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In this article, we mainly discuss the existence and uniqueness of fixed point satisfying integral type contractions in complete
metric spaces via rational expression using real-valued functions. We improve and unify many widely known results from the
literature. Among these, the work of Rakotch (1962), Branciari (2002), and Liu et al. (2013) is extended. Finally, we conclude
with an example presented graphically in favour of our work.

1. Introduction

We start this section by recalling the definition of Lebesgue-
integrable function. Notify L as a function defined as

L = l : R+ ⟶ R+f g, ð1Þ

which is nonnegative, summable on each compact subset of
R+, and such that for each ε > 0,

ðε
0
l mð Þdm > 0: ð2Þ

Branciari [1] in 2002 independently and essentially
deduced the following result, as an extension of most famous
problem of Banach in 1922.

Theorem 1 [1]. Let ðP, dÞ be a complete metric space, 0 < s < 1,
and U : P⟶ P is a map. If for each g, h ∈ P

ðd Ug,Uhð Þ

0
l mð Þdm ≤ s

ðd g,hð Þ

0
l mð Þdm, ð3Þ

where l ∈ L. Then, z ∈ P is a unique fixed point of U .

Rhoades [2] made a major extension in 2003 of Branciari
[1] by proving a more genral result. His proof introduced a
number of interesting ideas for other reseachers to study
on integral type of contracions. Prior to Branciari [1] works,
Kumar et al. [3] had been able to derive Jungck’s [4] fixed
point result in sense of integral type contractions. Mocanu
and Popa [5] proposed following lemmas that are useful
for deriving our main theorem.

Lemma 1 [5]. Let l ∈ L and ðrsÞs∈N be a nonnegative sequence
with lims⟶∞rs = c then

lim
s⟶∞

ðrs
0
l mð Þdm = 0 implies lim

s⟶∞
rs = 0: ð4Þ

Lemma 2 [5]. Let l ∈ L and ðrsÞs∈N be a nonnegative sequence
with lims⟶∞rs = c then

lim
s⟶∞

ðrs
0
l mð Þdm =

ðc
0
l mð Þdm: ð5Þ

Further, Liu et al. [6] extended Branciari’s work by
including real-valued function and improved the result of
Rakotch [7].
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Theorem 2 [6]. Let U be a self-mapping on a complete metric
space ðP, dÞ satisfying

ðd Ug,Uhð Þ

0
l mð Þdm ≤ δ d g, hð Þð Þ

ðd g,hð Þ

0
l mð Þdm, ð6Þ

for each g, h ∈ P, δ : ð0,∞Þ⟶ ½0, 1Þ s.t.

lim supδ sð Þ < 1,∀s > 0, ð7Þ

and l ∈ L. Then Pz = z for all z ∈U .

In addition to previous findings, Gupta et al. [8] in 2012
proposed a work for 2 compatible self-maps and derived a
result satisfying integral type contraction. In contrast to
Rakotch’s result, further in 2013, Gupta and Mani [9] placed
a rational contraction using real-valued function and estab-
lished their theorem.

Theorem 3 [9]. Let U be a self-map on a complete metric
space ðP, dÞ. If for each g, h ∈ P

ðd Ug,Uhð Þ

0
l mð Þdm ≤ γ d g, hð Þð Þ

ðw g,hð Þ

0
l mð Þdm, ð8Þ

where

w g, hð Þ =max d g,Ugð Þ · d h,Uhð Þ
d g, hð Þ , d g, hð Þ

� �
, ð9Þ

l ∈ L and a function γ : ð0,∞Þ⟶ ½0, 1Þ with lims⟶n
sup γðsÞ < 1 for all n > 0: Then, U has a unique fixed point
in P.

About the same time, Liu et al. [10] come with different
approach and set up three distinct results for integral type
contractions. These studies further give other aspects of
integral contractions for researchers, in particular related
problems on real-valued functions. Some motivated results
on integral type contractions and in metric spaces are refer
to see [11–17].

This article is devoted to state the theorem containing
real-valued function and to prove the theorem satisfying
integral type rational contraction. Our finding extends and
generalized some renowned result. An example with graph-
ical representation has been given in favour of our work.

2. Fixed Point via Rational Contraction and by
Using Real-Valued Function

Geraghty [18] defined the following class of test function
which is more general than the Rakotch [7].

Definition 1 [18]. Define S = fγjγ: ½0,∞Þ⟶ ½0, 1Þg satisfies
the condition

γ tið Þ⟶ 1 implies ti ⟶ 0: ð10Þ

Example 1. Define the function

γ tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log t2 + 1½ �p

t
, ð11Þ

Clearly, γðtiÞ < 1 and γðtiÞ⟶ 1 implies ti ⟶ 0:

Theorem 4. Let U be a self-mapping on a complete metric
space ðP, dÞ and are such that for each g, h ∈ P

ðd Ug,Uhð Þ

0
l mð Þdm ≤ γ d g, hð Þð Þ

ðw g,hð Þ

0
l mð Þdm, ð12Þ

where

w g, hð Þ =max d g, hð Þ, d g,Ugð Þd h,Uhð Þ
1 + d g, hð Þ , d h,Uhð Þd g,Uhð Þ

1 + d Ug,Uhð Þ
� �

,

ð13Þ

l ∈ L and γ ∈ S. Then U has a unique fixed point.

Proof. Set initial approximation g0 ∈ P as an any arbitrary
point in P. In general, construct fgig in P such that

Ugi = gi+1: ð14Þ

First, we assert that limi⟶∞dðgi, gi+1Þ = 0.
From Equation (12), ∀i ≥ 0, we have
ðd gi ,gi+1ð Þ

0
l mð Þdm ≤ γ d gi−1, gið Þð Þ

ðw gi−1,gið Þ

0
l mð Þdm, ð15Þ

where

w gi−1, gið Þ =max d gi−1, gið Þ, d gi−1,Ugi−1ð Þd gi,Ugið Þ
1 + d gi−1, gið Þ , d gi,Ugi−1ð Þd gi−1,Ugið Þ

1 + d Ugi−1,Ugið Þ
� �

,

= max d gi−1, gið Þ, d gi−1, gið Þd gi, gi+1ð Þ
1 + d gi−1, gið Þ , d gi, gið Þd gi−1, gi+1ð Þ

1 + d gi, gi+1ð Þ
� �

,

= max d gi−1, gið Þ, d gi, gi+1ð Þf g:

ð16Þ
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Now, if dðgi, gi+1Þ > dðgi−1, giÞ, then wðgi−1, giÞ = dðgi,
gi+1Þ: Hence, from Equation (15) and using the fact that
γ ∈ S, we arrived at a contradiction. Therefore, dðgi, gi+1Þ <
dðgi−1, giÞ and so wðgi−1, giÞ = dðgi−1, giÞ:

Thus, Equation (15) implies that

ðd gi ,gi+1ð Þ

0
l mð Þdm ≤ γ d gi−1, gið Þð Þ

ðd gi−1,gið Þ

0
l mð Þdm: ð17Þ

Since γ ∈ S, we have

ðd gi ,gi+1ð Þ

0
l mð Þdm ≤

ðd gi−1,gið Þ

0
l mð Þdm: ð18Þ

Similarly,

ðd gi−1,gið Þ

0
l mð Þdm ≤

ðd gi−2,gi−1ð Þ

0
l mð Þdm: ð19Þ

Thus, a monotone decreasing sequence fÐ dðgi ,gi+1Þ0 lðmÞ
dmg of nonnegative reals has obtained, and so there exists
s ≥ 0 such that

lim
i⟶∞

ðd gi ,gi+1ð Þ

0
l mð Þdm = s: ð20Þ

Assume that s > 0: Letting i⟶∞ in Equation (15)
and using Equation (20), we get s ≤ s, as γ ∈ S, a contradic-
tion, implies s = 0 and hence

lim
i⟶∞

ðd gi ,gi+1ð Þ

0
l mð Þdm = 0: ð21Þ

Lemma 1 implies

lim
i⟶∞

d gi, gi+1ð Þ = 0: ð22Þ

Next, we assert that sequence fgig is Cauchy.
Assume that for an ϵ > 0, there exists subsequences fgis

g
and fgws

g of fgig with ws > is ≥ s, s > 0 satisfying

d gws
, gis

� ��
≥ ϵ and d gws−1

, gis
� �

< ϵ, ð23Þ

∀s ≥ 0, consider
ðε
0
l mð Þdm ≤

ðd gws ,gisð Þ
0

l mð Þdm

≤ γ d gws−1
, gis−1

� �� �ðw gws−1 ,gis−1ð Þ
0

l mð Þdm
 

,

ð24Þ

where

Triangle inequality implies that

d gws−1
, gis−1

� �
= d gws−1

, gis

� �
+ d gis , gis−1
� �

: ð26Þ

From Equation (23), dðgws−1
, gis−1Þ ≤ ϵ + dðgis , gis−1Þ.

On taking limits and using Equations (22), we get

lim
i⟶∞

d gws−1
, gis−1

� �
= ϵ: ð27Þ

Again, we know

d gis−1 , gws

� �
≤ d gis−1 , gws−1

� �
+ d gws−1

, gws

� �
: ð28Þ

Therefore, on taking lims⟶∞ and using (23) and (22),
we get

lim
s⟶∞

d gis−1 , gws

� �
= ϵ: ð29Þ

Hence, from Equation (25), on taking lims⟶∞ and
using Equations (23), (27), and (29), we get

lim
s⟶∞

w gws−1
, gis−1

� �
= ϵ: ð30Þ

Thus, on letting lims⟶∞, Equation (24) implies that

ðε
0
l mð Þdm ≤ γ ϵð Þ

ðϵ
0
l mð Þdm, ð31Þ

where we arrived at a contradiction as γ ∈ S. Therefore,
sequence fgig is Cauchy. Call a limit v such that from (12)

lim
i⟶∞

gi+1 = lim
i⟶∞

Ugi = v: ð32Þ

Now, assert that v is a fixed point of U .
Indeed, continuity of U implies that

v = lim
i⟶∞

Ugi =U lim
i⟶∞

gi =Uv: ð33Þ

w gws−1
, gis−1

� �
=max d gws−1

, gis−1
� �

,
d gws−1

, gws

� �
d gis−1 , gis
� �

1 + d gws−1
, gis−1

� � ,
d gis−1 , gws

� �
d gws−1

, gis
� �

1 + d gws
, gis−1

� �
8<
:

9=
;: ð25Þ
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Secondly, assume U is not continuous and also let
Uv ≠ v. Then, clearly dðUv, vÞ ≠ 0. Assume that dðUv, vÞ >
0. Therefore

0 <
ðd Uv,vð Þ

0
l mð Þdm = lim

i⟶∞

ðd Uv,gi+1ð Þ

0
l mð Þdm

≤ lim
i⟶∞

ðw v,gið Þ

0
l mð Þdm,

ð34Þ

where

w v, gið Þ =max d v, gið Þ, d v,Uvð Þd gi,Ugið Þ
1 + d v, gið Þ , d gi,Uvð Þd v,Ugið Þ

1 + d Uv,Ugið Þ
� �

:

ð35Þ

Take limi⟶∞, we obtain

lim
i⟶∞

w v, gið Þ =max d v, vð Þ, d v,Uvð Þd v, vð Þ
1 + d v,Ugið Þ , d v,Uvð Þd v, vð Þ

1 + d Uv, vð Þ
� �

,

= 0:
ð36Þ

Hence from (34),

0 <
ðd Uv,vð Þ

0
l mð Þdm =

ðd Uv,Ugið Þ

0
l mð Þdm ≤ 0, ð37Þ

Therefore, Uv = v.
For uniqueness, assume there exist a point s ≠ v other

than v s.t dðUs, sÞ = 0. Consider,
ðd s,vð Þ

0
l mð Þdm =

ðd Us,Uvð Þ

0
l mð Þdm ≤ γ d s, vð Þð Þ

ðw s,vð Þ

0
l mð Þdm,

ð38Þ

where

w s, vð Þ =max d s, vð Þ, d s,Uvð Þd v,Uvð Þ
1 + d s, vð Þ , d v,Usð Þd s,Uvð Þ

1 + d Us,Uvð Þ
� �

,

= max d s, vð Þ, d s, sð Þd v, vð Þ
1 + d s, vð Þ , d v, sð Þd s, vð Þ

1 + d s, vð Þ
� �

:

ð39Þ

Since dðs, vÞ/1 + dðs, vÞ < 1, therefore

w s, vð Þ ≤max d s, vð Þ, 0, d s, vð Þf g ≤ d s, vð Þ: ð40Þ

Using the fact that γ ∈ S and from (38), we have

ðd s,vð Þ

0
l mð Þdm <

ðd s,vð Þ

0
l mð Þdm: ð41Þ

This implies s = v, and hence, fixed point of U is unique.
This accomplished our proof.

Theorem 5. Let a self-map U on a complete metric space
ðP, dÞ such that for each g, h ∈ P

ðd Ug,Uhð Þ

0
l mð Þdm ≤ δ d g, hð Þð Þ

ðd g,hð Þ

0
l mð Þdm

+ γ d g, hð Þð Þ
ði g,hð Þ

0
l mð Þdm,

ð42Þ

where

i g, hð Þ =max d g,Ugð Þd h,Uhð Þ
1 + d g, hð Þ , d h,Uhð Þd g,Uhð Þ

1 + d Ug,Uhð Þ
� �

:

ð43Þ

l ∈ L and δ, γ ∈ S with δðmÞ + γðmÞ < 1. Then, U has a
unique fixed point.

Proof. Since δ, γ ∈ S with δðmÞ + γðmÞ < 1. Let γðmÞ =max
fδðmÞ, γðmÞg: Then from Equation (42), we have

ðd Ug,Uhð Þ

0
l mð Þdm ≤ δ d g, hð Þð Þ

ðd g,hð Þ

0
l mð Þdm

+ γ d g, hð Þð Þ
ði g,hð Þ

0
l mð Þdm

< γ d g, hð Þð Þ
ðmax d g,hð Þ,i g,hð Þf g

0
l mð Þdm

≤ γ d g, hð Þð Þ
ðw g,hð Þ

0
l mð Þdm,

ð44Þ

where

w g, hð Þ =max d g, hð Þ, d g,Ugð Þd h,Uhð Þ
1 + d g, hð Þ , d h,Uhð Þd g,Uhð Þ

1 + d Ug,Uhð Þ
� �

:

ð45Þ

Rest of the proof is on the same line of Theorem 4.

If we take lðtÞ = 1, then we have the following two conse-
quence results from our main theorem

Corollary 1. Let a self-map U on a complete metric space
ðP, dÞ such that for each g, h ∈ P

d Ug,Uhð Þ ≤ γ d g, hð Þð Þw g, hð Þ, ð46Þ

where

w g, hð Þ =max d g, hð Þ, d g,Ugð Þd h,Uhð Þ
1 + d g, hð Þ , d h,Uhð Þd g,Uhð Þ

1 + d Ug,Uhð Þ
� �

,

ð47Þ

and γ ∈ S. Then, U has a unique fixed point.
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Corollary 2. Let a self-map U on a complete metric space
ðP, dÞ such that for each g, h ∈ P

d Ug,Uhð Þ ≤ δ d g, hð Þð Þd g, hð Þ + γ d g, hð Þð Þi g, hð Þ, ð48Þ

where

i g, hð Þ =max d g,Ugð Þd h,Uhð Þ
1 + d g, hð Þ , d h,Uhð Þd g,Uhð Þ

1 + d Ug,Uhð Þ
� �

,

ð49Þ

and δ, γ ∈ S with δðtÞ + γðtÞ < 1. Then U has a unique
fixed point.

Example 2. Let P =N. Define the metric dðg, hÞ =max fg, hg,
for all g, h ∈ P. Clearly, ðP, dÞ is a metric space. Define a
function U : P⟶ P as UðgÞ = ffiffiffi

g
p , ∀g ∈ P. Also defined

l ∈ L as lðmÞ = 2m, ∀m ∈ R+ and δ : R+ ⟶ ½0, 1Þ is defined
by δðmÞ = 9/10

Figure 1 showing the plot of inequality (12) satisfying the
Example 2. Thus, all the conditions of Theorem 4 are satis-
fied. Clearly, 1 ∈ P is a fixed-point of U .

Remark 1. Theorem 4 and Theorem 5 are unified and
extended results of Liu et al. [10] and Branciari [1].

Remark 2. Corollary 2 is an extension of the result of
Rakotch [7] with more general test functions.

Remark 3. In Theorem 5, on letting γðtÞ = 0, we obtain the
result of 1.2 (result of Liu et al. [10]).

Remark 4. If we take γðtÞ = 0 in Corollary 2, we deduc the
result of Geraghty [18].

3. Conclusion

We conclude this note by mentioning that our proved result
is a further extension of Branciari result into other settings.
Some remarks and an example are given to justify that our
results are extension and generalized version of some known
results of literature.
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