κ∈C

Gb κ,A ,Bð Þ
� �

,

ð10Þ

where

Gb κ,B,Cð Þ = dGb
κ,Bð Þ + dGb

B,Cð Þ + dGb
κ,Cð Þ, ð11Þ

dGb
κ,Bð Þ = inf dGb

κ, μð Þ, μ ∈B
È É

, ð12Þ

dGb
A ,Bð Þ = inf dGb

a, bð Þ, a ∈A , b ∈B
È É

, ð13Þ

dGb
κ, μ,Cð Þ = inf Gb κ, μ, νð Þ, ν ∈Cf g: ð14Þ

Lemma 11 (see [29]). Let ðW ,GbÞ be a Gb-metric space
with s ≥ 1 and A ,B ∈CBGbðW Þ. Then, for each a ∈A ,
we have

Gb a,B,Bð Þ ≤HGb
A ,B,Bð Þ: ð15Þ
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Lemma 12 (see [29]). Let ðW ,GbÞ be a Gb-metric space
with s ≥ 1. If A ,B ∈CBGbðW Þ and κ ∈A , then for each
ε > 0, there exists μ ∈B such that

Gb κ, μ, μð Þ ≤HGb
A ,B,Bð Þ + σ: ð16Þ

Lemma 13 (see [35]). Let ðW ,GbÞ be a Gb-metric space with
s ≥ 1, and suppose that fκig, fμig and fνig are Gb-convergent
to κ, μ, and ν, respectively. Then, we have

1
s3
Gb κ, μ, νð Þ ≤ lim

i⟶∞
inf Gb κi, μi, νið Þ

≤ lim
i⟶∞

sup Gb κi, μi, νið Þ
≤ s3Gb κ, μ, νð Þ:

ð17Þ

In particular, if κ = μ = ν, then we have lim
i⟶∞

Gbðκi, μi,
νiÞ = 0:

Definition 14 (see [22]). Let W be a nonempty set. Assume
Q : W ⟶W and P : W ⟶ 2W are two mappings. If
w =Qκ ∈P κ for some κ ∈W , then κ is a coincidence
point of two mapping ðQ,P Þ. Then, the coincidence point

of Q and P is w. On the other hand, the mappings Q and
P are said to be weakly compatible if Qκ ∈P κ for some
κ ∈W consequently QP κ ⊆PQκ.

Proposition 15 (see [22]). Let W be a nonempty set. Assume
Q : W ⟶W and P : W ⟶ 2W are said to be weakly
compatible mappings. If u =Qκ ∈P κ is a unique coincidence
of Q and P , u is said to be a unique common fixed point of Q
and P .

Definition 16 (see [36]). Let ðQ,P Þ be the two self-mappings
on an ordered metric space ðW , d, °Þ with QðW Þ ⊆P ðW Þ.
For every κ0 ∈W , consider the sequence fκig ∈W defined
by Qκi =P κi+1, ∀ i ∈ℕ0. A sequence fQκig is a Q-P
sequence starting at κ0.

Wangwe and Kumar [10] gave the following definition
and theorem.

Definition 17 (see [10]). Let ðX,GÞ be a G-metric space and
let f , T be two hybrid mapping on this space for p ≥ 0 and
ki ≥ 0, i = 1, 2, 3, 4, such that ∑4

i=1ki = 1. We define the fol-
lowing expression:

Theorem 18 (see [10]). Let ðX,GÞ be a G-metric space, and
suppose f , T : X⟶ CBðXÞ is a p-hybrid mapping with
almost altering distance ψ ∈Ψ satisfying the following
conditions:

(a) f and T are weakly compatible

(b) f and T satisfy CLRf property

(c) Tx ⊆ f ðXÞ
(d) TðXÞ is a G-complete subspace of X

(e) H p
GðTζ, Tη, TηÞ ≤ ψðMp

Gðζ, η, ηÞÞ, for all ζ, η ∈ X
and p ≥ 0

Therefore, f andT admit a unique common fixed point inX.

3. Main Results

We commence this section by extending Definition 17 to
Gb-metric space setting.

Definition 19. Let ðW ,GbÞ be a Gb-metric space, Q,P be a
pair of hybrid mapping, and s ≥ 1 with p ≥ 0 and zi ≥ 0, i =
1, 2, 3, 4, such that ∑4

i=1zi = 1. Then, we define the following
expression:

N
p
Gb

κ, μ, νð Þ = z1 Gb Qκ,Qμ,Qνð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp
+ z3 Gb P μ,Qμ,Qνð Þð Þp

+ z4
Gb Qκ,P μ,P νð Þ + Gb P κ,Qμ,Qνð Þ

s

� �p

,

ð19Þ

for p ≥ 0, κ, μ, ν ∈W :

Now, we are equipped to prove the following theorem.

Theorem 20. Let ðW ,GbÞ be a complete Gb-metric space, and
suppose Q : W ⟶W and P : W ⟶CBGbðW Þ are p-

M
p
G ζ, η, ηð Þ =

k1 G f ζ, f η, f ηð Þð Þp + k2 G f ζ, Tζ, Tζð Þð Þp + k3 G Tη, f η, f ηð Þð Þp + k4
G f ζ, Tη, Tηð Þ +G Tζ, f η, f ηð Þ

2

� �p� �1/p
,

p ≥ 0, ζ, η ∈ X,

G f ζ, f ζ, f ηð Þ½ �K1 G f ζ, Tζ, Tζð Þ½ �K2 G Tη, f η, f ηð Þ½ �K3
G Tζ, f η, f ηð Þ +G f ζ, Tη, Tηð Þ

2

� �K4

,

p = 0, ζ, η ∈ X:

8>>>>>>>>>><
>>>>>>>>>>:

ð18Þ
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hybrid contraction mapping on W and s ≥ 1 satisfying the
following conditions:

(i) ∃ QW ⊆PW , since ðW ,GbÞ is complete

(ii) Q and P are weakly compatible

(iii) PW is a Gb-complete subspace of W

(iv) For i, fQκig and fP κig converge to a common fixed
point

(v) ∃ a constant ðθ = z1 + z2 + z4Þ/ð1 − ðz3 + z4ÞÞ ∈ ½0, 1Þ,
s ≥ 1, and θ > 0 such that ∀κ, μ, ν ∈W ; we have

sH p
Gb

P κ,P μ,P νð Þ ≤ θN p
Gb

κ, μ, νð Þ ð20Þ

Then, Q and P pose a unique coincidence fixed point.

Proof. Assume that QW ⊆PW and PW is a Gb-complete
subspace ofW . We can construct a P -Q-sequence such that
fP κig ∈W with initial point κ0 satisfying

Qκi,P κi−1,P κi−1ð Þ, Qκi+1,P κi,P κið Þ, Qκi+2,P κi+1,P κi+1ð Þ⋯ ,
ð21Þ

∀i ∈ℕ0, such that fP κig, fQκig ∈P ðW Þ.
Let κ0 be an arbitrary element in W . If Qκ0 =P κ0, then

κ0 is a coincidence point of Q and P . Therefore, our proof is
completed. Otherwise, for Qκ0 ≠P κ0, it implies that QW
⊂PW . Now, we choose κ1 ∈W such that Qκ1 =P κ0.
Again, we can choose κ2 ∈W such that Qκ2 =P κ1. By
repeating the above procedure and applying Definition 16,
we formulate a sequence fκng ⊂W , such that

Qκi =P κi−1,

Qκi+1 =P κi:
ð22Þ

Equivalently,

Qκi,Qκi+1ð Þ = P κi−1,P κið Þ: ð23Þ

Using Lemmas 11 and 12, we obtain that there exists

Gb Qκi,Qκi+1,Qκi+1ð Þ ≤ sHGb
P κi−1,P κi,P κið Þ: ð24Þ

Consequently, we have

Gb Qκi,Qκi+1,Qκi+1ð Þ ≤ sHGb
P κi−1,P κi,P κið Þ,

<HGb
P κi−1,P κi,P κið Þ:

ð25Þ

Apply κ = κi−1, μ = κi, and ν = κi in (20); we get

Gb Qκi,Qκi+1,Qκi+1ð Þp ≤ sH p
Gb

P κi−1,P κi,P κið Þ,
≤ θN p

Gb
κi−1, κi, κið Þ,

ð26Þ

where

N
p
Gb

κi−1, κi, κið Þ
= z1 Gb Qκi−1,Qκi,Qκið Þð Þp

+ z2 Gb Qκi−1,P κi−1,P κi−1ð Þð Þp
+ z3 Gb P κi,Qκi,Qκið Þð Þp

+ z4
Gb Qκi−1,P κi,P κið Þ +G P κi−1,Qκi,Qκið Þ

s

� �p

,

ð27Þ

N
p
Gb

κi−1, κi, κið Þ
= z1 Gb Qκi−1,Qκi,Qκið Þð Þp + z2 Gb Qκi−1,Qκi,Qκið Þð Þp

+ z3 Gb Qκi+1,Qκi,Qκið Þð Þp

+ z4
Gb Qκi−1,Qκi+1,Qκi+1ð Þ +Gb Qκi,Qκi,Qκið Þ

s

� �p

:

ð28Þ
By (Gb5), we have

Gb Qκi−1,Qκi+1,Qκi+1ð Þ
≤ s Gb Qκi−1,Qκi,Qκið Þ +Gb Qκi,Qκi+1,Qκi+1ð Þ½ �: ð29Þ

Applying (29) in (28), we obtain

N
p
Gb

κi−1, κi, κið Þ
= z1 Gb Qκi−1,Qκi,Qκið Þð Þp + z2 Gb Qκi−1,Qκi,Qκið Þð Þp

+ z3 Gb Qκi+1,Qκi,Qκið Þð Þp

+ z4
s Gb Qκi−1,Qκi,Qκið Þ +Gb Qκi,Qκi+1,Qκi+1ð Þ½ � +Gb Qκi,Qκi,Qκið Þ

s

� �p

,

ð30Þ

N
p
Gb

κi−1, κi, κið Þ = z1 + z2 + z4ð Þ Gb Qκi−1,Qκi,Qκið Þð Þp
+ z3 + z4ð Þ Gb Qκi,Qκi+1,Qκi+1ð Þð Þp:

ð31Þ
Using (9) and (31) in (26), we get

Gb Qκi,Qκi+1,Qκi+1ð Þð Þp
< z1 + z2 + z4ð Þ Gb Qκi−1,Qκi,Qκið Þð Þp

+ z3 + z4ð Þ Gb Qκi,Qκi+1,Qκi+1ð Þð Þp: 1 − z3 + z4ð Þð Þ
Á Gb Qκi,Qκi+1,Qκi+1ð Þð Þp

≤ z1 + z2 + z4ð Þ Gb Qκi−1,Qκi,Qκið Þð Þp
Á Gb Qκi,Qκi+1,Qκi+1ð Þð Þp

≤
z1 + z2 + z4
1 − z3 + z4ð Þ Gb Qκi−1,Qκi,Qκið Þð Þp:

ð32Þ

Let θ = ðz1 + z2 + z4Þ/ð1 − ðz3 + z4Þ < 1Þ; we have

Gb Qκi,Qκi+1,Qκi+1ð Þð Þp ≤ θ Gb Qκi−1,Qκi,Qκið Þð Þp: ð33Þ
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By repeating the above procedure, we construct a
sequence Qκi ⊂W such that Qκi ∉P κi,Qκi+1 ∈P κi.

Gb Qκi,Qκi+1,Qκi+1ð Þð Þp ≤ θi Gb Qκi−1,Qκi,Qκið Þð Þp: ð34Þ

In order to simplify the above equation, let Gbi
=

ðGbðQκi,Qκi+1,Qκi+1ÞÞp. Thus, by (34), we have

〠
∞

i=0
Gbi

≤ 〠
∞

i=1
θiGbi−1

, ð35Þ

for all i ∈ℕ.
By taking limits as i⟶∞ in (35), we obtain

lim
i⟶∞

Gbi
= 0: ð36Þ

Therefore, ∑∞
i=0Gbi

=∑∞
i=0Gbi−1

converges.
Using (34) and ðGb4Þ-symmetric properties, for all i, j ∈

ℕ0 with j > i, we obtain

Gb Qκi,Qκi+j,Qκi+j
À Áp ≤ sGb Qκi,Qκi+1,Qκi+1ð Þp

+ s2Gb Qκi+1,Qκi+2,Qκi+2ð Þp
+ s3Gb Qκi+1,Qκi+2,Qκi+2ð Þp
+⋯+sj−2Gb Qκi+j−2,Qκi+j−1,Qκi+j−1

À Áp
+ sj−1Gb Qκi+j−1,Qκi+j,Qκi+j

À Áp
:

ð37Þ

On the other hand, using (35), we obtain

Gb Qκi,Qκi+j,Qκi+j
À Áp ≤ sGbi

+ s2Gbi+1

+ s3Gbi+2
⋯ +sj−2Gbi+ j−1

+ sj−1Gbi+ j−2
,

≤ si 〠
∞

i=1
θiGbi−1

,⟶ 0 as i⟶∞:

ð38Þ

where Gbi
= GbðQκi,Qκi+j,Qκi+jÞp = 0. This proves that the

sequence fQκig satisfies the Gb-Cauchy sequence conditions
on complete subspace QW . Henceforth, fQκig is a Cauchy
sequence.

Let ðQ,P Þ be closed and weakly compatible mappings.
From Definition 14, we have

QP κi =PQκi,

Qκi =P κi,

PQκi =PP κi =P κi+1,

QP κi =QQκi =Qκi+1:

ð39Þ

Now, we find that κ ∈W such that Qκ = μ. We will show
that Qκ ∈P κ. For each i ∈ℕ, using (20), it follows that

Gb Qκi+1,P κ,P κð Þp ≤ sH p
Gb

P κi,P κ,P κð Þ ≤ θN p
Gb

κi, κ, κð Þ,
ð40Þ

where

N
p
Gb

κi, κ, κð Þ = z1 Gb Qκi,Qκ,Qκð Þð Þp
+ z2 Gb Qκi,P κi,P κið Þð Þp
+ z3 Gb P κ,Qκ,Qκð Þð Þp

+ z4
Gb Qκi,P κ,P κð Þ + G P κi,Qκ,Qκð Þ

s

� �p

:

ð41Þ
Taking the limit as i⟶∞ in (40) and (41) with θ < 1,

we obtain

Gb Qκ,P κ,P κð Þp
≤ z1 Gb Qκ,Qκ,Qκð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp

+ z3 Gb P κ,Qκ,Qκð Þð Þp

+ z4
Gb Qκ,P κ,P κð Þ +G P κ,Qκ,Qκð Þ

s

� �p

,

≤ z1 Gb Qκ,Qκ,Qκð Þð Þp + z2 Gb Qx,P κ,P κð Þð Þp
+ z3 Gb P κ,Qκ,Qκð Þð Þp
+ 2s−1
À Áp

z4 Gb Qκ,P κ,P κð Þð Þp,Gb Qκ,P κ,P κð Þp

≤ z2 + z3 + 2s−1
À Áp

z4
� �

Gb Qκ,P κ,P κð Þp:

1 − z2 + z3 + 2s−1
À Áp

z4
� �� �

Gb Qκ,P κ,P κð Þp

≤ 0,

Qκ,P κ,P κð Þp
≤ 0:

ð42Þ

This shows that Qκ ∈P κ. That is, Q and P have a point
of coincidence.

Next, we prove the uniqueness of the point of coinci-
dence of Q and P . Let Qκ ∈P κ and Qμ ∈P μ. Assume that
GbðQκ,P μ,P μÞp > 0. Using (20), we get

Gb Qκ,P μ,P μð Þp ≤ sH p
Gb

P κ,P μ,P μð Þ ≤ θN p
Gb

κ, μ, μð Þ,
ð43Þ

where

N
p
Gb

κ, μ, μð Þ = z1 Gb Qκ,Qμ,Qyð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp
+ z3 Gb P μ,Qμ,Qμð Þð Þp

+ z4
Gb Qμ,P μ,P μð Þ +G P κ,Qμ,Qμð Þ

s

� �p

:

ð44Þ
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From ðGb4Þ the symmetric properties, using (43) and
(44) with θ < 1, we obtain

Gb Qκ,P μ,P μð Þp
≤ z1 Gb Qκ,Qμ,Qμð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp

+ z3 Gb P μ,Qμ,Qμð Þð Þp

+ z4
Gb Qκ,P μ,P μð Þ +G P κ,Qμ,Qμð Þ

s

� �p

,

Gb Qκ,P μ,P μð Þp

≤ z1 + 2s−1
À Áp

z4
� �

Gb Qκ,P μ,P μð Þp,

1 − z1 + 2s−1
À Áp

z4
� �� �

Gb Qκ,P μ,P μð Þp

≤ 0,

Qκ,P μ,P μð Þp
≤ 0:

ð45Þ

We can conclude that Qκ =P μ. Suppose that Q and P

are weakly compatible. By applying Proposition 15 and
Definition 14, we obtain that Q and P have a unique coinci-
dence fixed point, which is a contradiction. Thus, μ is a coin-
cidence point of Q and P , for κ = μ. The proof is completed.

Inspired by the idea of Theorem 20, we can deduce the
corollary as follows:

Corollary 21. Let ðW ,GbÞ be a Gb-metric space, and let Q :

W ⟶W and P : W ⟶CBGbðW Þ be a p-hybrid map-
ping which satisfies the following hypotheses:

(i) QW ⊂ðW ,GbÞ
(ii) ∃ a continuous function θ < 1 and s ≥ 1 such that

sH p
Gb

P κ,P μ,P νð Þ ≤ θMp
Gb

κ, μ, νð Þ, ð46Þ

where

M
p
Gb

κ, μ, νð Þ =
Gb Qκ,Qμ,Qνð Þ, Gb Qκ,P κ,Qνð Þ
Gb Qν,P ν,Qνð Þ,Gb Qμ,Qμ,Qνð Þ

( )

ð47Þ

Then, Q and P have the unique coincidence fixed point.

Proof. We prove the above corollary by following similar
steps of Theorem 20. Therefore, the proof is completed.

Next, we demonstrate with an example for Theorem 20.

Example 6. LetW = ½0,∞Þ be endowed with the usual order-
ing on ℝ and Gb-metric on W be given by Gbðκ, μ, νÞ =

ð1/9Þðjκ − μj + jμ − νj + jκ − νjÞ2, where s = 2p−1 and p ≥ 1
with z1 = 0:5, z2 = 0:1, z3 = 0:2, and z4 = 0:1.

Consider W to be Gb-complete. Define a self-map as Q :
W ⟶W by

Qκ =
ffiffiffi
κ3

p
, ∀κ ∈W , ð48Þ

and P : W ⟶CBGbðW Þ by

P κ = 0, κn½ �, ∀κ ∈W : ð49Þ

Therefore,

(i) PW is a Gb-complete subspace in W

(ii) for θ ∈ ½0, 1Þ in (20), we have

sH p
Gb

P κ,P μ,P νð Þ ≤ θN p
Gb

κ, μ, νð Þ, ð50Þ

where

N
p
Gb

κ, μ, νð Þ
= z1 Gb Qκ,Qμ,Qνð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp

+ z3 Gb P μ,Qμ,Qνð Þð Þp

+ z4
Gb Qκ,P μ,P νð Þ +Gb P κ,Qμ,Qνð Þ

s

� �p

,

ð51Þ

for all κ, μ, ν ∈W

Applying (i), we prove that PW is a Gb-complete sub-
space in W . By Proposition 7, we have

Gb κ, μ, μð Þ ≤ 1
9 κ − μj j + μ − μj j + κ − μj jð Þ2 = 4

9 κ − μj j2,
ð52Þ

Gb μ, κ, κð Þ ≤ 1
9 μ − κj j + κ − κj j + μ − κj jð Þ2 = 4

9 μ − κj j2:
ð53Þ

By (52) and ((53)) in (9), we obtain

dGb
κ, μð Þ ≤ 4

9 κ − μj j2 + 4
9 μ − κj j2 = 8

9 κ − μj j2: ð54Þ

From (ii), assume that κ, μ, ν ∈W . If κ = μ = ν = 0, then
P κ =P μ =P ν = 0 and sHGb

ðP κ,P μ,P νÞ = 0. The proof
is completed. Otherwise, we suppose that the value of κ, μ,
ν are not all zero.

For κ ≤ μ ≤ ν, we get

H
p
Gb

P κ,P μ,P νð Þ =H
p
Gb

0, κn½ �, 0, μn½ �, 0, νn½ �ð Þ: ð55Þ
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By (10), (55) is equivalent to

=max

sup
0≤a≤κn

Gb a, 0, μn½ �, 0, νn½ �ð Þp

sup
0≤b≤μn

Gb b, 0, κn½ �, 0, νn½ �ð Þp

sup
0≤c≤νn

Gb c, 0, κn½ �, 0, μn½ �ð Þp

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð56Þ

Since κ ≤ μ ≤ ν, then ½0, κn� ⊆ ½0, μn� ⊆ ½0, νn�, using (11)
yields

dGb
0, κn½ �, 0, μn½ �ð Þp = 0,

dGb
0, μn½ �, 0, νn½ �ð Þp = 0,

dGb
0, κn½ �, 0, νn½ �ð Þp = 0:

ð57Þ

Now, for each 0 ≤ a ≤ κn and dGb
ðκ, μÞ = ð8/9Þjκ − μj2 in

(11) and (12), we have

Gb a, 0, μn½ �, 0, νn½ �ð Þp
= dGb

a, 0, μn½ �ð Þ + dGb
0, μn½ �, 0, μn½ �ð Þ + dGb

a, 0, νn½ �ð ÞÀ Áp
≤

8
9 a − μnj j2 + 0 + 8

9 a − νnj j2
� �p

= 8
9 a − μnj j2 + 8

9 a − νnj j2
� �p

= 8
9

� �p

κn − μnj j2 + 8
9 κn − νnj j2

� �p

:

ð58Þ

Next, for each 0 ≤ b ≤ μn and dGb
ðκ, μÞ = ð8/9Þjκ − μj2 in

(11) and (12), we get

Gb b, 0, κn½ �, 0, νn½ �ð Þp
= dGb

b, 0, κn½ �ð Þ + dGb
0, κn½ �, 0, νn½ �ð Þ + dGb

b, 0, νn½ �ð ÞÀ Áp
≤

8
9 b − κnj j2 + 0 + 8

9 b − νnj j2
� �p

= 8
9 b − κnj j2 + 8

9 b − νnj j2
� �p

= 8
9

� �p

μn − κnj j2 + κn − νnj j2
� �p

:

ð59Þ
Using the same approach, for each 0 ≤ νn, ((11)) and

((12)) give

Gb c, 0, κn½ �, 0, μn½ �ð Þp
= dGb

c, 0, κn½ �ð Þ + dGb
κn½ �, 0, μn½ �ð Þ + dGb

c, 0, μn½ �ð ÞÀ Áp
≤

8
9 c − κnj j2 + 0 + 8

9 c − μnj j2
� �p

= 8
9 c − κnj j2 + 8

9 c − μnj j2
� �p

= 8
9

� �p

νn − κnj j2 + νn − μnj j2
� �p

:

ð60Þ

Consequently, using (58), (59), and (60) in (55), we
obtain

H
p
Gb

P κ,P μ,P νð Þ

≤max

sup
0≤a≤κn

8
9

� �p

κn − μnj j2 + κn − μnj j2
� �p

sup
0≤b≤μn

8
9

� �p

μn − κnj j2 + κn − νnj j2
� �p

sup
0≤c≤νn

8
9

� �p

νn − κnj j2 + νn − μnj j2
� �p

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

= 8
9

� �p

νn − κnj j2 + νn − μnj j2
� �p

:

ð61Þ

Further, we calculate the following Gb-metrics. Equa-
tions ((11)) and ((12)) yield

Gb Qκ,Qμ,Qνð Þp = Gb

ffiffiffi
κ3

p
, ffiffiffi

μ3
p ,

ffiffiffi
ν3

pÀ Áp
= 1

9

� �p ffiffiffi
κ3

p
−

ffiffiffi
μ3

p�� �� + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� ��À
+

ffiffiffi
κ3

p
−

ffiffiffi
ν3

p�� ��Á2p:
ð62Þ

In the same manner, we can calculate the following
Gb-metrics.

Gb Qκ,P κ,P κð Þp =Gb

ffiffiffi
κ3

p
, 0, κn½ �, 0, κn½ �À Áp

= 16
9

� �p ffiffiffi
κ3

p
− κn

�� ��2p,
Gb P μ,Qμ,Qνð Þ =Gb 0, μn½ �, ffiffiffi

μ3
p ,

ffiffiffi
ν3

pÀ Áp
= 8

9

� �p

μn −
ffiffiffi
μ3

pj j2 + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� ��2�
+ μn −

ffiffiffi
ν3

p�� ��2�p
,

Gb Qκ,P μ,P νð Þp =Gb

ffiffiffi
κ3

p
, 0, μn½ �, 0, νn½ �À Áp

= 8
9

� �p ffiffiffi
κ3

p
− μn

�� ��2 + ffiffiffi
κ3

p
− νn

�� ��2� �p
,

Gb P κ,Qμ,Qνð Þp =Gb 0, κn½ �, ffiffiffi
μ3

p ,
ffiffiffi
ν3

pÀ Áp
= 8

9

� �p

κn −
ffiffiffi
μ3

pj j2 + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� ��2�
+ κn −

ffiffiffi
ν3

p�� ��2�p
:

ð63Þ
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Applying the above equality in (20), we obtain

By using the above inequality, for Gbð1/4, 1/3, 1/2Þ, n =
1, p = 2, s = 2p−1 = s = 2, and z1 = 0:5, z2 = 0:1, z3 = 0:2, and
z4 = 0:1, it follows that

2 × 0:006439567 ≤ θ 0:5 × 0:000160182 + 0:1f
× 0:065873215 + 0:2 × 0:097691847
+ 0:1 × 0:020276367g,

0:012879134 ≤ θ 0:000080091 + 0:006587321f
+ 0:019538369 + 0, 020276367g

0:012879134 ≤ 0:046482148θ,
ð65Þ

for θ = ðz1 + z2 + z4Þ/ð1 − ðz3 + z4Þ ≤ 1Þ.
This shows that all κ, μ, ν ∈W and the hypothesis given

in Theorem 20 are correct. Therefore, p-hybrid mappings
have an amazing coincidence fixed point. So, κ = 0 is a
unique coincidence fixed point of Q and P . Clearly, W
is ðP ,QÞ-closed, and κ0 = 0, ðQ0,P 0,P 0Þ ∈W .

4. An Application to Nonlinear
Fractional Boundary Valued Problem in
Gb-Metric Space

The nonlinear fractional differential equation is used as
convolution mapping. Convolution and associated functions
are found in many sciences, engineering, and mathematics
applications, such as the following:

(i) In physics: the system linear system with a
“superposition principle,” a convolution operation,
makes an appearance

(ii) Used in acoustics: Doppler effect of the sound
which is a convolution

(iii) In image processing: in digital image processing,
convolutional filtering plays a vital role in many
essential algorithms in edge detection and related
processes

(iv) In optics: an out-of-focus photograph is a convolu-
tion of the sharp image with a lens function

(v) In radiotherapy: Most parts of all modern codes of
calculation apply the convolution-superposition
algorithm in the treatment of planning systems

(vi) In electric transmission lines

(vii) In a control system: to increase the speed of
response, decrease the relative stability, and
decrease or eliminate the steady-state error

(viii) Application of fractional-order circuit models for
modelling human tissue, plant physiology, and
respiratory system

(ix) Used in the tautochrone problem: a cycloid

For further literature, we refer the reader to [37–39] and
the references contained.

The Caputo derivative is used for modelling phenomena
that account for interaction within the past and problems
with nonlocal properties. In this case, one can think of the
equation as having memory; the groundwater equation
within confined, unconfined, leaky aquifers; and other diffu-
sion problems. In addition, fractional differential arises in a
dynamic process, rheology, fluid flows, viscoelasticity, chem-
ical physics, electrical network, and numerous other shorts
of science and engineering.

Inspired by [40, 41], we demonstrate the result of Theo-
rem 20 using a nonlinear fractional boundary valued prob-
lem by transforming it into a system of integral equations.

Now, we investigate the Caputo derivative with the frac-
tional order of the nonlinear fractional differential equation.

Definition 22 (see [41]). For continuous function f : ½0,∞Þ
⟶ℝ, the Caputo derivative of functional order q is
defined as

CDq
t f tð Þ = 1

Γ n − qð Þ
ðt
0
t − sð Þn−q−1 f n sð Þds, n − 1 < q < n, n = q½ � + 1ð Þ,

ð66Þ

where ½q� denotes the integer part of the real number q.

s
8
9

� �p

νn − κnj j2 + νn − μnj j2
� �p

≤ θ

z1
1
9

� �p ffiffiffi
κ3

p
−

ffiffiffi
μ3

p�� �� + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� �� + ffiffiffi
κ3

p
−

ffiffiffi
ν3

p�� ��À Á2p + z2
16
9

� �p ffiffiffi
κ3

p
− κn

�� ��2p + z3
8
9

� �p

μn −
ffiffiffi
μ3

pj j2 + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� ��2 + μn −
ffiffiffi
ν3

p�� ��2� �p

8
9

� �p ffiffiffi
κ3

p
− μn

�� ��2 + ffiffiffi
κ3

p
− νn

�� ��2� �p
+ 8

9

� �p

κn −
ffiffiffi
μ3

pj j2 + ffiffiffi
μ3

p
−

ffiffiffi
ν3

p�� ��2++z4 κn −
ffiffiffi
ν3

p�� ��2�p

s

0
B@

1
CA

0
B@

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
:

ð64Þ
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Definition 23 (see [41]). The Riemann-Liouville of
fractional-order q for continuous function f ðtÞ is defined as

Dqf tð Þ = 1
Γ n − qð Þ

d
dt

� �nðt
0
t − sð Þn−q−1 f sð Þds, n = q½ � + 1ð Þ,

ð67Þ

provided that the right-hand side is point-wise defined on
ð0,∞Þ.

Definition 24 (see [41]). The Riemann-Liouville of the frac-
tional integral of order q for continuous function f ðtÞ is
defined as

Iq f tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1 f sð Þds, q > 0, ð68Þ

provided that such integral exists.

The Caputo fractional differential equation and the non-
linear fractional equation are used as convolution mapping,
which has several applications in science, engineering, and
mathematics, i.e., optics and radiotherapy.

We consider the following Caputo nonlinear boundary
value fractional differential equation, defined as follows:

CDqκ tð Þ = f t, κ tð Þð Þ, t ∈ 0, 1ð Þ, 1 < α ≤ 2,
κ 0ð Þ = 0, α Ipκ½ � ηð Þ = κ 1ð Þ,

(
ð69Þ

where CDq denotes the Caputo fractional derivative of
order q and f : ½0, 1�⟶W is a continuous function and
α ≠ ðΓðp + 2ÞÞ/ηp+1, 1 < q ≤ 2.

Let W = Cð½0, 1�Þ be the set of real continuous functions
defined on ½0, 1�, for κ, μ, ν ∈W , and define the Gb-metric
Gb : W ×W ×W ⟶ℝ+ given by

Gb κ, μ, νð Þ = 1
9 sup

t∈ 0,1½ �
κ − μj j + sup

t∈ 0,1½ �
μ − νj j + sup

t∈ 0,1½ �
κ − νj j

" #2

,

ð70Þ

∀κ, μ, ν ∈W . Then, ðW ,GbÞ is a complete Gb-metric space
with s = 2. For μ = ν, the above inequality becomes

Gb κ, μ, μð Þ = 4
9 sup

t∈ 0,1½ �
κ − μj j

" #2

: ð71Þ

The nonlinear fractional differential equation (69) can be
transformed to integral equation as follows:

κ tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1 f s, κ sð Þð Þds

−
Γ p + 2ð Þt

Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ
ð1
0
1 − sð Þα−1 f s, κ sð Þð Þds

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 f z, κ zð Þð Þdz

� �
ds:

ð72Þ

Now, we investigate the theorem below.

Theorem 25. Consider the hypotheses below:

(i) f ∈ CðI ×W ,W Þ is continuous
(ii) ∃ an increasing function f : ½0, 1� ×ℝ⟶ℝ+, such

that

f t, κ sð Þð Þ − f t, μ sð Þðj j ≤ θ

s
N

p
Gb

κ, μ, νð Þ, ð73Þ

where N p
Gb
ðκ, μ, νÞ = ð4/9ÞjκðsÞ − μðsÞj and

N
p
Gb

κ, μ, νð Þ
= z1 Gb Qκ,Qμ,Qνð Þð Þp + z2 Gb Qκ,P κ,P κð Þð Þp

+ z3 Gb P μ,Qμ,Qνð Þð Þp

+ z4
Gb Qκ,P μ,P νð Þ + Gb P κ,Qμ,Qνð Þ

s

� �p

,

ð74Þ

for p ≥ 0, κ, μ, ν ∈W
(iii) There exists ðθ/sÞ ∈ ½0, 1Þ such that

tq

qΓ qð Þ + Γ p + 2ð Þt
qΓ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

�

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

�2
≤
θ

s

ð75Þ

Then, equation (69) has a coincidence solution as a fixed
point κ ∈ CðI,W Þ.

10 Abstract and Applied Analysis



Proof. Let us define PQ : Cð½0, 1�Þ⟶ Cð½0, 1�Þ by

PQκ tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1 f s, κ sð Þð Þds

−
Γ p + 2ð Þt

Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ
ð1
0
1 − sð Þq−1 f s, κ sð Þð Þds

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 f z, κ zð Þð Þdz

� �
ds,

ð76Þ

for t ∈ ½0, 1�; then, PQ is a compatible and continuous map-
ping, such that

Qκ tð Þ =
ðq
0
s − zð Þα−1 f z, κ zð Þð Þdz: ð77Þ

This implies that Q ∈PQ and Q possess a coincidence
fixed point κ∗ ∈PQ. To prove the existence of the coinci-
dence point of PQ, we prove that PQ is continuous
and a contraction. To see that PQ is continuous, assume
that PQκ ≠PQμ, for all κ, μ ∈ ½0, 1�.

For κ, μ, ν ∈ Cð½0, 1�Þ, μ = ν with κ < μ, we claim that
H

p
Gb
ðP κ,P μ,P μÞ ≰ ðθ/sÞN p

Gb
ðκ, μ, μÞ:

By hypothesis (ii), we have

H
p
Gb

P κ,P μ,P μð Þ

≤
4
9 sup

t∈ 0,1½ �
κ − μj j

" #2

,

PQκ −PQμj j
= 1

Γ qð Þ
ðt
0
t − sð Þq−1 f s, κ sð Þð Þds − Γ p + 2ð Þt

Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ
�

Á
ð1
0
1 − sð Þq−1 f s, κ sð Þð Þds + αp p + 1ð Þt

Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ
Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 f z, κ zð Þð Þdz

� �
ds

−
1

Γ qð Þ
ðt
0
t − sð Þq−1 f s, μ sð Þð Þds

+ Γ p + 2ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

ð1
0
1 − sð Þq−1 f s, μ sð Þð Þds

−
αp p + 1ð Þt

Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 f z, μ zð Þð Þdz

� �
ds
�2

≤
1

Γ qð Þ
ðt
0
t − sð Þq−1 f s, κ sð Þð Þ − f s, μ sð Þð Þj jds

�

+ Γ p + 2ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ð1
0
1 − sð Þq−1 f s, κ sð Þð Þ − f s, μ sð Þð Þj jds,

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 f z, κ zð Þð Þ − f z, μ zð Þð Þj jdz

� �
ds
�2

≤
4
9

1
Γ qð Þ

ðt
0
t − sð Þq−1 κ sð Þ − μ sð Þj jds

�

+ Γ p + 2ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

ð1
0
1 − sð Þq−1 κ sð Þ − μ sð Þj jds

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

Á
ðη
0

ðs
0
η − sð Þp−1 s − zð Þq−1 κ zð Þ − μ zð Þj jdz

� �
ds
�2

= 4
9

tq

qΓ qð Þ κ sð Þ − μ sð Þk k∞
�

+ Γ p + 2ð Þt
qΓ qð Þ Γ p + 2ð Þ − αηp+1ð Þ κ sð Þ − μ sð Þk k∞

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ κ sð Þ − μ sð Þk k∞

�2

≤
tq

qΓ qð Þ + Γ p + 2ð Þt
qΓ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

�

+ αp p + 1ð Þt
Γ qð Þ Γ p + 2ð Þ − αηp+1ð Þ

�2 4
9 κ sð Þ − μ sð Þk k2∞

≤
4θ
9s κ sð Þ − μ sð Þk k2∞ = 4θ

9s sup
t∈ 0,1½ �

κ − μj j
" #2

= θ

s
N

p
Gb

κ, μ, νð Þ:

ð78Þ

This implies that

H
p
Gb

P κ,P μ,P μð Þ = PQκ −PQμj j ≤ θ

s
N

p
Gb

κ, μ, νð Þ, ð79Þ

equivalent to

sH p
Gb

P κ,P μ,P μð Þ ≤ θN p
Gb

κ, μ, νð Þ, ð80Þ

which is a contradiction. Therefore, PQ is a p-hybrid con-
traction mapping on W .

Hence, κ is a coincidence fixed point of P and Q and
also a solution to integral equation (72) and a solution of
the nonlinear fractional differential equation (69). Therefore,
we can conclude that all the hypotheses given in Theorem 20
and Theorem 25 are satisfied. Hence, the proof is completed.
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