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http://creativecommons.org/licenses/by/4.0/ In 1953, Sz-Nagy [1] [2] showed that every single contraction on a Hilbert space
m has a unitary dilation. This is an interesting tool which can be used to prove the

von Neumann inequality [3] [4] [5] [6] which states that for any contraction li-

near operator T on a Hilbert space the following inequality:
[p(l=lPl..

holds for all complex polynomials p(z) over the unit disk, where |p|_ de-
notes the supremum norm of p over the unit disk. In 1963, Ando proved that
every pair of commuting contractions has a simultaneous commuting dilation
[7]. However, Varopoulos [8], Parrott [9] and Crabb-Davie [10] proved that this
phenomenon fails for more than three commuting contractions. In 1978, Drury
[11], in connection to his generalization of von Neumann’s inequality, and then
Arveson [12], in 1998, proved the standard commuting dilation for tuples of
commuting contractions. The problem of determining if a tuple of commuting
(or non-commuting) contractions admits a unitary dilation has been pursued by

many authors. Over the years, several conditions that guarantee the existence of
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a unitary dilation for an n -tuple of commuting contractions have been studied
[13]. For example: tuples of doubly commuting contractions have unitary N-
dilations (N € N') acting on a finite dimensional space [14].

This result has many engineering applications [15].

In the present paper, we introduce the spectral mapping factorization of tuples
of circulant matrices and its matrix version. Circulant matrices have many ap-
plications in graph theory, cryptography, physics, signal and image processing,
probability, statistics, numerical analysis, algebraic coding theory and many
other areas [16]. The well known results on unitary dilations of doubly com-
muting sets of contractions allow us to extend Sz-Nagy’s Dilation Theorem and
von Neumann’s inequality to the setting of tuples of circulant contractions.

Theorem 1.1. Let N e N be a positive integer. Every tuple of circulant con-
tractions has a unitary N-dilation.

Theorem 1.2. von Neumann's inequality holds for tuples of circulant con-
tractions.

The matrix version of the spectral mapping factorization of tuples of circulant
matrices allows us to introduce a new family of completely contractive homo-

morphisms over the algebra of complex polynomials defined on D" .

2. Preliminaries

Throughout this paper H is a Hilbert space of finite dimension 2. Let

Dz[di'j]:j:le M, (C)

be a complex matrix. Denote by D’ = [d;i ]inj:l :

2.1. Operator Norm

Definition 2.1. Let A be a unital Banach algebra. We say that a€ A s in-
vertible if there is an element D e A such that ab=ba=1. In this case b is

unique and written a™*. The set
Inv(A)={aeA:3be A ,ab=ba=1}
is a group under multiplication.
If ais an element of A, the spectrum of a is defined as
o(a)={ieC:a-Al¢Inv(A)},
and its spectral radius is defined to be
r(a)=sup{|4|:1eo(a)}.

Definition 2.2. Let H be a Hilbert space and let T e B(H) be a linear
bounded operator on H. Then the operator norm of T denoted by ||T || is de-
fined by

IT= sup{% X # 0} = sup{"T (x)|| X sl} = sup{"T (x)|| 2| :1}.
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If ||T || <1, then the linear bounded operator T is called a contraction. In the

case, H is a finite dimensional Hilbert space, then
[T]=fr(T°T)= \/sup{|/1| Aeo(TT).

2.2. Complex Polynomials

Let D"={zeC:|z|<1} be the unit poly disk and let
f(zl,...’z ): Z ‘F(kl,...,kn)zlkl...zsn,

(kg ek )eS
be a complex polynomial over D". Then
[0, =sup | (2. 2,)|:[] = =[] =1}.

Let P, be the algebra of complex polynomials over D". Given

f(z2)= 3 f(klv'nkn)zlkl“-zﬁ“,

(kg s

a complex polynomial over D", let us set

[ £, =sup][f (T T,)

where the supremum is taken over the family of all n-tuples of contractions on
all Hilbert spaces. It is easy to see that | f|, is finite, since it is bounded by the
sum of the absolute values of the Fourier coefficients of £ and that this quantity
defines a norm on the algebra P, of complex polynomials over D". For each
polynomial p in P, there is always an n-tuple of contractions where this su-
premum is achieved. Therefore, (73n,||||w) and (Pn,""u) are both two normed
algebras.

Let fi‘j (Zl,~--,zn),i, j=L1---,m, be complex polynomials in z variables over
D". Then

0,0, =01 )

2.3. Unitary Dilation

" :|zi|§1}.

Definition 2.3. Let NeN and let (T,---T,) be a tuple of commuting
contractions on H. A unitary N-dilation for (T,,---,T,) is a k-tuple of com-

muting unitaries (Ul,---,Uk) acting on a space K o H such that

Th T =P UM U

b
forall n,---,n, satistying n +---+n, <N.
Definition 2.4. A finite set {Bl,---, Bn} of matrices is said to be doubly
commuting if BB; =B;B, and B/B;=BB/, forevery i#].
The following results will enable us to prove our main results [13] [14].
Theorem 2.5. (Sz-Nagy-Foias). Given k doubly commuting contractions
T, T € B(H ) , there is a Hilbert space K containing H and doubly commut-
ing unitaries U,,--- U, € B(K) so that
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Th T =P UM U

b
forall n,---,n, eZ.

Theorem 2.6. Let (Tl, =T ) be a k-tuple of doubly commuting contractions
on H. Then for every N €N, the k-tuple (T,,---,T,) has a unitary N-dilation
that acts on a space of dimension ( N -1-1)k n.

In finite dimensional, every tuple of commuting contractions which has a un-
itary N-dilation acting on a finite dimensional Hilbert space satisfies von Neu-
mann’s inequality [13].

Theorem 2.7. Let N eN, and let (Tl,---,Tk) be a k-tuple of commuting
contractions on H that has a unitary N-dilation acting on a finite dimensional
Hilbert space K. Put m = dim K. Then there exist m points {Wi = (Wi,---,W,i )}:
on the k-torus T* such that for every polynomial f (z,,-+,2,) of degree less
than or equal to N,

[ (Tueee i) < max | £ ()] =L+, m}.
In particular,
|F (T T < sup{| (2|2 =2i =1 k) = ]

Now, let us turn our attention to a particular family of doubly commuting sets
of matrices which have many applications in several areas such as graph theory,
cryptography, physics, signal and image processing, probability, statistics, nu-

merical analysis, algebraic coding theory and many other areas [16] [17].

2.4. Circulant Matrices

Let {ao vy, --,am_l} c C be a finite set of complex numbers, denote by
C(ay,ay, - 8y,4) the following Toeplitz matrix:

I T

am7 .. ..
Clagaay,)=| ¥ eM,(C)

& ... 8., 8

This matrix is called a complex circulant matrix of order m. It is possible to
write this matrix as a single variable matrix polynomial in 2, where Pis the cyc-

lic permutation matrix given by

010 - 00
001 0 -0
P=
00 - 0 0
10 0 0

Indeed,

m-1
C(ag.ay, -+ a,,)=al, + > aP"
k=1
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The matrix
a a & a a 8 & 8 g
8 & & 8 8, & &8 & g
% d a4 & @ a4 a A X
& & & a4 & & a4 & &
a a, 8 a a a a a a|a¢eC,
8 8 8 8 & & a &4 &
8 & & 3 8 d a4 q
& 8 & 8 & 3y 3y a4 &

@ 8 8 8 8 a4 P 8 4

is a 9 x 9-complex circulant matrix. It is well known that the set of m x

m-circulant matrices

m-1
Circ(m):{bolm +kZkak b, e(C}
=1

27

is a commutative algebra. Let £=e™ be a primitive m-th root of unity. Let us
denote by Uthe following matrix:

1 1 -1 1 1 1

1 Fod gm_?’ ol &

U= i : : N :
\/ﬁ 1 ™3 ..o g(m—s)z (m-3)(m-2) (m-1)(m-3)
1 g2 (m-2)(m-3) (m-2)? (m-1)(m-2)
1 gt (m-1)(m-3)  (m-1)(m-2) (m-1)°

This matrix is called Vandermonde matrix. It is well known that this matrix

has the following properties:

det(U) =

U is non-singular, unitary, U™ =U", UT=U and U™'=U=U". It is well
known that all elements of Cir(m) are simultaneously diagonalised by the same
unitary matrix U[18] [19] [20], that is, for A in Cir(im),

U'AU =D,
with D, isa diagonal matrix with diagonal entries given by the ordered eigen-

values of A: A, A}',-++, 4. The factorization U"AU =D, is called the spectral

factorization of A.

3. Proof of the Main Results

In this section, we introduce the spectral mapping factorization of tuples of cir-

culant matrices and its matrix version. We prove our main two results.
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Theorem 3.1. Let A be a m x m-complex circulant matrix. Then
|A|=sup{|2|: A (A)} =r(A).

Proof. Let A be a m x m-complex circulant matrix. The spectral factorization

of the matrix A allows us to claim that

A0 0
A=UD,U",D, = 0 ﬂfA A ea(A).
o - 0 A
It follows that
D, =UAU.

A simple calculation shows that

LR Vs (AU E A

and

[Pal=[ulAllv ] <Al
Therefore,
|Al=[Dl=sup{[4]: 2€ o (A)} =r(A). O
Theorem 3.2. Let A be a m x m-complex circulant matrix. Then

| (A)|=sup{|f (2): Aea(A)}=r(f(A)).VfeR.

Proof. Let A be a m x m-complex circulant matrix. We know that

A0 0
A=UD,U",D, = 0 A?A A ea(A).
0 . 0 2
Then
w oo
tog-] O TE T o
0 0 f(ar)
Therefore,

[£(A)=|uf(D)U]=|f (D) =sup{|t (2)|: 2ea(A)} =r(f(A)). O

The spectral factorization of circulant matrices [17] allows us to establish the
spectral mapping factorization of tuples of circulant matrices.
Theorem 3.3. Let S={A, A+, A,} bea set of mx m-complex circulant ma-

trices. Then
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ﬂ,A" eG(A),Vf eP.

Proof. Let S= {Ai, A, A1} be a set of m x m-complex circulant matrices.
From the spectral factorization of every A , we can say that there exist a com-
plex m X m-unitary matrix U and m x m-diagonal matrices DA‘_ ,i=1---,n such
that

A0 o0
- 0 A% o _
A:UDA‘U 1;DA‘-: . ﬂ’? : : ’ﬂ'IA GG(A)'Izly...]m-
0 - 0 A

A simple calculation shows that

f (A, A)=Uf(D,, D, JU" VfeR,

It is straightforward to see that

f(ﬂf*."',ﬂf") 0 0
0 f(AN,-- A, )
f(Dy. Dy )= (% : ) :
0 0 f(Ar - AM)
Vf € P, . Therefore,
F(ARA0) 0 0
f(Ai,"',Ah):U 0 f(g;&,;..’ﬂ?/\]) . o
0 0 f(Ar - 4M)
Aeo(A)vieR,. (]

Now, we are ready to establish the matrix version of the spectral mapping

factorization of tuples of circulant matrices.
Theorem 3.4. Let KeN andlet S={A,A,,---,A\} bea set of mx m-com-

K
plex circulant matrices and let [ fi, i (Zl, ez, )] . be a k x k-matrix with com-

i,j=
plex polynomials as entries. Let us denote by
k

B=[fi,j(A1""*A1)]i,j:1

and
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Al eo(A )i, j=1--- k. Then

U 0 . 0)ay, a, - a,)u 0 . 0
SR S
0 - 0 U)la, - - a,Jl0 - 0 U

Proof. Let S= {Ai, A, A1} be a set of m x m-complex circulant matrices

and let [fi’j(zl,--‘,znﬂk.

i be a k x k-matrix with complex polynomials as en-

tries, k € N. Suppose that
k
B:[fi‘j(Ai’“"A“)]i,jzl’ fiieR,

and

iy (A A 0 0

A’ € (A ). Theorem 3.3 allows us to claim that
i (A Ay =Ua U,

f.; B A" ec(A). It follows that
- -1
B=[Ua U] .
A simple calculation shows that

-1

U 0 - 0Ya, a, ~ a,)U 0 . 0
B 0 U 61%1 612.’2 612.’k 0 U 0
0 -+ 0 Ula, - - a,)l0 « 0 U

Proof of Theorem 1.1
We just need to show that every tuple of circulant contractions is a doubly

commuting set of contractions. Let k€N and let
(Cl(al),l’ a‘l,l"“lam—l,l)"“’ck (ao,kvai,k 8k ))

be a k-tuple of circulant contractions. Assume that
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00
0 . 0
P- i em©
0 O 0
10 0 0
It is clear that
i A A
C (A )= Y
. 0 a,

Also,
m-1
C (ao,i'ai,i"“'am—l,i):ao,ilm +Zar,iP',1Si <k.
r=1
Let us show that the set

{ (301,311, T mll) o (aok’alk’ T mlk)}

is a doubly commuting set of contractions. We already know that this set is
commutative. Let us observe that

* m-1

(ao al]"' mlj): ,j|m+ an—r,jPr'

Therefore, the adjoint of a complex m X m-circulant matrix is another m x
m-circulant matrix. The fact that the set of m x m-circulant matrices is a com-
mutative algebra implies that the matrices C; (aO,i i FEREREIE - I ) and

(ao N T J) ,1# ], commute. Therefore, the set

{ (301,311, T mll) o (aok’alk’ T mlk)}

is a doubly commuting set of contractions. Theorem 2.5 and Theorem 2.6 allow
us to claim that, for each N €N, the k-tuple of circulant contractions

{Cl(ao,l’ai,l"”'am—l,l)""'ck (ao,k’al,k"”’am—l,k)}

has a unitary N-dilation acting on a finite dimensional Hilbert space. Finally, for
each N eN, every tuple of circulant contractions has a unitary N-dilation. [

The above proof allows us to observe the following: every finite set of circulant
matrices is a doubly commuting set of matrices. This enables us to prove our
second main result.

First proof of Theorem 1.2

Let (Al,---, A1) be an n-tuple of circulant contractions of order m. The set
{A,-~ A} is a doubly commuting set of contractions. Theorem 2.7 allows us
to claim that von Neumann’s inequality holds for this set {A,---,A }. There-

fore,

||f(A,---,A1)||s||f||m,VfePn. 0
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Second proof of Theorem 1.2
Let {A,A,---, A/} be aset of m x m-complex circulant contractions. Theo-

rem 3.3 allows us to claim that

(A8 e 2 0 0
S I
, ot
A ea(A),|41|<1,Vf R, It follows that

(A2 ) 0 0
S A |

g) o )
N eo(A), forall feT,. Therefore,

[F(AA) <]

[, vf . O

4. Application

In this section, we construct completely contractive homomorphisms over the
algebra of complex polynomials defined on D" .

Theorem 4.1. Let S= {Ai, Ay Aj} be a set of m x m-complex circulant
contractions. Then the map ¢°:P, — M, given by

#(1)=1(AA)

is a completely contractive homomorphism.
Proof. Let S={A,A,,---,A,} be a set of m x m-complex circulant contrac-

tions. The spectral factorization of the matrix A allows us to claim that

AV 0 0
A-uDw D, - § H T eo(a)
0 - 0 Af
It follows that
D,\_:U’lA‘U.

A simple calculation shows that
IAl=], |=sup{2:22o(4)}.

Finally, [4|<1,4" eo(A), since |A[<1.Suppose that ¢°: 7, —M,, is the
map given by

(f)=F(AA)

It is well known that the map ¢, is a homomorphism [14]. Also,
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1.

1-snl 1" e

||¢S||=Sup{"¢g(f)”: f=0,f ePn}

First of all, let us show that the map ¢ is a contractive map. Due to the fact

that the elements of the set S = {Ai, ALy Aj} doubly commute implies that
[f (A A<t ¥ eR.

Therefore,

S f(Ai,---,A]) .
||¢ ||:sup{w. f£0,f eﬂ}sl.

Let keN and define the map ¢ : M, (%,)—> M, (M,,) by setting
k k
¢k§([fivi]i,jzl):[fivi('A’i’m’A‘)]i,jzl

Let us show that the map ¢ is contractive. Theorem 3.4 allows us to claim that
if
K

B:[fi,j(Ail"'vA])l’jzl, fi, eR,

we can say that

Uu o ~. 0\a,; a, . a,)u 0 . 0
0 U . a; a, . a0 U "’
B= . . . T . T
0 - 0 UJla, - = a, )0 - 0 U
with
iy (A% ) 0 0
. 0 (A )
i .
0 0 fi‘j(ﬂnﬁl,...,lﬁ)

/LA’eo-(Ar).Recallthat |/11A'|S1, I=1,---,m and r=1,---,n. It follows that

a; A, . Ay
K a,, a oA K
ENCESI S R E L)
ak,l ak,k

Finally,

H[ fis (Ai""’Al)]ijzl
H[ fi’j]:(,jzl

]| = sup :[fi,j]ij:leMk(Pn) <lkeN. O

0
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