

Appl. Sci. 2024, 14, 1565. https://doi.org/10.3390/app14041565 www.mdpi.com/journal/applsci

Article

Improving Performance of Massive Text Real-Time
Classification for Document Confidentiality Management
Lingling Tan *, Junkai Yi and Fei Yang

Institute of Automation, Beijing Information Science and Technology University, Beijing 100192, China;
yijk@bistu.edu.cn (J.Y.); yangfei@bistu.edu.cn (F.Y.)
* Correspondence: tanlingling@bistu.edu.cn

Abstract: For classified and sensitive electronic documents within the scope of enterprises and or-
ganizations, in order to standardize and strengthen the confidentiality management of enterprises
and meet the actual needs of secret text classification, a document automatic classification optimi-
zation method based on keyword retrieval and the kNN classification algorithm is proposed. The
method supports keyword classification management, provides users with keywords of multiple
risk levels, and then combines a matching scanning algorithm to label keywords of different levels.
The text with labels is used as the training set of the kNN algorithm to classify the target text and
realize the classification protection of text data. Aimed at solving the shortcomings of large feature
vector dimension, low classification efficiency, and low accuracy in existing kNN text classification
methods, an optimization method is proposed using a feature selection algorithm and a kNN algo-
rithm based on an AVX instruction set to realize real-time classification of massive texts. By con-
structing a keyword dictionary and an optimized feature vector, parallel calculation of the feature
vector weight and distance vector is realized, and the accuracy and efficiency of text classification
are improved. The experimental results show that the multi-classification effect of the feature selec-
tion algorithm used in this paper, tf-DE, is better than that of the traditional tf-idf algorithm, and the
classification effect of kNN is comparable to that of the support vector machine (SVM) algorithm.
With the increase in feature vector dimensions, the classification effect of the text classification al-
gorithm is improved and the classification time also increases linearly. The AVX-256 acceleration
method takes about 55% of the time of the original version, thus verifying the effect of multi-classi-
fication of massive texts for document confidentiality management.

Keywords: kNN; text classification; AVX-256; feature vector

1. Introduction
After the enterprise business is fully informationized, each terminal stores a large

amount of text data, making it difficult for administrators to determine which text con-
tains sensitive information, and it is impossible to apply control measures to all the text
containing sensitive information. Some documents that do not have obvious confidential
marks can easily evade regulatory measures and circulate freely inside and outside the
company, ultimately leading to the leak of secrets. At present, most of the information
security solutions still use firewalls [1], intrusion detection [2], network antivirus ap-
proaches [3], and other methods, which are relatively general and rough, lack the judg-
ment and detection of information content, and cannot refine the management and control
means. Data leakage prevention (DLP) [4] is the use of technical measures to prevent data
assets from leaking out of an enterprise in violation of security policies. The classification
and control of all documents in the terminal and the setting of protection measures can be
a good way to block this leak vulnerability. The current data leakage protection methods

Citation: Tan, L.; Yi, J.; Yang, F.

Improving Performance of Massive

Text Real-Time Classification for

Document Confidentiality

Management. Appl. Sci. 2024, 14,

1565. https://doi.org/10.3390/

app14041565

Academic Editor: João M. F.

Rodrigues

Received: 17 January 2024

Revised: 11 February 2024

Accepted: 12 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Appl. Sci. 2024, 14, 1565 2 of 18

mainly include internal data encryption [5], identity authentication [6], and data flow con-
trol [7]. The information leak prevention solution based on text classification [8] scans and
identifies all outgoing texts sent by terminals in real time; identifies the category of the
text in time; checks whether the text contains sensitive keywords [9] and the secret level
of the text, which can be used to detect and deal with the leak phenomenon in real time;
and then deals with the text through relevant preset means, such as a warning, alarm, or
blocking. Therefore, this results in higher performance requirements for real-time massive
text classification algorithms.

Text classification means sorting a target text into a given category, and is widely
used in sentiment analysis (SA) [10], news classification (NC) [11], natural language infer-
ence (NLI) [12], and other fields. It is a basic step to construct a text classification model
by learning the categorical feature information of classified text data and then automati-
cally classifying unclassified text. There are already many types of text classification meth-
ods, such as the decision tree (DT) algorithm [13], the naive Bayes (NB) algorithm [14], the
support vector machine (SVM) algorithm [15], the k-nearest neighbor (kNN) algorithm
[16], and classification algorithms based on deep learning [17]. The DT algorithm estab-
lishes a mapping between object attributes and object values, and classifies unlabeled texts
by constructing decision trees. The basic idea of NB classification is to estimate the cate-
gory probability of a given text using the joint probability of the phrase and category. SVM
is a popular supervised learning algorithm. Goudjil M et al. selected a group of informa-
tive samples using the posterior probabilities provided by multi-class SVM classifiers to
enhance the classification accuracy [18]. J Ababneh et al. investigated the performance of
the three classification algorithms—kNN, DT, and NB—as classifiers on Saudi Press
Agency datasets [19]. Classification models based on deep learning mainly include the
convolution neural network (CNN) [20], the recurrent neural network (RNN) [21], and a
combination of other related models. Shen, C. W. et al. used a direct citation network with
cluster analysis in a hybrid bibliometric approach to depict the historiographic develop-
ment of the technology-enhanced learning (TEL) research domain in higher education
[22]. A comparison of the above typical algorithms is shown in Table 1.

Table 1. Comparison of the above typical algorithms.

Algorithm Method Used Datasets Advantages Disadvantages

DT [13] Explore emotion classi-
fication with DT

Composed of 2924 news ar-
ticles of April 2007 and Feb-

ruary 2008 from Sina
[www.sina.com.cn/society]

Easy to understand,
suitable for small da-

tasets

It does not perform well
when dealing with data

with strong correlation fea-
tures

NB [14] Explore NB automatic
classification system

Chinese webpage Low complexity and
high efficiency

The dependency between
features will affect the clas-

sification accuracy

SVM [15]
Implement SVM in

classifying English doc-
uments

Literature from UCI library
Suitable for processing

large datasets

Multiple parameters need
to be tuned, and different
parameter combinations

lead to different classifica-
tion results

kNN [16]

Combine kNN with an
explicit

semantic analysis ap-
proach

Collection of over 4 million
documents comprising only
titles and abstracts of arti-

cles extracted from the
MEDLINE database

Easy to understand,
suitable for massive
classification scene

The computation is large,
especially when the num-

ber of features is very large

CNN [20]
Offer a kind of short

text classification
model

(1) English movie review
datasets

Suitable for processing
high dimensional data

Need to adjust parameters,
and need a large sample

size

Appl. Sci. 2024, 14, 1565 3 of 18

by CNN (2) Chinese categorized da-
taset ChnSentiCorp

RNN [21]
Modify RNN with long

short-term memory
(LSTM) architecture

13 real-world datasets for
text classification from

CrowdFlower and DL4J

It can capture long-term
dependencies in the se-

quence

The computational com-
plexity is higher in the
training and inference

Among these, the typical statistical classification model is the kNN model, which has
a relatively simple classification process and is currently the most widely used. In the field
of document confidentiality management, the kNN algorithm is insensitive to the exist-
ence of outliers in the classification process, so it does not need repeated training and
learning, but only needs to refresh neighbor samples according to the update of confiden-
tial content; thus, continuous training of the model due to the update of confidential con-
tent is avoided. However, the kNN method has some shortcomings, such as the huge di-
mension of the feature vector, leading to a huge amount of computation, which affects the
classification accuracy and classification efficiency [23]. Therefore, it is meaningful to im-
prove and optimize the performance of current kNN classification.

As a spatial parallel processing technology [24], the AVX instruction set belonging to
Single-Instruction-Multiple-Data (SIMD) instructions [25] can process large-scale Euclid-
ean distance operations [26] and comparison and sorting operations, which makes it pos-
sible to use the Central Processing Unit (CPU) as an effective computing power for mas-
sive text classification. Therefore, based on the AVX-256 instruction set, which has high
efficiency and good maturity [27], optimizing the weight calculation of the text feature
vector, the Euclidean distance calculation, and the distance sorting between samples can
be used to fully utilize the CPU’s computing role in large-scale text classification pro-
cessing.

Aiming at realizing real-time text classification, we calculate the weight of the feature
vector based on the improved feature selection algorithm tf-DE [28], and identify the cat-
egory of the text based on the kNN optimized classification algorithm. The rest of this
paper is organized as follows: the feature vector selection algorithm and kNN algorithm,
which are used to implement text preprocessing, text representation, feature selection,
and text classification, are introduced in Section 2. To improve the weight calculation per-
formance of the feature vector and the Euclidean distance calculation between samples,
in Section 3, the AVX-256 instruction set is used to improve the construction of the feature
vector, the vector weight calculation, and the Euclidean distance calculation. In Section 4,
the accuracy of the text classification algorithm with the feature vector selection algorithm
and kNN algorithm optimized by AVX-256 is tested via experiments. In Section 5, we
discuss the conclusions of the experiment and make assumptions about the future work.

2. Materials and Methods
The model of text classification includes a deep learning model and a shallow learn-

ing model. The structure of the deep learning model is relatively complex, and it can di-
rectly learn and model text content without relying on manually obtained text features.
RNNs are widely used in the field of natural language processing. Socher et al. at Stanford
University introduced an RNN model that learns compositional vector representations for
phrases and sentences of arbitrary syntactic type and length [29]. In the process of back
propagation, the parameter updating of the RNN depends on the gradient. Long short-
term memory (LSTM) is an improved model of the RNN that effectively alleviates the
problem of gradient disappearance. Liu Z. et al. proposed an attention-based LSTM model
for scene text detection, which can well handle scene text objects with arbitrary shapes
[30].

However, the deep learning model is highly dependent on data and has the problem
of weak domain adaptability. The structure of the shallow learning model is relatively
simple and relies on manually obtained text features. Although the model parameters are

Appl. Sci. 2024, 14, 1565 4 of 18

relatively few, it can often show better results in complex tasks and has good domain
adaptability. The kNN, as a classic machine learning-based text classification algorithm,
is a shallow learning model. Its core idea is to extract the feature of the text into feature
words to represent the text, and use the feature words to form a feature vector. The feature
vectors are used to train the classifier, which can automatically classify the unclassified
text. There are four parts in text classification, namely, preprocessing of text, representa-
tion of text, feature selection, and the classification algorithm.

2.1. Text Preprocessing
The purpose of text preprocessing is to transform text into a data structure that can

be processed by computer, that is, to divide text into independent feature words. This
paper adopts a dictionary-based string-matching method to preprocess text, which is
based on the establishment of a unified dictionary table. Before starting to classify text, a
keyword dictionary is defined. Based on the text content, text type, text level, and other
information, the representative words in the text are extracted, these words are gathered
together, and the category and level of each keyword are configured, so as to form a key-
word dictionary. The dictionary diagram is shown in Figure 1.

Figure 1. Diagram of the dictionary.

We construct a keyword dictionary according to high-frequency words in all catego-
ries of text. The construction method of the keyword dictionary is as follows.
(1) Go through all the documents in the training set, working on one text at a time.
(2) Firstly, the text is divided into words. Here, jieba, which is an important third-party

Chinese word segmentation library in Python, is adopted as the word segmentation
tool [31]. After word segmentation, further remove punctuation, single words, and
stops.

(3) Then, the occurrence frequency of each word is counted and recorded.
(4) Finally, find the N words with the highest frequency as the high-frequency words by

sorting in all text, and obtain the keyword dictionary.
Based on the keyword dictionary, text is checked by string matching. When a text is

preprocessed, the text is first divided into several parts, and each part is matched with a
dictionary entry according to a certain strategy, so as to match all keywords in the text. If
the keyword is in the dictionary, the segmentation is successful; otherwise, continue split-
ting until the match is successful. The text scanning sequence of this method includes for-
ward, reverse, and bidirectional, and the matching methods include maximum or mini-
mum matching, word-by-word matching, and best matching [32]. In this paper, the data
stream and keywords are compared in the binary layer. In order to support the text of
various encoding modes, namely, ANSI, UTF-8, and Unicode [33], the three most com-
monly used encoding modes are used for keyword searching. Because the searching pro-
cess traverses the entire file, the KMP searching algorithm [34] is used to ensure efficient
searching. After keyword searching for each text, the results are saved in XML format,

Appl. Sci. 2024, 14, 1565 5 of 18

and the subsequent feature value selection and text classification algorithms use the key-
word searching results in XML format as input.

Through the keyword occurrence times recorded in the dictionary, the best keyword
can be selected according to the scale of the feature value in the subsequent feature value
selection, and the required data can be provided for the feature weight calculation. After
the above keyword scanning, each keyword appearing in the text and its occurrence time
can be obtained. Text grading is based on the data value, sensitivity, influence, and distri-
bution scope of keywords in the text. Different levels of data are processed in different
ways when outgoing distribution is controlled. Suitable feature word screening can sim-
ultaneously improve the classification performance and accuracy. This is because redun-
dant feature words are not only unimportant, they also cause interference and misdirec-
tion in the classification process. Therefore, removing them can make the classification
results more accurate and concentrated according to each type of text.

2.2. Text Representation
The function of text representation is to transform unstructured information into

structured information that the computer can understand, that is, to represent the text as
a suitable data structure for subsequent classification steps. The vector space model (VSM)
method [35] is currently the most used and effective text representation in text processing
applications. The VSM method represents the text as an n-dimensional vector, giving each
word a certain weight in the word vector.

() () ()()1 2, ,..., nw t w t w t (1)

where t stands for feature word, and w(ti) (I = 1,2,...,n) represents the ith feature word’s
weight, which is computed by the grade and frequency of the feature word.

The representation effect of kNN depends heavily on the design of the weight func-
tion. With a proper weight function, kNN can well summarize the features of the text. The
advantage of kNN is that it represents the natural language in the form of a vector, which
is very conducive to the single instruction and multiple data processing of the vector. At
the same time, because the text contains too many words, the dimension of the kNN vector
is very large, and the dimension must be reduced through feature word selection.

2.3. Feature Selection
After text preprocessing and representation, the obtained feature words are still large

in number, even after preprocessing and filtering, which leads to the high dimension of
text representation vector. Therefore, it is important to use the feature selection algorithm
to filter the feature words and thus reduce the dimension. Feature selection can not only
reduce the computational complexity, but also help to improve the classification perfor-
mance. In this paper, according to the limitation of the scale of the feature vector, the ap-
propriate keyword range is selected, and the feature vector of the text is extracted and
constructed according to the results of the keyword scanning. The construction of the fea-
ture vector is shown in Table 2.

Table 2. Construction of the feature vector.

Keyword 1 Feature Keyword 2 Feature Keyword x Feature

weight for type 1
weight for

type m
weight for type 1

weight for
type m

weight for type
1

weight for type
m

The classic feature selection algorithm tf-idf adopts lexical statistical features as the
feature set [36], and term frequency (TF) and inverse document frequency (IDF) are used
to represent the words’ importance in the text. The weight expression of feature words in
the tf-idf algorithm is shown below.

Appl. Sci. 2024, 14, 1565 6 of 18

log 0.01ij ij ij
Nw tf idf tf
n

 = ⋅ = ⋅ + 
 

 (2)

where wij represents the weight of keyword tj on classification Ci and describes the close-
ness between a keyword and this category; tfij represents “word frequency”, that is, the
sum of occurrence times in all documents in classification Ci of keyword tj; idf represents
“anti-document frequency”, that is, the ratio between the number of documents and the
number of documents containing keyword tj. N represents the number of documents, n
represents the total number of documents containing tj, and + 0.01 is used to prevent the
situation where the weight is 0.

However, the tf-idf algorithm does not consider the distribution difference of words
among different categories, and will give larger idf values to common words that widely
appear in each category and smaller idf values to uncommon words concentrated in one
category. Too low idf values of feature words in a category will result in a weight that is
too low. On the other hand, the tf-idf algorithm ignores the distribution of words within
the class. For example, some “different” keywords may appear in a category due to acci-
dental factors, and within the document, the “different” keyword may appear frequently.
In this case, the keyword should not represent the category. On the basis of analyzing
some shortcomings of tf-idf algorithm, algorithm tf-DE is introduced. New statistics, Inter-
Category Dispersion and Intra-Category Information Entropy, are introduced for feature
selection [28].

A parameter is selected to describe the dispersion degree of the keyword distribution
across multiple categories. Keywords with a more concentrated distribution in a certain
category or a few categories are given higher values because such words obviously have
better classification ability, while keywords evenly dispersed in each category without
much classification representation ability should have relatively low values. Based on the
statistical standard deviation formula, parameter D is defined as shown in the following.

()
() ()()

()
()

()

2

1

1

, 0

0, =0

m
ii
d t d t

m d tD t d t

d t

=


−

 ≠= 





(3)

where di(t) represents the number of documents containing keyword t in category Ci, ()d t
represents the average value of di(t), and m represents the number of categories.

The information entropy E [37] in information theory is used to describe the distri-
bution of keywords in a category. In any category, keywords that appear in many docu-
ments can better represent this category, and such terms should be selected to participate
in the classification as far as possible. That is, the more evenly distributed keywords
among the documents within the class should be given greater weight.

()
1

,
n

i j
j

E t C e
=

= − (4)

where n represents the number of documents in Ci; ej calculates the jth document in Ci,
and its definition is as follows.

2log , 0 and 0

0, 0 or 0

j j
i j

i ij

i j

Nd Nd
NC Nd

NC NCe
NC Nd


≠ ≠= 

 = =

(5)

where Ndi represents the number of occurrence times in the jth document of the category
Ci of keyword t, and NCi represents the number of occurrence times in all the documents
of the category Ci of keyword t. The product of Inter-Category Dispersion and Intra-Cat-
egory Information Entropy is used to replace the idf item in tf-idf, thus introducing the
statistics of the distribution of feature words between and within categories, so that they

Appl. Sci. 2024, 14, 1565 7 of 18

can affect the final weight value; that is, the feature selection algorithm tf-DE is shown in
the following.

() (),ij ij iw tf D t E t C= ⋅ ⋅ (6)

In this paper, parameters D and E are calculated respectively according to the key-
word occurrence times in the dictionary. Similar keywords are selected to be clustered
into a class, and this class is then used as the dimension of the vector space to represent
the text. In this way, the problems of synonyms in the dictionary can be dealt with, so as
to further reduce the dimension of the feature vector and reduce the complexity of the
feature weight calculation and distance calculation. The algorithm for feature vector ex-
traction is shown in Algorithm 1, which is explained in detail below.

Algorithm 1: feature vector extraction algorithm for text

Input: trainText, keywordList
Output: keywordList
1. Function Load_trainText(trainText, keywordList)
2. fileID, label = trainText.id, trainText.label
3. keywordResult = KeywordsCheck(trainText, keywordList)
4. for i = 1 to keywordResult.length
5. id = GetKeyword(keywordResult[i])
6. keywordList[id].type[label].file[fileID].count = keywordResult[i].count
7. keywordList[id].type[label].count += keywordResult[i].count
Input: keywordList
Output: keywordList
8. Function Calc_weight(keywordList)
9. for i = 1 to keywordList.length
10. for j = 1 to M
11. tfij = NC = keywordList[i].type[j]. count
12. for k = 1 to keywordList[i].type[j].fileNum
13. if (keywordList[i].type[j].file[k].count > 0) d[j] = tfij
14. Nd = keywordList[i].type[j].file[k].count
15. E[j] += Nd/NC * log(Nd/NC)
16. D=Standard_deviation(d)
17. for j = 1 to M
18. wij = tfij * D * E[j]
Input: testText, keywordList
Output: featureVector
19. Function Get_featureVector (testText, keywordList)
20. featureVector = InitFeatureVector(keywordList)
21. keywordResult = KeywordsCheck(text, keywordList)
22. for i = 1 to keywordResult.length
23. id, weightVector = GetKeyword(keywordResult[i])
24. featureVector[id] = weightVector

1. Reading training text set.
2. Obtain the training text ID and the category label.

Appl. Sci. 2024, 14, 1565 8 of 18

3. Find keywords in the training text.
4. Iterate through the keywords in the training text.
5. Obtain keyword ID.
6. Count the occurrence number of keyword in this text.
7. Count the occurrence number of keyword in the category.
8. Feature vector weight calculation function.
9. Go through the keyword i in each dictionary.
10. Iterate through each category j.
11. Obtain the occurrence number of keyword i in category j, that means tfij and NC.
12. Go through each document k in the category
13. Count the number dj of text containing keyword i in category j.
14. Obtain the number of occurrences Nd of keyword i in text k of category j.
15. Calculate the parameter E of keyword i for category j.
16. Calculate parameter D of keyword i.
17. Go through each category j.
18. Calculate the weight of keyword i to class j.
19. Construct a feature vector function of the target text.
20. The text vector space is initialized according to the size of the keywords.
21. Find the keywords for the target text based on the keyword list.
22. Go through keywords in the target text.
23. Obtain the index and weight vector of the ith keyword.
24. Construct feature vector for text.

Among the many feature selection algorithms, tf-OR (term frequency and odds ratio)
and tf-rf (term frequency and relevance frequency) are excellent algorithms. The weight
representation of tf-OR is shown in Equation (7) and the weight representation of tf-rf is
shown in Equation (8), where we use Ci to represent the category in which keyword t oc-
curs currently,

iC to represent all other categories, tp to represent the number of docu-
ments that contain keyword t in category Ci, fp to represent the number of documents that
do not contain keyword t in category Ci, fn to represent the number of documents that
contain keyword t in category

iC , and tn to represent the number of documents that do
not contain keyword t in category

iC [28]. In Section 4.4, feature selection algorithms tf-
DE, tf-idf, tf-OR, and tf-rf are selected for comparative testing.

logij ij
tp tnw tf
fp fn

⋅= ⋅
⋅

 (7)

log 2ij ij
tpw tf
fn

 
= ⋅ + 

 
 (8)

2.4. The kNN Classification Algorithm
The guiding idea of kNN is that if most of the k sample points nearest to the sample

point belong to this certain category, then the sample point should also belong to that
category, which means kNN is used in the selection of the distance function. The com-
monly used distance functions include Euclidean distance, Chebyshev distance, and Can-
berra distance [38]. In this paper, Euclidean distance is selected as the distance function to
calculate the similarity between samples, which is shown in the following.

() ()2

1
,

d

i i
i

d x y x y
=

= − (9)

Appl. Sci. 2024, 14, 1565 9 of 18

3. Text Classification Algorithm Optimization Based on AVX-256
3.1. Proposed Text Classification Process

Given an unlabeled text d, the classification system searches for k adjacent labeled
documents that are closest to it in the training set, and then determines the category of
text d according to the classification labels of the adjacent texts. The kNN classification
implementation process is as follows.
(1) Transform the training set into a vector space model representation and calculate the

weight of each feature.
(2) Convert the unlabeled text d in a similar way as in step (1) and calculate the weight

of the corresponding phrase element.
(3) Calculate the distance between text d and each text in the training set.
(4) Identify the k training documents with the smallest distance from text d.
(5) According to the category attributes of the first k training documents, text d is gener-

ally classified as the most frequent sample category in the k training documents.
In essence, the kNN classification model has no specific training and learning process,

and its classification process only calculates the similarity between the unlabeled text and
each training set sample. Therefore, the time and space complexity of the kNN algorithm
is high. With the increase in the number of training samples, the storage resource con-
sumption of classification is large and the time cost is high. In order to improve the clas-
sification speed, we use the AVX instruction set to realize the simultaneous calculation of
multiple feature value distances and reduce the instruction consumption of kNN, so as to
improve the performance of the kNN algorithm and meet the requirements of fast classi-
fication of massive texts. Figure 2 shows the procedure of the text classification algorithm
accelerated with the use of AVX-256, which is elaborated in Algorithm 2 with a step-by-
step explanation of the procedure.

Figure 2. The procedure of text classification algorithm with AVX-256 acceleration.

Appl. Sci. 2024, 14, 1565 10 of 18

Algorithm 2: text classification based on AVX-256

Input: trainSet, testText, keywordList
Output:type
1. keywordList = LoadKeyword()
2. for i = 1 to trainSet.length
3. Load_trainText (trainSet.text[i], keywordList)
4. Calc_weight(keywordList)
5. for i = 1 to trainSet.length
6. trainSet.vector[i] = Get_featureVector (trainSet.text[i], keywordList)
7. featureVector =Get_featureVector(testText, keywordList)
8. for i = 1 to trainSet.length
9. neighbor[i].distance = CalculateDistance(featureVector, trainSet.vector[i])
10. neighbor[i].type = trainSet.type[i]
11. k_nearest_neighbor = sort_k(neighbor)
12. type = k_nearest_neighbor.most_type

1. Read keyword list.
2. Go through the training set.
3. Extract the key words of the ith training text.
4. Feature selection, calculate vector weights.
5. Go through the training set.
6. Extract the feature vector of the training text and construct the training sample set.
7. Extract the feature vector of the text to be classified
8. Go through the training set.
9. Calculate the distance between the text to be classified and the ith training text.
10. Obtain the classification type of the ith training text.
11. Sort by neighbor distance.
12. Identify the target document category based on the category of the k-nearest neigh-

bors.

3.2. Text Classification Algorithm Optimization Based on AVX-256
Computer instructions can be divided into scalar instructions and vector instructions

[39], where scalar instructions can only operate on one data point at a time. As the core
technology of vector instruction, SIMD can use one instruction to process multiple data
points in parallel. Compared with traditional single data instructions, SIMD has fine par-
allelism and can increase the computation speed exponentially in data-intensive matrix
vector operations. For traditional kNN classification calculations, scalar instruction is still
used in floating-point calculations, which wastes vector computation resources in the
CPU. SIMD technology can be used to achieve efficient utilization of CPU computing re-
sources. AVX-256 can process eight 32-bit data at a time, increasing the Euclidean distance
calculation speed by nearly 4-8 times. Assuming that the dimensionality of the document
feature vector is n and the number of samples in the training set is p, the arithmetic com-
plexity of kNN is O(n*p), while the arithmetic complexity after optimization by AVX is
O(n*p/4). Based on AVX-256, vector construction and operation can be realized; thus, the
kNN text classification algorithm is optimized. This method can realize the simultaneous
calculation of multiple feature value distances and reduce the instruction operation con-
sumption of kNN, so as to improve the efficiency of the kNN algorithm and meet the fast
classification requirements of large-scale texts.

Appl. Sci. 2024, 14, 1565 11 of 18

In the dictionary, the number of keyword occurrences in each text can be represented
by a 32-bit wide number, and an AVX instruction can simultaneously achieve eight fea-
ture parameter operations for AVX-256, supporting 256-bit wide vector operations.
(1) Occurrence vector construction: Use the instruction _mm256_loadu_ps to construct

a vector, which includes the occurrence of a keyword in eight documents.
(2) Calculation of characteristic parameter ej: Through _mm256_div_ps and

_mm256_log2_ps instructions to achieve vector division and log calculation, the cal-
culation of eight values is completed in each operation.

(3) Calculation of characteristic parameter E: By _mm256_add_ps instruction, the addi-
tion of vectors is realized and the information entropy E within the category is calcu-
lated.
The results of text classification feature value and distance are represented by 64-bit

wide numbers, using one AVX instruction to realize the operation of four feature value
distances at the same time. The kNN algorithm with AVX-256 acceleration is implemented
as follows.
(1) Initialize the distance vector vec_sum and temporary vector vec_d, using

_mm256_setzero_pd, which includes four 64-bit data elements to record the dis-
tances of four feature values.

(2) Construct the feature vector using instruction _mm256_loadu_pd. Use the instruc-
tion _mm256_loadu_pd to copy four feature values to construct the feature vector
vec_a for training text and vec_b for text to be classified. The four elements of vector
vec_a are represented by a1, a2, a3 and a4, at the same time, the four elements of vector
vec_b are represented by b1, b2, b3 and b4. Each vector’s composition structure is shown
in Figure 3.

Figure 3. The composition structure of each vector.

(3) Process the sum of squares using an AVX instruction to complete multiple feature
value operations, which means using the instruction _mm256_sub_pd to achieve vec-
tor subtraction, and using instruction _mm256_fmadd_pd to achieve multiplication
of the difference vector and addition of the distance vector. Each operation completes

Appl. Sci. 2024, 14, 1565 12 of 18

the calculation of four feature value distances, thus improving the performance of
kNN.

diff_v = _mm256_sub_pd(a_v, b_v)

sum_v = _mm256_fmadd_pd(diff_v, diff_v, sum_v) (10)

(4) Count distance, and sum the four distance results in the distance vector to obtain the
sum of squares of all feature differences, and then obtain the Euclidean distance be-
tween the text to be classified and the samples.

4. Analysis of Experiments and Results
4.1. Experimental Setup

For the text classification algorithm described in Section 3, experiments using Win-
dows 11 Professional Edition operating system, 11th Gen Intel® CoreTM i9-11950 H @ 2.60
GHz processor, Visual Studio 2022 development platform, and C++ programming lan-
guage were set up to inspect the accuracy and efficiency of the text classification algorithm
with AVX-256 acceleration. Two implementation methods of the text classification were
designed. In the first method, the feature selection algorithm and kNN classification algo-
rithm were realized with a traditional Single-Instruction-Single-Data (SISD) stream,
whereas in the comparison method, SIMD instructions were used to complete the opera-
tions of multiple feature parameters and multiple feature value distances at once. Under
the same training set, the two versions of the algorithm have the same classification results
for the same target text.

Since our research is mainly expected to be applied to the classification of Chinese
texts, we choose THUCNews as the experimental dataset [40], which contains 740,000
news documents from 2005 to 2011, by filtering the historical data of the Sina news RSS
subscription channel. Five categories were selected to classify text and inspect the com-
parison method in terms of improving the performance and efficiency of text classification,
including finance, education, sports, technology, and entertainment.

4.2. Criteria for Evaluating Statistical Results
The evaluation algorithm F1-measure is adopted to evaluate the statistical results

[41]. Firstly, four parameters representing the number of documents of a class are defined,
and the specific meaning is as follows.

A: The kNN classification algorithm marks these texts as a category, and they belong
to that category exactly. B: The kNN classification algorithm marks these texts as not be-
longing to a category, whereas, in fact, they should belong to that category. C: The kNN
classification algorithm marks these texts as a category that they do not actually belong
to. D: The kNN classification algorithm marks these texts as not belonging to a category,
and they do not belong to that category exactly.

For any one category, the classifier accuracy P and recall R are defined as shown
below.

P
C
A

A
=

+
, R

B
A
A

=
+

 (11)

A new parameter F1-measure is defined to integrate the meaning of the two parame-
ters P and R, as shown below.

2RPF1-measure
R P

=
+

 (12)

4.3. Experimental Procedure
In this section, the effectiveness of the text classification algorithm under different

feature vector scales is verified, and the performance gap between the traditional SISD-
based method and the AVX-256 acceleration method is compared.

Appl. Sci. 2024, 14, 1565 13 of 18

(1) Construct the dataset. Five categories were selected from the total corpus of the ex-
periment, and 2,000 articles in each category were selected as the training set and
1,000 articles as the test set. The composition of the dataset is shown in Table 3.

Table 3. Composition of dataset.

Category Finance Education Technology Sports Entertainment Total
training set 2000 2000 2000 2000 2000 10,000

test set 1000 1000 1000 1000 1000 5000

(2) Text preprocessing and presentation. According to 10,000 training documents, the
selected high-frequency words were used to construct a keyword dictionary of dif-
ferent sizes.

(3) Feature selection. According to 10,000 training documents, the occurrence times of
each keyword in each text were counted, and the weight of the feature vector was
calculated according to the tf-DE algorithm.

(4) Training sample set. In this step, text representation and preprocessing were carried
out on the training sample set, that is, the previous steps (2) and (3) were carried out
on the training sample set to obtain the vector set of the training samples.

(5) Classification test. First of all, text representation and preprocessing of the test set
were required; this means that the previous steps (2) and (3) of the test set were exe-
cuted to obtain the vector set of the test set.

(6) Calculate the distance between the text to be tested and each sample in the training
sample set, so as to find the nearest k neighbors, and then obtain the category type of
the test text according to the types of k neighbors.

(7) Obtain results of statistical classification.

4.4. Results Analysis
The traditional SISD-based method and the AVX-256 acceleration method of the text

classification algorithm are applied as contrasting experiments to observe and analyze the
performance of feature value selection, distance calculation, and nearest neighbor sorting
of the test dataset.

When the feature selection algorithm tf-DE is selected for testing, the multi-classifi-
cation effects of the kNN and SVM are shown in Table 4. The comparison results show
that the F1-measures of kNN and SVM models are comparable.

Table 4. Multi-classification effects of kNN and SVM.

 Indicator
Type

Accuracy P Recall R F1-Measure
kNN SVM kNN SVM kNN SVM

finance 95.7% 91.1% 88.3% 98.0% 91.8% 94.4%
education 87.6% 95.3% 85.7% 73.5% 86.6% 83.0%

technology 82.7% 94.8% 90.8% 85.0% 86.6% 89.6%
sports 96.1% 83.9% 95.8% 99.5% 96.0% 91.0%

entertainment 95.2% 94.7% 97.1% 99.5% 96.2% 97.0%
average 91.5% 92.0% 91.5% 91.1% 91.4% 91.0%

The test results are shown in Figure 4, which shows that as the lexical diversity of the
text in the entertainment category is low, and that high-frequency words in the entertain-
ment category, such as film, director, and box office, can better represent the entertain-
ment category. Therefore, when the feature vector dimension is small, a higher F1-measure
value can be achieved, and the classification accuracy is as high as 95.5% shown by the
red line. However, in the text of the education category, the lexical diversity is high, and
when the feature vector dimension is small, the accuracy rate is only 70.9% shown by the

Appl. Sci. 2024, 14, 1565 14 of 18

gray line. However, when the feature vector dimension is larger, the classification accu-
racy of the education category text can also achieve a higher F1-measure, of 85.9%.

Figure 4. Test results of text classification algorithm under tf-DE.

When feature selection algorithms tf-DE, tf-idf, tf-OR, and tf-rf are used for compara-
tive testing, the test results show that as the number of feature words increases, the clas-
sification effect of the text classification algorithm will increase, as shown in Figure 5. In
the tf-DE algorithm, when the feature vector dimension is increased from 1000 to 15,000,
F1-measure also increases from 86.3% to 93.5%. When the feature vector dimension is
small, the tf-DE algorithm can hardly reflect the advantages. We believe that this is due to
the diversity of the Chinese vocabulary; this makes it difficult to gather a certain number
of keywords representing the features of documents, so Chinese text needs more feature
words to judge its category. Therefore, our algorithm can only reflect its advantages when
the number of feature words is large. When the feature vector dimension exceeds 5000,
the tf-DE algorithm begins to show certain advantages.

Figure 5. Simulation results of text classification algorithm under tf-DE, tf-idf, tf-OR, and tf-rf.

In terms of text classification performance, the classification time also increases line-
arly with the increase in feature vector dimension. Under the same vector dimension, the
time consumed by the AVX-256 acceleration method is greatly reduced to about 55% of
that of the traditional SISD-based method. For a test set containing 5000 documents, when

Appl. Sci. 2024, 14, 1565 15 of 18

the feature vector dimension is 15,000, the classification time of the kNN algorithm de-
creases from 748 s to 403 s. Table 5 illustrates a running time comparison of the kNN al-
gorithm between the two methods under conditions of different feature vector dimen-
sions. Figure 6 shows the bar chart of the running time comparison, which is an intuitive
presentation of Table 5.

Table 5. Running time comparison.

Feature Vector Dimension
Processing Time (ms)

Optimize Ratio
SISD-Based AVX-256 Acceleration

1,000 52,459 27,259 52.0%
2,500 122,964 67,877 55.2%
5,000 243,153 139,973 57.6%

10,000 502,294 275,005 54.7%
15,000 748,506 403,069 53.8%

Figure 6. Bar chart of running time comparison.

5. Conclusions and Future Work
This paper describes a method for optimizing the automatic classification of sensitive

electronic documents in enterprises and organizations to provide different levels of dis-
closure risk assessment by setting a unified inspection strategy. The proposed approach
utilizes a combination of keyword retrieval and the kNN classification algorithm to stand-
ardize and enhance confidentiality management. In view of the circumstances, namely
that the existing feature selection algorithm tf-idf ignores the distribution difference of
words among and within different categories, and existing text classification algorithms
based on kNN have high time and space complexity and large storage resource consump-
tion, an optimization method is proposed to improve the performance of the feature se-
lection algorithm and the kNN algorithm using AVX-256 to achieve real-time classifica-
tion of massive texts. The features of the text are described and stored by vectors, and the
operations that need to be performed separately by data are replaced by one vector oper-
ation. Firstly, the keyword dictionary and text feature vector are described in vectors, and
the data vector is constructed, analyzed, and operated via SIMD instruction. Secondly, the
weight operation and distance operation of multiple data are simplified into a vector op-
eration to reduce the consumption of the CPU’s computing resources. The algorithm with
AVX-256 acceleration proposed in this paper improved the efficiency of high-dimensional
feature vector computation performance, and the obtained classification results are com-
parable with those of the traditional classification method, SVM.

Appl. Sci. 2024, 14, 1565 16 of 18

Although the kNN algorithm is simple and efficient, its accuracy needs to be im-
proved. The deep learning models do not rely on artificially acquired text features, and
can directly learn and model the text content, which is a great advance compared with the
shallow learning models. For example, an RNN can recursively learn text semantic and
syntactic tree structures without the need to set artificial features. A CNN can simultane-
ously use different convolution kernels for convolution operations on text sequences.
There are also many studies that combine multiple deep learning models. In the follow-
up work, the deep learning model for real-time text classification will be studied to im-
prove multi-classification. Due to the limited computing power of CPUs and the limited
memory capacity of Graphic Processing Units (GPUs), the scale of deep learning network
models that they can implement is greatly limited. Based on the AVX instruction set, the
hybrid operation strategy of the CPU and GPU in text classification algorithms will also
be explored, so as to present the computing function and advantages of the CPU in neural
network training. In addition, Chinese and English word segmentation methods are dif-
ferent; Chinese word segmentation needs to consider the granularity, which is more dif-
ficult. The jieba segmentation has poor performance in English classification. Because
English has spaces as separators and English words have various forms, it is necessary to
use segmentation tools applicable to English to classify English texts in the follow-up re-
search.

Author Contributions: Conceptualization, software, validation, and writing—original draft L.T.;
methodology, J.Y.; supervision, F.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Cheng, Y.; Wang, W.; Min, G.; Wang, J. A new approach to designing firewall based on multidimensional matrix. Concurr.

Comput. Pr. Exp. 2013, 27, 3075–3088.
2. Umer, M.F.; Sher, M.; Bi, Y. Flow-based intrusion detection: Techniques and challenges—ScienceDirect. Comput. Secur. 2017, 70,

238–254. https://doi.org/10.1016/j.cose.2017.05.009.
3. Shukla, J.; Singh, G.; Shukla, P.; Tripathi, A. Modeling and analysis of the effects of antivirus software on an infected computer

network. Appl. Math. Comput. 2014, 227, 11–18. https://doi.org/10.1016/j.amc.2013.10.091.
4. Van der Kleij, R.; Wijn, R.; Hof, T. An application and empirical test of the Capability Opportunity Motivation-Behaviour model

to data leakage prevention in financial organizations—ScienceDirect. Comput. Secur. 2020, 97, 101970.
5. Jiang, P.; Ning, J.; Liang, K.; Dong, C.; Chen, J.; Cao, Z. Encryption Switching Service: Securely Switch Your Encrypted Data to

Another Format. IEEE Trans. Serv. Comput. 2018, 2018, 1. https://doi.org/10.1109/TSC.2018.2876849.
6. Liu, H.; Ai, M.; Huang, R.; Qiu, R.; Li, Y. Identity authentication for edge devices based on zero-trust architecture. Concurr.

Comput. Pract. Exp. 2022, 34, e7198.
7. Rong-na, X.; Hui, L.; Guo-zhen, S.; Yun-chuan, G.; Ben, N.; Mang, S. Provenance-based data flow control mechanism for Internet

of things. Trans. Emerging Tel. Tech. 2021, 32, e3934. https://doi.org/10.1002/ett.3934.
8. Deng, J.; Cheng, L.; Wang, Z. Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classi-

fication. Comput. Speech Lang. 2021, 68, 101182.
9. Gao, X.; Yu, J.; Chang, Y.; Wang, H.; Fan, J. Checking Only When It Is Necessary: Enabling Integrity Auditing Based on the

Keyword with Sensitive Information Privacy for Encrypted Cloud Data. IEEE Trans. Dependable Secur. Comput. 2021, 19, 3774–
3789. https://doi.org/10.1109/TDSC.2021.3106780.

10. Chen, W.; Xu, Z.; Zheng, X.; Yu, Q.; Luo, Y. Research on Sentiment Classification of Online Travel Review Text. Appl. Sci. 2020,
10, 5275. https://doi.org/10.3390/app10155275.

Appl. Sci. 2024, 14, 1565 17 of 18

11. Sun, N.; Du, C. News Text Classification Method and Simulation Based on the Hybrid Deep Learning Model. Complexity 2021,
2021, 1–11. https://doi.org/10.1155/2021/8064579.

12. Lan, A.G.J.; Paraboni, I. Text-and author-dependent moral foundations classification. New Rev. Hypermedia Multimed. 2022, 28,
18–38.

13. Winster, S.G.; Kumar, M.N. Automatic classification of emotions in news articles through ensemble decision tree classification
techniques. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 5709–5720.

14. Gao, H.; Zeng, X.; Yao, C. Application of improved distributed Naive Bayesian algorithms in text classification. J. Supercomput.
2019, 75, 5831–5847.

15. Luo, X. Efficient English text classification using selected machine learning techniques. Alex. Eng. J. 2021, 60, 3401–3409.
16. Dramé, K.; Mougin, F.; Diallo, G. Large scale biomedical texts classification: a kNN and an ESA-based approaches. J. Biomed.

Semant. 2016, 7, 1–12.
17. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep learning--based text classification: A com-

prehensive review. ACM Comput. Surv. (CSUR) 2021, 54, 1–40.
18. Goudjil, M.; Koudil, M.; Bedda, M.; Ghoggali, N. A novel active learning method using SVM for text classification. Int. J. Autom.

Comput. 2018, 15, 290–298.
19. Ababneh, J. Application of Naïve Bayes, decision tree, and K-nearest neighbors for automated text classification. Mod. Appl. Sci.

2019, 13, 31.
20. Wang, H.; He, J.; Zhang, X.; Liu, S.; et al. A short text classification method based on N-gram and CNN. Chin. J. Electron. 2020,

29, 248–254.
21. Du, J.; Vong, C.M.; Chen, C.L.P. Novel efficient RNN and LSTM-like architectures: Recurrent and gated broad learning systems

and their applications for text classification. IEEE Trans. Cybern. 2020, 51, 1586–1597.
22. Shen, C.W.; Ho, J.T. Technology-enhanced learning in higher education: A bibliometric analysis with latent semantic approach.

Comput. Hum. Behav. 2020, 104, 106177.
23. Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for kNN classification. ACM Trans. Intell. Syst. Technol. (TIST) 2017, 8,

1–19.
24. Geng, T.; Waeijen, L.; Peemen, M.; Corporaal, H.; He, Y. MacSim: A MAC-Enabled High-Performance Low-Power SIMD Ar-

chitecture. In Proceedings of the 2016 Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 31 August–2
September 2016; pp. 160–167. https://doi.org/10.1109/DSD.2016.27.

25. Jakobs, T.; Kratzsch, S.; Rünger, G. Analyzing Data Reordering of a combined MPI and AVX execution of a Jacobi Method. In
Proceedings of the 2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP),
Naples, Italy, 1–3 March 2023; pp. 159–163. https://doi.org/10.1109/PDP59025.2023.00032.

26. Salihu, S.A.; Onyekwere, I.P.; Mabayoje, M.A.; Mojeed, H.A. Performance Evaluation of Manhattan and Euclidean Distance
Measures for Clustering Based Automatic Text Summarization. FUOYE J. Eng. Technol. 2019, 4, 135-139.

27. Kim, T.; Hwang, C.; Park, K.S.; Lin, Z.; Cheng, P.; Miao, Y.; Ma, L.; Xiong, Y. Accelerating gnn training with locality-aware
partial execution. In Proceedings of the 12th ACM SIGOPS Asia-Pacific Workshop on Systems, Hong Kong China, 24–25 August
2021; pp. 34–41.

28. Yi, J.; Yang, G.; Wan, J. Category Discrimination Based Feature Selection Algorithm in Chinese Text Classification. J. Inf. Sci.
Eng. 2016, 32, 1145–1159.

29. Socher, R.; Huval, B.; Manning, C.D.; Ng, A.Y. Semantic compositionality through recursive matrix-vector spaces. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language
Learning, Jeju Island, Republic of Korea, 12–14 July 2012; pp. 1201-1211.

30. Liu, Z.; Zhou, W.; Li, H. AB-LSTM: Attention-based bidirectional LSTM model for scene text detection. ACM Trans. Multimed.
Comput. Commun. Appl. (TOMM) 2019, 15, 1–23.

31. Liu, K.; Ergu, D.; Cai, Y.; Gong, B.; Sheng, J. A new approach to process the unknown words in financial public opinion. Procedia
Comput. Sci. 2019, 162, 523–531.

32. Wang, D.; Su, J.; Yu, H. Feature extraction and analysis of natural language processing for deep learning English language. IEEE
Access 2020, 8, 46335–46345.

33. Hilal, T.A.; Hilal, H.A. Arabic text lossless compression by characters encoding. Procedia Comput. Sci. 2019, 155, 618–623.
34. Gurung, D.; Chakraborty, U.K.; Sharma, P. Intelligent predictive string search algorithm. Procedia Comput. Sci. 2016, 79, 161–

169.
35. Al-Anzi, F.S.; AbuZeina, D. Beyond vector space model for hierarchical Arabic text classification: A Markov chain approach.

Inf. Process. Manag. 2018, 54, 105–115.
36. Zheng, L.; Wang, H.; Gao, S. Sentimental feature selection for sentiment analysis of Chinese online reviews. Int. J. Mach. Learn.

Cybern. 2018, 9, 75–84.
37. Ali, A.; Naeem, S.; Anam, S.; Ahmed, M.M. Entropy in Information Theory from Many Perspectives and Various Mathematical

Models. J. Appl. Emerg. Sci. 2022, 12, 156–165.
38. Eminagaoglu, M. A new similarity measure for vector space models in text classification and information retrieval. J. Inf. Sci.

2020, 48, 463–476. https://doi.org/10.1177/0165551520968055.
39. Chen, Z.; Kaeli, D. Balancing scalar and vector execution on gpu architectures. In Proceedings of the 2016 IEEE International

Parallel and Distributed Processing Symposium (IPDPS), Chicago, IL, USA, 23–27 May 2016; pp. 973–982.

Appl. Sci. 2024, 14, 1565 18 of 18

40. Shao, D.; Li, C.; Huang, C.; Xiang, Y.; Yu, Z. A news classification applied with new text representation based on the improved
LDA. Multimed. Tools Appl. 2022, 81, 21521–21545.

41. Rehman, A.; Javed, K.; Babri, H.A. Feature selection based on a normalized difference measure for text classification. Inf. Process.
Manag. 2017, 53, 473–489.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

