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Abstract

High-precision exoplanet eclipse light curves, like those possible with JWST, enable flux and temperature mapping
of exoplanet atmospheres. These eclipse maps will have unprecedented precision, providing an opportunity to
constrain current theoretical predictions of exoplanet atmospheres. However, eclipse mapping has unavoidable
mathematical limitations because many map patterns are unobservable. This “null space” has implications for
making comparisons between predictions from general circulation models (GCMs) and the observed planet maps
and thus affects our understanding of the physical processes driving the observed maps. We describe the eclipse-
mapping null space and show how GCM forward models can be transformed to their observable modes for more
appropriate comparison with retrieved eclipse maps, demonstrated with applications to synthetic data of an ultrahot
Jupiter and a cloudy warm Jupiter under JWST best-case and extreme-precision observing scenarios. We show that
the effects of the null space can be mitigated and manipulated through observational design, and JWST exposure
times are short enough to not increase the size of the null space. Furthermore, we show the mathematical
connection between the null space and the “eigenmapping” method, demonstrating how eigenmaps can be used to
understand the null space in a model-independent way. We leverage this connection to incorporate null-space
uncertainties in retrieved maps, which increases the uncertainties to encompass the ground truth for synthetic data.
The comparisons between observed maps and forward models that are enabled by this work, and the improved
eclipse-mapping uncertainties, will be critical to our interpretation of multidimensional aspects of exoplanets in the
JWST era.

Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanets (498); Eclipses (442)

1. Introduction

Exoplanet eclipses enable mapping of the planet’s surface or
photosphere. As the planet passes behind its host star, the
brightness of the system changes based on the flux emitted by
the regions of the planet being covered or uncovered by the
stellar disk (Williams et al. 2006; Rauscher et al. 2007). Thus,
the light curve of the planet–star system can be inverted to
retrieve a brightness map of the planet and, in turn, a map of the
temperatures of the planet. This has been done successfully for
HD 189733 b by stacking several Spitzer Space Telescope
8 μm eclipse observations (de Wit et al. 2012; Majeau et al.
2012; Rauscher et al. 2018; Challener & Rauscher 2022) and
was recently done with a JWST NIRISS/SOSS eclipse of
WASP-18b (Coulombe et al. 2023). Now that JWST is
operational, many more hot and ultrahot Jupiters are mappable.

Hot Jupiters are a class of planet where general circulation
models (GCMs) predict large temperature gradients between
the permanent day- and nightside (e.g., Showman & Guil-
lot 2002; Showman et al. 2009; Heng et al. 2011; Rauscher &
Menou 2012; Dobbs-Dixon & Agol 2013; Mayne et al. 2014;
Cho et al. 2015), although their detailed 3D structures will
depend on the atmospheric wind patterns and how they may be
shaped by additional processes such as chemistry, clouds or
hazes, magnetic effects, and hydrogen dissociation (e.g.,
Rogers 2014; Helling et al. 2016; Kataria et al. 2016; Lee
et al. 2016; Parmentier et al. 2016; Drummond et al. 2018; Tan

& Komacek 2019; Roman et al. 2021; Steinrueck et al. 2021;
Beltz et al. 2022). However, observational constraints on
exoplanet atmosphere have been limited to hemispherically
averaged properties due to data quality limitations (e.g.,
Stevenson et al. 2017; Arcangeli et al. 2019; May et al.
2021, 2022).
The JWST provides the first opportunity to understand

exoplanet atmospheres on a 3D level. Eclipse maps will
provide the first empirical challenges for multidimensional
aspects of GCMs. For example, the first JWST eclipse map is
of an ultrahot Jupiter; from the sharp drop in brightness near
the terminator, GCMs indicate that a strong (possibly magnetic)
drag mechanism must be at work, preventing winds from more
efficiently advecting hot gas away from the dayside (Coulombe
et al. 2023). Furthermore, GCMs will be used for physical
interpretations of eclipse map features like shifted hot-spot
locations and temperature gradients. Thus, comparisons
between observed planet maps and theoretical predictions will
be critical to our understanding of exoplanet atmospheres
through the JWST era and beyond. Understanding the nuance
of these comparisons is crucial.
Not all brightness patterns on a planet are mappable (Cowan

et al. 2013). This is intuitive for rotational light curves
(planetary phase curves); we can only measure hemispherically
integrated planet flux as the object rotates, so many patterns
have no observable signal (Luger et al. 2021); hereafter L2021.
For example, a planet with no variation besides latitudinal
bands would appear indistinguishable from a planet with a
uniform brightness temperature. These immeasurable struc-
tures, or the “null space,” persist even in the limit of an infinite
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signal-to-noise ratio (S/N). While the null space is much
smaller if the planet is eclipsed by its host star, it is not empty.

In this paper, we discuss the ramifications of the null space
on eclipse mapping and how to best compare GCMs against
observed planet maps. In Section 2, we give an overview of the
null space; in Section 3, we show the relationship between the
null space and eclipse-mapping models; in Section 4, we
discuss strategies to minimize null-space effects; in Section 5,
we describe how to transform 3D model predictions into their
observable forms; in Section 6, we demonstrate applications to
synthetic observations; in Section 7, we introduce a method to
incorporate the null-space uncertainty into retrieved maps; and
in Section 8, we lay out our conclusions.

2. The Null Space

We refer the reader to (L2021), who laid out a thorough
description of the null space. Here we give a brief overview.
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where the first term is a uniform map with weight y0
0, and the

second term is a set of variations on that uniform map. There
are N l 1 1max

2( )= + - spherical harmonic amplitudes in the
second term (the number of spherical harmonics with l lmax
minus y0

0). We write the equation in this way to make a
comparison between the spherical harmonic basis described
here and the “eigenmap” basis, which we discuss further in
Section 3.

From the flux map Z, we obtain the planet’s observed light
curve (with K measurements in time) from

f y F t y? , 30
0

0
0( ) ( )= +

where ? is the design matrix,1 a K× (N− 1) matrix that
describes how each spherical harmonic mode contributes to
each flux measurement in the light curve; F0

0 is the light curve
of the uniform map Y0

0; and y is the vector of ym
l weights with

l> 0. We note that the design matrices used in L2021 and our ?
are slightly different, in that our design matrix does not
include F0

0.
Figure 1 shows the design matrix out to sixth-degree

harmonics for an observation matching that in Coulombe et al.
(2023). Outside of eclipse, ingress, and egress, the contribution
to the light curve is zero for many harmonics because many
modes are not measurable with rotational light curves (Cowan
et al. 2013; L2021). If the object is eclipsed, harmonic modes
contribute information to the design matrix during eclipse

ingress and egress, so more spatial information becomes
available as the eclipse breaks many latitudinal degeneracies.
Furthermore, if the planet’s orbit has an inclination i< 90°
(impact parameter b> 0), latitudinally symmetric modes
become observable.2

Although Figure 1 shows that all spherical harmonics have
an eclipse signal for a planet on an inclined orbit (i.e., no
column is all zeros), many of these signals are degenerate. The
size of the null space (the “nullity”) is N− R, where R is the
rank of the design matrix ?. Here R is the number of
nondegenerate signals in the design matrix, so the nullity is the
number of degenerate signals lost to the null space. Therefore,
(N− R)/N is the fraction of information available at a given
harmonic degree that is inaccessible to an observation. Figure 2
shows this fractional nullity for a noneclipsing object, an
eclipsing object on an edge-on orbit, and an eclipsing object
with an inclined orbit for a spherical harmonic degree of �10
as a fraction of the total number of modes. An inclined eclipse
breaks most of the degeneracies for a spherical harmonic
degree of �4, but many of the higher-order harmonics with
finer spatial structure remain degenerate and are thus lost to the
null space.
Authors L2021 showed that ? can be decomposed into two

operators, P and N, which separate out the components of y that
affect the light curve and those that do not, using singular value
decomposition (SVD). Briefly, the design matrix can be written
as

U S V? , 4T ( )=

where U is a K× K orthogonal matrix, S is a K× N diagonal
matrix, and V is an N× N orthogonal matrix. These matrices
can be split into observable (•) and null (◦) components based
on the rank R of ? such that
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Combining Equations (3) and (4), it can be shown that we can
define

V V? , 8T
• • ( )º

V V? 9T ( )◦ ◦º

such that

y y? , 10• ( )=

y y? , 11( )◦ =

where y• is the linear combination of spherical harmonic
components that contribute to the light curve, and y◦ is the
linear combination of components that are in the null space. We
refer the reader to the Appendix of L2021 and the associated
supplemental materials3 for a thorough derivation and practical
examples.

1 The design matrix is a mathematical representation of the integration of each
spherical harmonic map component weighted by the visibility function at each
point in time (Cowan et al. 2013).

2 Generally, there is ambiguity about the orientation of the inclination. In this
work, we assume that the planets rotate and revolve about the same axis and
that the planets eclipse north of the stellar equator.
3 github.com/rodluger/mapping_stellar_surfaces
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Given a map that is constructed from spherical harmonics,
these sets of spherical harmonic weights can be used to
construct new maps following Equation (1). Maps constructed
from y• and y◦ are physical representations of the observable
modes Z• (referred to as the “preimage” in L2021) and the null
modes Z◦. Note that Z= Z•+ Z◦ and f= f•+ f◦. In fact, f◦= 0,
which means that Z◦ can be multiplied by any coefficient
before calculating Z without affecting the observed light curve.
There is no unique solution when inverting eclipse light curves
into planet maps.

3. Eigenmapping and the Null Space

Eigenmapping is currently the state of the art in eclipse-
mapping methods (Rauscher et al. 2018; Mansfield et al. 2020;
Challener & Rauscher 2022). In brief, this method computes an
initial basis set of spherical harmonic light curves (a design
matrix ?), transforms them into an orthogonal basis of
“eigencurves” using SVD, and fits the data as a weighted
sum of multiple eigencurves, a uniform-map light curve, and a
normalization correction term (Rauscher et al. 2018). The
resulting brightness map of the planet is constructed the same
way, as a weighted sum of the eigenmaps that correspond to
each eigencurve and the uniform component.

The eigencurves are constructed through a similar process to
the construction of the observable P and null N operators and

are thus related. In fact, the set of eigencurves, which
constitutes a new design matrix ?E, is given by

U S V? ? . 12E ( )= =

In other words, the columns of V are the eigenvectors of ? that
project the spherical harmonic light curves into new axes,
generating the orthogonal eigencurves.
The SVD sorts the eigencurves by their variance, naturally

separating the observable (nonzero variance) and null (zero
variance) components. While the spherical harmonics design
matrix for an eclipsed planet is nonzero for every harmonic
mode (Figure 1) but contains nontrivial degeneracies, the
eigenmap design matrix has R nonzero orthogonal components
and N− R null (degenerate) components. In other words, the
ranks of the spherical harmonic design matrix and the
eigenmap design matrix are equal. This is evident in
Figure 3, which shows ? with 0< l� 6 compared against ?E
for the WASP-18b eclipse observation in Coulombe et al.
(2023). Both matrices have R= 43, which is clear in ?E, where
there are 43 nonzero, orthogonal columns.
The matrix V contains the eigenvectors that map from ? to

?E, as shown in Equation (12). As noted by Rauscher et al.
(2018), these eigenvectors, which are the weights to combine
spherical harmonic light curves into eigencurves, are exactly
the y values that produce the eigenmaps. Thus, we can calculate
the physical map representations of the eigencurves following

Figure 1. Design matrices for the eclipse observation of WASP-18b presented in Coulombe et al. (2023), shown out to sixth-degree harmonics, for a perfectly edge-on
(top) and inclined (bottom) orbit. Each column shows the contribution from a given spherical harmonic mode at each time (or orbital phase) in the observation.
Multiplying a row by harmonic weights y, summing, and adding the uniform component gives the planetary light curve at that time (Equation (3)). The vertical black
lines separate the harmonic degrees. Red and blue indicate positive and negative contributions to the light curve, respectively. The white regions show times where a
harmonic contributes zero flux (i.e., that harmonic is unobservable at that time). The green inset zooms in on examples of the spherical harmonic signals generated in
the eclipse ingress.
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Equation (1) and, because they are ranked by the variance of
the light curves they produce, inspect the last N− R to further
understand the null space.

Figure 4 shows all 48 eigenmaps corresponding to the
eigencurves in ?E for 0< l< 6. The final five eigenmaps are in
the null space. It is important to note that these null maps are
model-independent; they depend on the orbital parameters of
the planet and observational settings (e.g., exposure time and
orbital phase coverage) of the measurement, but their
calculation requires no knowledge of the true planet map.
Thus, eigenmaps can be used to understand the null space of an
observation before it is taken.

With eigenmapping, it is necessary to reduce the size of the
model parameter space to prevent overfitting the data
(Rauscher et al. 2018; Challener & Rauscher 2022; Coulombe
et al. 2023). The fit is restricted to only NE of the highest-
variance eigencurves for a given lmax (starting from the left in
Figure 3), and fits are performed for many combinations of NE

and lmax, with the optimal choice selected as the combination
that minimizes the Bayesian information criterion (BIC;
Raftery 1995). For reference, Coulombe et al. (2023) found
that the optimal fit to a JWST white-light light curve is with
l 5max = and NE = 5. Thus, to avoid overfitting, many
brightness patterns will not be found in the retrieved map,
including the null-space components.

Aside from the problem of overfitting, if the light-curve
model is an unrestricted sum of eigencurves, it is not practical
to include the null-space eigencurves in the fit. These
eigencurves are exactly zero everywhere, so varying their
weights does not affect the model light curve, and these
weights will be completely unconstrained. However, the
corresponding eigenmaps are not zero everywhere, so the
resulting map will have large regions of infinite uncertainty.
This is clearly not representative of reality, so the null
eigenmaps (and other low-variance eigenmaps) have been

ignored in eigenmap fitting, with the acknowledgment that the
retrieved maps and their uncertainties are limited by the
components included in the fit (Rauscher et al. 2018; Challener
& Rauscher 2022; Coulombe et al. 2023).
However, the physically plausible parameter space is not a

wholly unrestricted sum of eigencurves because the corresp-
onding brightness map must be positive everywhere. Therefore,
recent eigenmapping applications (Challener & Rauscher 2022;
Coulombe et al. 2023) impose a positivity constraint, limiting
the size of the model parameter space. Under this constraint,
null-space eigencurves could be included in the fit without
leading to unconstrained retrieved maps.
In the following sections, we investigate several aspects of

the null space.

1. The impact of the null space on observations based on
system parameters and observational settings and strate-
gies for mitigation.

2. Using the null space to convert atmospheric forward
models into null and observable components for better
comparison with retrieved maps.

3. The effects of including null-space components on the
uncertainties of retrieved eclipse maps.

4. Mitigating Null-space Effects

The null space is purely mathematical and, to a point,
unavoidable. However, through careful observational design
and target selection, the impact of the null space can be
minimized. Note that here we only discuss considerations to
minimize the nullity and leave a discussion of optimizing
eclipse mapping based on S/N considerations to future work.
The size of the null space is heavily influenced by the

number of exposures occurring during eclipse ingress and
egress. To demonstrate, we calculated the nullity for observa-
tions with varying numbers of exposures during ingress and

Figure 2. Nullity (how much spatial information is unmappable) for a rotational vs. an eclipsing light curve. We assume that the inclined eclipsed object has an orbital
inclination of 89° to break the degeneracies of the latitudinally symmetric spherical harmonic modes. The eclipse gives the observation access to significantly more
brightness patterns on the planet than for a noneclipsing planet, particularly if the orbit is inclined. However, many patterns remain unobservable, especially at high
spatial resolution (high spherical harmonic degree). In all cases, the planet-to-star radius ratio is 0.1, the mass ratio is 0.001, the orbital period is 1 day, and the full
planet orbit is sampled 100,000 times such that the sampling rate does not impact the nullity at these spatial resolutions. See later sections for further discussion of the
effects of orbital parameters and sampling rate. We make no assumption about the S/N of the observation, as it has no effect on the nullity.
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egress for a representative planet with Rp/R* = 0.1,
Mp/M* = 0.001, an inclination of 89°, and a circular orbit
with a period of 1 day. Figure 5 shows the nullity as a fraction
of the total number of harmonic modes as a function of
ingress/egress samples for spherical harmonics of degree �10.
For this representative planet, the duration of ingress/egress is
10.9 minutes, so our exposure times range from ∼650 to 10 s.
The nullity for this planet decreases dramatically, even for low-
order harmonics, until reaching 16 exposures in both ingress
and egress, corresponding to a sampling rate of ∼40 s; higher
sampling rates do not further decrease the nullity for spherical
harmonics of degree �5. This sampling rate limit is much
slower than the 8.86 s (approximately 64 ingress samples in
Figure 5) used in Coulombe et al. (2023), indicating that the
sampling rate will generally not affect the null space for JWST
observations. This also sets a limit for temporal binning in
eclipse-mapping analyses, as binning decreases the spatial
information content of the data and should be avoided when
possible.

As the durations of eclipse ingress and egress depend on the
impact parameter b, so too does the nullity, to a lesser degree
than the sampling rate. Figure 5 shows the nullity for a range of
impact parameters with a constant exposure time of 30 s. Note
that increasing the impact parameter leads to a smaller nullity
until the impact parameter exceeds 1− Rp/R*, when the

eclipse becomes grazing, and the planet is only partially
scanned by the stellar disk. Similar effects (lower nullity, to a
limit) are present for longer orbital periods and larger planetary
radii, which both lead to longer ingress and egress durations.
Until now, we have discussed the size of the null space with

respect to orbital parameters. However, it is important to note
that the shape of the null space can change dramatically for
different orbital parameters, even if the overall nullity remains
similar. For example, varying the impact parameter within (0,
1− Rp/R*] minimally changes the nullity (Figure 5) but can
significantly change which structures of the map are obser-
vable, particularly latitudinal variation. To demonstrate, we
computed observable and null modes, as described in Section 3
and further discussed below, for a well-sampled eclipse of a
land map of Earth at several impact parameters, with other
system parameters the same as the planet in Figure 5; we chose
this map because it has significant fine structure and latitudinal
variation (Figure 6). As discussed above, many structures are
unobservable for the b= 0 and 1 cases, but there are also many
differences in the null space among the other cases. Depending
on the goals of an observation, it can be beneficial to consider
the null space for the targets’ orbital parameters. We leave a
full investigation into the interplay between orbital parameters,
observational uncertainties, and the null space to future work.

Figure 3. Spherical harmonic design matrix ? (top, same as the bottom panel of Figure 1) and eigencurve design matrix ?E (bottom) for a JWST eclipse observation of
WASP-18b (Coulombe et al. 2023). The ?E is the result of orthogonalizing the light curves (columns) in ? and is the basis set of light-curve components used in
eigenmapping fits. Both matrices have ranks of 43 (43 nondegenerate components), which is clear for ?E, where the orthogonalization has separated the zero and
nonzero components.
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5. Comparing Theoretical Planet Models with
Retrieved Maps

A consequence of the null space is that an observed map
may not match theoretical predictions from GCMs of the
planet. The GCMs are based on the physical processes of the
atmosphere (e.g., radiation, winds, drag, etc.) and can generate
brightness patterns that fall in the observational null space. A
retrieved map will not include these unmappable patterns.
Furthermore, as mentioned in Section 3, the uncertainties on
these retrieved maps are limited by the structures present in the
components of the model fit, and the null-space components are
not included, so the map uncertainties will not encompass the
effects of the null space. Thus, there can be an apparent

inconsistency between GCM forward models and retrieved
maps from observations.
We propose that the correct approach is to transform a GCM

flux map into its observable (Z•) and unobservable (Z◦) modes
through the P and N operators above. Then, Z• can be directly
compared with the retrieved planet map, and Z◦ shows the flux
structures that are inaccessible. First, one must represent the
GCM flux map in spherical harmonics up to a high enough
degree to capture spatial variations; in this work, we use 25th-
degree harmonics. Then, following L2021, compute ?,
decompose into P and N, compute y• and y◦, and use
Equation (1) to generate the maps. In this work, we perform
these calculations using starry (Luger et al. 2019), which

Figure 4. Flux (units arbitrary) eigenmaps corresponding to the eigencurves in a design matrix ?E for 0 < l < 6 for the eclipse observation of WASP-18b in Coulombe
et al. (2023). These eigenmaps are ranked, from top left to bottom right, by the variance in their light curves. The final five maps generate light curves that are zero at
all times during the observation and thus are in the null space.
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has built-in functionality for representing forward models in
spherical harmonics and calculating spherical harmonic design
matrices. See the Appendix for a minimal code example of
calculating observable and null maps using starry.

To demonstrate, we use a GCM of WASP-18b from
Coulombe et al. (2023). We assume the same eclipse
observation with the same observation times covering long-
itudes from −134°.7 to 151°.8. Figure 7 shows a comparison
between the true GCM map (represented with high-degree
spherical harmonics), the observable modes, and the null space.
The light curves produced by the GCM map and its Z• are

identical, while the light curve produced by Z◦ is zero flux at all
times in the observation.
The clearest difference between Z and Z• is that outside the

dayside of the planet, all temperature variations are washed out.
This is because, at longitudes that are not scanned by the stellar
disk, latitudinal variation is unobservable, and measurement of
longitudinal variation is limited to large-scale structures. Thus,
the relatively bright equator on the nightside due to a
superrotating jet is undetectable. Differences in Z and Z• on
the dayside are more subtle. Fine structure in the shape of the
hot spot is lost, and the poles appear much dimmer than reality.

Figure 5. Size of the null space vs. exposure time (top) and impact parameter
(bottom). The sampling rates range from one to 64 exposures over the eclipse
ingress. The 64-sample case roughly matches the observation in Coulombe
et al. (2023). The impact parameters range from zero to 1. In general, as long as
there are �16 exposures during eclipse ingress/egress (which will be standard
for JWST), the sampling rate does not affect the size of the null space.
Similarly, the size of the null space does not change with impact parameter as
long as the impact parameter is nonzero and the orbit is nongrazing.

Figure 6. Observable (left) and null (right) modes for an eclipse of a land map
of Earth (top) with a range of impact parameters. As expected, the edge-on
(b = 0) and grazing (b = 1) have significant unobservable structures, and fine
structures outside approximately −90° and 90° longitude are washed out.
However, varying b between these edge cases also changes the shape of the
null space.
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6. Example Applications

To examine the consequences of the null space in some
practical examples, we generated synthetic, noisy light curves
based on GCMs. We consider two hypothetical planets: an
ultrahot Jupiter similar to WASP-18b and a cooler planet
similar to HD 209458b. The GCM of WASP-18b is cloud-free,
as the planet’s atmosphere is too hot for condensation; thus, the
temperature structure of the photosphere (i.e., what we are
mapping) is primarily global-scale features with smooth
horizontal gradients. The HD 209458b GCM, however, has
spatially inhomogeneous cloud cover across the dayside,
creating potentially detectable (relatively) small-scale bright-
ness structures. These two planets represent two important
temperature regimes that will be mappable with JWST.

For each planet, we consider two observational scenarios.

1. Best-case precision. This is an approximate best-case
JWST observational scenario, assuming 10 stacked
eclipses, each with 121 ppm precision per integration
(matching Coulombe et al. 2023), for a final precision of
38 ppm per integration.4 This case shows how the null
space impacts the highest-signal observations currently
possible.

2. Extreme precision. These observations assume an
extreme precision of 1 ppm to investigate the effects of
the null space when mapping is less limited by data
quality.

Both cases are relatively high-precision observations because
single-eclipse observations are often satisfactorily fit by large-
scale flux patterns (low-order harmonics), where the null space
is empty. That is, the information loss is due to the strength of
the eclipse-mapping signal rather than null-space limitation.
However, if a planet has a strong signal and flux patterns that
cannot be fit by low-order harmonics, like the longitudinal
temperature gradients in WASP-18b (see Section 7.2), then the

null space can be important to consider for single-eclipse
analyses.
To generate the synthetic observations, we take 3D

temperature structures from the RM-GCM (Rauscher &
Menou 2012; Roman & Rauscher 2017; Beltz et al. 2022).
For WASP-18b, we use the 0 G GCM from Coulombe et al.
(2023). For HD 209458b, we use the 10% condensation
extended-clouds GCM with an irradiation temperature of
1500 K from Roman et al. (2021). System parameters are
listed in Table 1.
We postprocessed both GCMs following the methods of

Challener & Rauscher (2022) with minor changes. Briefly, we
assumed thermochemical equilibrium with GGchem (Woitke
et al. 2018) and calculated spatially dependent emission with
Tau-REx (Al-Refaie et al. 2021). For WASP-18b, we
calculated emission spectra over the NIRISS/SOSS first-order
wavelength range (0.8–2.8 μm) and integrated to create a
broadband measurement. For the cloudy GCM, we assumed the
5 μm cloud optical depths from the GCM and extended them to
other wavelengths following the empirical relationship in Lee
et al. (2013), then integrated the resulting spectra over 5–6 μm.
Then, using starry, we transformed these flux grids to 25th-
degree spherical harmonics representations, which enables
analytic computation of the eclipse light curve (i.e., we do not
need to approximate the spatial integration as is done in
Challener & Rauscher 2022).

Figure 7. Decomposition of a GCM flux map into the observable and null-space modes. The fourth column is a restriction of the full null space (third column) to only
spherical harmonics of degree 5 or less, which shows the data-limited null space. Note that the light curves for the truth and observable components are identical, and
the light curves from the null-space maps are flat, showing that they are not observable. The GCM is the 0 G (no magnetic field) RM-GCM WASP-18b model from
Coulombe et al. (2023).

Table 1
WASP-18 (Coulombe et al. 2023) and HD 209458 (Roman et al. 2021) System

Parameters

Parameter WASP-18 HD 209458

Stellar radius 1.347 Re 1.203 Re

Stellar mass 1.5596 Me 1.148 Re

Stellar temperature 6400 K 4371 K
Planet radius 0.132 Re 0.139 Re

Planet mass 0.00996 Me 0.000702 Me

Eccentricity 0.0 0.0
Inclination 84°. 38 86°. 59
Impact parameter 0.34 0.51
Semimajor axis 0.0218 au 0.04747 au
Orbital period 0.94145 day 3.52472 days

4 For eclipse-mapping purposes, reducing uncertainties by the square root of
the number of eclipses is not identical to mapping with the additional eclipses,
even for tidally locked planets, because each exposure will occur at slightly
different orbital phases, changing (adding to) the information content of the
light curve in a nontrivial way. However, as shown in Section 4, additional
sampling beyond a single JWST eclipse does not significantly affect the null
space, so this noise approximation is reasonable for our purposes.
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In this work, we used ThERESA’s (Challener &
Rauscher 2022) 2D mapping mode to fit our data. We test a
large range of maximum spherical harmonic degree and
number of eigencurves to use in the fit, selecting the optimal
combination using the BIC. Thus, we eliminate terms that, if
they were fit, would be consistent with zero and would not
significantly affect the best-fitting map. This is the same
process used in Coulombe et al. (2023) to produce the first
JWST eclipse map.

6.1. WASP-18b

The fitted maps of WASP-18b are shown in Figure 8,
compared against the truth and the observable modes of the
truth. The best-case precision data require l 3max = and
NE= 2, while the extreme-precision case requires l 5max = and
NE= 13. For large-scale features, like the location and extent of
the planet’s hot spot, we achieve excellent agreement between
both fitted maps and the true map. As expected, the agreement
is particularly good at longitudes scanned by the stellar disk
during both ingress and egress.

Some smaller-scale features of the true map are not
recovered. The finer structure of the western edge of the hot

spot, despite being well within the longitudes probed by the
eclipse, is not found in our retrieved maps. At the terminators,
the bright equator and dimmer midlatitudes are not present in
our fit. For the best-case precision case, we recover a much
dimmer nightside than the truth, but a mismatch here is to be
expected, as the nightside is very poorly constrained by an
eclipse observation, and the retrieved map only needs to be
consistent with the data on a hemispheric scale outside the
dashed lines. As expected, the fit to the extreme-precision case
achieves a more accurate average nightside temperature,
although limitations from the null space still prevent retrieval
of spatial structures in that region.
However, the retrieved maps match the observable modes of

the true map remarkably well, particularly at the longitudes of
the planet that are probed by the eclipse. Despite differences
between the fitted maps and the truth, even in the extreme-
precision case, we should consider these maps to be consistent
with this GCM prediction. That is, in a real scenario, where we
retrieved this map, not knowing the truth, and compared the
fitted map with this GCM forward model, one might be
concerned with the differences between them. If the GCM is

Figure 8. Comparison of the true planet brightness map, the measurable modes of the true map, the retrieved map from a fit to our best-case precision synthetic data,
and the retrieved map from a fit to our extreme-precision synthetic data. The black bars cover regions of the planet that are not visible during the observation. The
vertical dotted lines bound the longitudes of the planet that are scanned during both ingress and egress. Within the dashed lines are longitudes scanned by ingress,
egress, or both. Outside the dashed lines, all information comes from only the phase-curve variation.

9

The Astronomical Journal, 166:176 (15pp), 2023 October Challener & Rauscher



transformed to its observable component, however, we see that
the GCM actually matches the observation well.5

For this planet, the best-case precision and extreme-precision
maps are very similar. The minimal differences are primarily in
the nightside brightness and the latitudinal extent of the hot
spot. The nightside brightness is highly uncertain due to limited
observing time during typical eclipse observations, so the much
lower light-curve uncertainties of the extreme-precision case
lead to a more accurate nightside measurement. The signature
of latitudinal variation in eclipse ingress and egress is very
small due to WASP-18b’s low impact parameter (≈0.34), so
constraints on latitudinal information are minimal without very
high observational precision. This can be seen because the
features in the null space are primarily latitudinal (Figures 4
and 7).

We note that, although these differences in the best fits
between these two cases are minor, achieving higher-signal
observations is still beneficial to mapping. The difference in
precision between the best-case precision and extreme-preci-
sion maps is significant, which has implications for the
measurement of properties like longitudinal hot-spot offsets,
latitudinal hot-spot offsets, and spatial temperature gradients.
We discuss this in further detail in Section 6.3.

6.2. HD 209458b

Figure 8 shows the true map, observable modes, and fits to
the synthetic data of HD 209458b. The best-case precision data
require l 3max = and NE= 3, while the extreme-precision case
requires l 8max = and NE= 18. In contrast to WASP-18b, this
planet has significant fine spatial brightness variation due to
patchy clouds causing the photospheric pressure (and thus
temperature) to change with latitude and longitude. That is,
cloudy regions are more optically thick, so an observation
probes lower, colder pressures in those regions.

There is still evidence of cloud patchiness on the dayside in
the observable modes of the GCM, but much of the precise
structure is unobservable, even in eclipse. There are larger
differences in brightness across the dayside of the observable
map than the truth, with brighter regions near the substellar
point and dimmer poles. The observable hot spot is confined to
a smaller range of latitudes, and, as with WASP-18b, most
spatial information on the nightside is lost.

For the best-case precision case, the retrieved map shows
none of the substructure associated with patchy clouds on the
dayside. The data are well fit by a model with a smooth
brightness distribution decreasing from a hot spot east of the
substellar point toward the terminators and poles. Broadly, the
shape of the hot spot matches the shape of the observable map
hot spot. With the extreme-precision case, we see some
substructure from patchy clouds, with two brighter regions east
and west of the substellar point.

6.3. Measuring Hot-spot Offsets with Eclipse Mapping

Hot-spot offsets are often measured to give insight into
atmospheric circulation patterns (e.g., Stevenson et al. 2017;
Kreidberg et al. 2019; Morello et al. 2019; Crossfield et al.
2020; May et al. 2021, 2022; Deline et al. 2022; Mercier et al.

2022). With phase-curve observations, the hot-spot offset is
measured as the orbital phase at which the planet reaches
maximum emission; that is, the hot-spot offset is really the
planetary rotation angle that creates the brightest possible
visible hemisphere. Eclipse mapping provides maps at much
finer resolution than hemisphere-scale features such that a
derivation of the hot-spot location is the actual latitude and
longitude of the hottest point on the planet. These measure-
ments can differ at a statistically significant level, so authors
must be careful to mention which measurement they are
making (Parmentier et al. 2021). Here we refer to “phase-curve
offsets” (planet rotation angle of maximum hemispheric
brightness) and “hot-spot longitudes” (longitude of maximum
brightness).
To demonstrate, we examined the hot-spot longitude of the

WASP-18b true map, observable map, retrieved maps, and
phase-curve offset, shown in Figure 9. The true and observable
hot-spot longitudes are computed by generating high-resolution
maps and finding the location of maximum brightness. The
phase-curve offset is calculated by finding the orbital phase that
achieves maximum planet brightness, assuming the planet is
not occulted by the star. The retrieved hot-spot longitude
histograms come from the longitude of maximum brightness
for a subsample of the ThERESA Markov Chain Monte Carlo
(MCMC) results.
We note that the phase-curve offset is nearly 10° west of the

hot-spot longitude of the true map. This is because the dayside
flux distribution is longitudinally asymmetric (Figure 9), with a
steeper gradient at the evening terminator, so the hemisphere of
maximum brightness is shifted west relative to the true hot-spot
location. These are different measurements, as described above,
but we mention the difference to highlight that eclipse map hot-
spot longitudes and phase-curve offsets will not necessarily be
consistent with each other.
Furthermore, the observable map and retrieved map hot-spot

longitudes are also west of the true hot-spot longitude. While
with increasing observational precision, the measured hot-spot
longitudes approach the observable map hot-spot longitude
(what we expect to measure with infinite S/N), even at an
extreme precision, the retrieved hot-spot longitude is biased
west of the true and east of the observable hot-spot longitude.
This is likely because the exact location of the hottest point on
the planet is relatively unimportant to the eclipse-mapping fits
compared to the overall dayside flux morphology. With
upcoming eclipse-mapping analyses, we must be aware that
measured hot-spot longitudes may not match both the GCM
predictions and the observable transformations of those
predictions. Using eclipse-mapping hot-spot longitudes as a
single metric to understand atmospheric dynamics will be
challenging, and methods that utilize the full shape of the
planet map may be necessary (Hammond & Lewis 2021).
Coulombe et al. (2023) showed that the traditional hot-spot
longitude becomes less meaningful with eclipse maps, and the
problem only gets worse for planets with complex dayside
structures like the map of HD 209458b presented here.

7. Incorporating Null-space Uncertainty in Eclipse
Mapping

As described above, if null-space light curves are included in
an unrestricted light-curve fit (i.e., the model is simply a sum of
light curves), then the null-space components are uncon-
strained, and the resulting map will have infinite uncertainty.

5 Here the observable component of the GCM and the fitted map are
guaranteed to match because the GCM was used to generate the data.
Regardless, this exercise shows how to make appropriate comparisons between
forward models and fitted maps even when the truth is unknown.
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However, we can place physically motivated penalties on the
model that restrict parameter space, potentially allowing the
inclusion of null-space modes without dramatically inflating
map uncertainties. For example, we can impose a positivity
constraint that significantly penalizes goodness of fit for models
that result in negative fluxes on regions of the planet that are
visible during the observation. This constraint is already
available in ThERESA.

Here we investigate whether the uncertainties introduced by
the null space are manageable under this positivity constraint.
For simplicity, we utilize the same BIC-based model optim-
ization procedure described in Challener & Rauscher (2022) to
choose lmax and NE.

Given this best-fitting model, one could then analytically
calculate the largest-magnitude positive and negative weights
on the null components that keep the best-fitting brightness
map positive in the visible regions of the planet. If the null
components are uncorrelated with other model parameters, then
this would give the range of plausible models. However, while
the eigencurves and null-space components are, by design,
orthogonal in the light curves they produce, the positivity
constraint removes regions of parameter space, introducing
correlations. Additionally, the best-fitting model is only one of
a range of possible solutions, all of which may interact
differently with the null-space components.

Therefore, in order to fully explore the effects of the null-
space components on the fit, we rerun the MCMC using the
same lmax and NE but including the null-space components
present at this lmax. This does not change the best-fitting model
(the null-space components provide no change to the light-
curve model) but does allow the model the explore a larger
range of brightness maps.

We calculate brightness map uncertainties by evaluating
maps from the MCMC posterior distribution and calculating
68.27%, 95.45%, and 99.73% confidence regions at each
latitude/longitude in this map distribution. Thus, these
uncertainties are the range of possible values the map can take
at a specific location, but not every possible map within a
confidence region is a potential match to the data. While the
eigencurves are, by definition, orthogonal in light-curve space,
their corresponding eigenmaps are not orthogonal, so there can
be correlations in the posterior distribution of maps. For

example, if a map has very bright regions, it likely also has
very dim regions to maintain a total emission that is consistent
with the data.

7.1. Application to Synthetic Data Sets

We applied this methodology to the extreme-precision data
sets described above, as the best-case precision data are
explained well by eigencurves with l 3max  where the null
space is empty. This means that, for these specific GCMs, the
null-space uncertainty method outlined here, when used in
tandem with the BIC-based model selection approach, would
not alter the mapping uncertainties for the best-case (or lower)
precision synthetic data. However, this is not a guarantee that
real data at lower precision will not benefit from this null-space
uncertainty analysis; real planets will likely have brightness
components not precisely the same as those present in these
GCMs. For example, the WASP-18b data in Coulombe et al.
(2023) consist of only one eclipse but require l 5max  to be fit,
such that the null space is not empty (see the following
section).
The WASP-18b extreme-precision synthetic light curve is

best fit with lmax = 5, where there is one null-space component.
Figure 10 compares the WASP-18b brightness map uncertain-
ties between fits with and without the null-space components
along the equator and substellar meridian, with the true
brightness map from the GCM and its observable component
overplotted. Here, due to the extreme precision of the light
curve, the model without null components has extremely low
uncertainties. Once we include the null-space component,
which is unconstrained by the observational uncertainties, the
range of plausible models increases significantly.
The GCM, which is the ground truth, does not fall within the

uncertainties of the model fit without the null-space compo-
nents, which is expected (see Section 5). In fact, the
uncertainties on the fit without the null component do not
encompass the observable component of the GCM, although
the fit is a closer match to the observable component of the
GCM than the unprocessed GCM. This is because the
observable component of the GCM is calculated using
spherical harmonics up to 25th degree, while the fit uses
l 5max = , so the fit is incapable of capturing some of the
smaller-scale features and sharper gradients in the observable
GCM. Given an infinite S/N, in which case we would be
justified in fitting the observation with a large number of
eigencurves, the fit without the null components would
precisely match the observable component of the GCM. If
we include the null-space component in the fit, the increased
uncertainties encompass the observable GCM and the ground
truth over most of the dayside of the planet, particularly near
the substellar point and at low latitudes, where the visibility
function is highest (lowest angle between the observer and
location on the planet) and the planet is observed throughout
the eclipse observation. That is, the uncertainties are most
accurate at locations to which the observation is most sensitive.
Because the HD 209458b GCM has significant fine spatial

brightness variations, fitting the extreme-precision synthetic
light curve requires l 8max = and NE= 18. This has two
noticeable effects compared to WASP-18b: (1) the larger NE

gives the fit additional flexibility, which allows the fit without
null components to closely match the observable component of
the GCM, and (2) at this higher spatial precision, the null space
contains 27 components, and including all of these components

Figure 9. Hot-spot longitudes of the true and observable maps of WASP-18b
compared against the retrieved hot-spot longitudes and phase-curve offset.
Vertical lines denote the hot-spot longitudes and phase-curve offset. Note the
difference in hot-spot longitudes between the true and observable maps. In
black are the histograms of retrieved hot-spot longitudes for the best-case
precision and extreme-precision cases showing evidence of a bias in the
measured hot-spot location compared to both the true location and the location
we expect to observe.
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causes enormous uncertainty inflation on the retrieved map
(Figure 11).

These large uncertainties could be the reality of fitting fine
spatial structures with eclipse mapping in the face of
unobservable brightness patterns. However, the GCM ground
truth is well within the 95.45% confidence region of the fit and
at most locations within the 68.27% confidence region,
possibly indicating that we are overestimating our uncertainties
with this methodology. There are potentially other physically
motivated constraints we could place on the brightness map to

further restrict parameter space. For example, a lower limit of
zero on the flux is quite conservative; these planets are very
hot, so we could be justified in using a higher limit based on
expected atmospheric temperatures. Such considerations may
be important as eclipse-mapping data quality improves in the
future.

7.2. Application to WASP-18b JWST Eclipse

For an example application to real data, we examined how
including null-space components in a fit to a WASP-18b JWST

Figure 10. Uncertainties (68.27%, 95.45%, and 99.73% quantiles) of fits to the synthetic WASP-18b extreme-precision eclipse observation with (red) and without
(blue) null-space components in the model. The GCM ground-truth and observable components are overplotted. The model without the null space captures the large-
scale brightness variations, but the uncertainties are greatly underestimated and do not encompass the ground truth. The model with the null space has significantly
increased uncertainties that encompass the truth across much of the dayside, where the observation is sensitive to 2D spatial information.

Figure 11. Same as Figure 10 but for the synthetic extreme-precision eclipse observation of HD 209458b. When the null components are included in the model
exploration, the model uncertainties encompass the observable modes of the GCM and the unprocessed GCM.
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NIRISS/SOSS eclipse observation (Coulombe et al. 2023)
affected uncertainties on the map. For this observation, the
BIC-optimized fit uses l 5max = .6 At this harmonic degree,
there is one eigencurve/eigenmap in the null space.

At individual locations on the map, allowing the fit to
explore the null space increases the uncertainties by up to a
factor of ≈2 (Figure 12, top panel). At the terminators, the
uncertainties are nearly identical between the two fits, but the fit
with the null component has larger uncertainties across the
dayside and beyond the terminators. These regions correspond
with the brightness patterns in the null component, which has
bright poles and a dim equator on the dayside, and vice versa
on the nightside. If we average over the latitudinal variations in
the map using a cos latitude( ) weighting, as in Coulombe et al.

(2023), the uncertainty introduced by the null component is
significantly reduced (Figure 12, bottom panel). Thus, long-
itudinal brightness patterns can be measured robustly from a
single JWST eclipse, even when incorporating the uncertainty
from unobservable patterns.
This increase in map uncertainties does not change the

scientific conclusions of Coulombe et al. (2023). The evidence
for atmospheric drag—sharp temperature gradients moving
from the substellar point to the terminators and a lack of a hot-
spot offset—remains. Likewise, there is still a preference for
a dayside “plateau” over a traditional hot spot. However, these
uncertainties are more realistic, as they incorporate brightness
patterns that are unobservable but potentially present in the
planet’s atmosphere. These new uncertainties are much more
intuitive, as they do not require caveats about the null space
(for harmonics less than or equal to the harmonic degree used
in the fit).
We recommend that future eigenmapping analyses include

the effects of the null space on map uncertainties in this
manner. To summarize,

1. use the BIC to optimize for lmax and NE,
2. determine which eigenmaps at the optimal lmax are in the

null space following Section 3, and
3. reexplore the parameter space for the optimized model

while including the null-space eigenmaps at the opti-
mized lmax alongside the NE eigenmaps used in step 1.

Thus, if the data warrant spatial variations at high spatial
resolution (high lmax), the mapping uncertainties will include
the effects of the null space at that spatial resolution.

8. Conclusions

With JWST, we can use eclipse observations of exoplanets
to retrieve brightness and temperature maps of their atmo-
spheres. These maps will provide crucial insight into the
physical processes at work and will be a critical test of
theoretical predictions of exoplanet atmospheres. However,
some brightness patterns are inaccessible to eclipse mapping,
which can complicate interpretations.
We described the null space and showed how the number of

null components (the nullity, or size of the null space) depends
on both orbital parameters and observational settings. Typical
JWST exoplanet eclipse observation exposure times are short
enough to minimize the size of the null space. We noted that
the shape of the null space—which structures of a given map
are inaccessible to eclipse mapping—changes with the orbital
parameters, so depending on the science goals of an
observation, careful target selection can limit the impact of
the null space.
The null space can create differences between retrieved maps

and GCMs that, at first, appear to raise questions about the
GCMs’ or eclipse maps’ accuracy. We have shown that if the
GCMs are first transformed into the brightness patterns that are
accessible to eclipse mapping, they provide a much closer
match to the retrieved maps. To demonstrate this, we generated
synthetic eclipse light curves of WASP-18b and HD 209458b
from clear and cloudy GCMs, respectively, under two
observational scenarios: best-case precision and extreme-
precision mapping. We then fit eclipse maps to these light
curves, comparing them against the truth and observable modes
of the GCMs.

Figure 12. Comparison between the uncertainties on the WASP-18b eclipse
map from Coulombe et al. (2023; blue) and a fit that is allowed to explore the
null space (red). Colored regions, from dark to light, denote the 68.27%,
95.45%, and 99.73% confidence regions of each fit. As expected, adding the
null-space component to the fit increases the uncertainty, but, due to the
positivity constraint, the uncertainties are kept finite. Top: equatorial slice of
the maps. Bottom: cos latitude( )-weighted brightness map. The null space
primarily introduces latitudinal variations that inflate the uncertainties at
individual locations on the map, but the effect on the average longitudinal
structure is minimal.

6 Coulombe et al. (2023) noted that they achieved a similarly good fit with
l 2max = and NE = 5. At this low harmonic degree, there are no null-space
components, so following the procedure we outline here will not change the
uncertainties on that fit.
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For the cloudless ultrahot Jupiter WASP-18b, the GCM
ground truth shows an eastward-shifted hot spot shaped by a
superrotating equatorial jet. Maps fit to both the best-case
precision and extreme-precision cases recover the eastward-
shifted hot spot but are unable to recover the smaller-scale
features. This matches the observable modes of the GCM quite
well, indicating that while there are differences between the
true map and the retrieved maps, in fact, the retrieved maps are
consistent with the GCM.

These differences become more apparent in planets with
smaller-scale spatial inhomogeneities, as shown by our
application to a cloudy model of HD 209458b. The observable
modes of the GCM lack much of the fine spatial structure
present in the true map, although there is still evidence of the
brightness variations introduced by the clouds. The best-case
precision map does not retrieve these small-scale variations but
does match the large-scale features of the observable modes.
The extreme-precision map shows some cloudlike flux
variations, but they are weak due to a combination of the null
space reducing visible inhomogeneities and the weakness of the
signal generated by those inhomogeneities (in principle, with
an infinite S/N, we would recover exactly the observable map,
which clearly shows the small-scale effects of the clouds).

Finally, we presented a method to incorporate the uncer-
tainty introduced by the null space. By definition, null map
components are unobservable and thus not constrained by
observations. However, if we place a positive-flux constraint on
map models, we can limit the model parameter space such that
the range of plausible map models is finite even when including
null components. We demonstrated this approach with
synthetic data, showing that the updated uncertainties on the
fitted maps encompass the ground-truth maps used to generate
the data. When applied to a real JWST eclipse, this method
primarily increased latitudinal uncertainty, but conclusions
based on inferred longitudinal structure remained unchanged.

The JWST and future telescopes offer an exciting new
opportunity to understand the multidimensional properties of
exoplanet atmospheres through eclipse mapping. Our inter-
pretations of exoplanet maps will be driven by comparison with
theoretical predictions from GCMs, and advancements in
GCMs will be driven by the maps we observe. It is critical
that we understand how retrieved maps are affected by the null
space, and that we convert theoretical predictions to their
observable modes before comparing them to observations.
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Appendix
Calculating Observable and Null Maps from Forward

Models

Here we show a minimal example of how to calculate the
observable and null maps of a forward model using starry.
First, define the starry objects based on the system
parameters and load the forward model (gcm, here) to calculate
a spherical harmonic representation of the forward model:

import starry
import numpy as np

# Turn off starry lazy calculation (see
documentation) starry.config.lazy=False

# Set system parameters
t0 = 0.0 # transit time (days)
porb=1.0 # orbital period (days)
rs=1.0 # stellar radius (solar radii)
rp=0.1 # planet radius (solar radii)
ms=1.0 # stellar mass (solar masses)
mp=0.001 # planet mass (solar masses)

# Define starry objects and load an input
flux map
pmap=starry.Map(ydeg=25)
smap=starry.Map(ydeg=1)

pmap.load(gcm)
yval=np.copy(pmap.y)

planet=starry.Secondary(pmap, porb=porb,
m=mp, r=rp)
star=starry.Primary(smap, m=ms)

system=starry.System(star, planet).

Next, calculate the position and size of the occulter (star)
relative to the planet, in units of the planet’s radius, at the times
in the observation. This is straightforward with starry:

# Define exposures and planet phase
time=np.linspace(0.4, 0.6, 1000)
theta=360. ∗ time / porb

# Calculate planet-star relative positions
and size
x, y, z=system.position(time)

xo=(x[0] - x[1]) / rp
yo=(y[0] - y[1]) / rp
zo=(z[0] - z[1]) / rp
ro=rs / rp.
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Finally, calculate the design matrix for this observational
setup, removing the Y0

0 term as discussed in the main text, and
calculate the ? and ? operators:

# Calculate the design matrix
A=pmap.design_matrix(theta=theta, xo=xo,
yo=yo, zo=zo, ro=ro)[:,1:]

# Calculate the operators (Equations (8)
and 9)
rank=np.linalg.matrix_rank(A)
U, S, VT=np.linalg.svd(A)
N=VT[rank:].T @ VT[rank:]
P=VT[:rank].T @ VT[:rank].

One can apply these operators to the spherical harmonic
representation of the forward model and calculate the resulting
maps using starry:

# Set the spherical harmonic weights for the
null map and calculate
pmap[1:,:]=N @ yval[1:]
nullmap=pmap.render()
nullmap -=pmap.amp / np.pi # Subtract the
uniform component

# Set the spherical harmonic weights for the
observable map and calculate
pmap[1:,:]=P @ yval[1:]
obsmap=pmap.render().

Note that for visualization purposes, we have subtracted the
uniform component from the null map, such that the sum of the
null and observable maps will equal the GCM. In reality, we
have computed the observable and null maps while ignoring
the uniform component, as we are interested in deviations from
a uniform map, so one could also subtract the same uniform
component from the GCM and the observable map.
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