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Abstract: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease
2019 (COVID-19), which has killed ~7 million persons worldwide. Chronic kidney disease (CKD) is
the most common risk factor for severe COVID-19 and one that most increases the risk of COVID-19-
related death. Moreover, CKD increases the risk of acute kidney injury (AKI), and COVID-19 patients
with AKI are at an increased risk of death. However, the molecular basis underlying this risk has not
been well characterized. CKD patients are at increased risk of death from multiple infections, to which
immune deficiency in non-specific host defenses may contribute. However, COVID-19-associated
AKI has specific molecular features and CKD modulates the local (kidney) and systemic (lung, aorta)
expression of host genes encoding coronavirus-associated receptors and factors (SCARFs), which
SARS-CoV-2 hijacks to enter cells and replicate. We review the interaction between kidney disease
and COVID-19, including the over 200 host genes that may influence the severity of COVID-19, and
provide evidence suggesting that kidney disease may modulate the expression of SCARF genes and
other key host genes involved in an effective adaptive defense against coronaviruses. Given the poor
response of certain CKD populations (e.g., kidney transplant recipients) to SARS-CoV-2 vaccines and
their suboptimal outcomes when infected, we propose a research agenda focusing on CKD to develop
the concept of comorbidity-specific targeted therapeutic approaches to SARS-CoV-2 infection or to
future coronavirus infections.

Keywords: acute kidney injury; chronic kidney disease; SCARF; COVID-19; genetic predisposition;
mortality

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over
769 million confirmed cases of coronavirus disease 2019 (COVID-19) and over 6.95 million
deaths worldwide, as reported by the World Health Organization (WHO), but the real
numbers are believed to be much higher [1]. The WHO declared the COVID-19 outbreak
a pandemic on 11 March 2020, and on 5 May 2023, declared that it is no longer a public
health emergency of international concern [2]. The disease is now considered endemic. In
this regard, it is still topical to advance our understanding of the pathogenesis of COVID-19
and the molecular mechanisms that determine the susceptibility to severe disease. Thus,
the peak number of globally diagnosed cases was observed as recently as December 2022,
and an uptick of cases driven by novel varieties was observed in July–August 2023 [1].
Additionally, any acquired knowledge will be helpful in managing the next viral pandemic
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outbreak. Moreover, reinfection contributed to additional risks of death (HR: 2.17, 95% CI
1.93–2.45), hospitalization (HR = 3.32, 95% CI 3.13–3.51), and sequelae among different or-
gan systems, compared with no reinfection, despite vaccination status [3]. Kidney disorders
showed the highest risk after reinfection (HR = 3.55, 95% CI = 3.18–3.97; burden = 38.31,
95% CI = 32.86–44.37), and this risk remained elevated independently of the status of
vaccination [3] (Figure 1).
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Figure 1. Risk of kidney sequelae from COVID-19 according to the total number of COVID-19
episodes [3]. Kidney sequelae were defined as acute kidney injury or chronic kidney disease. Out-
comes were defined at time of first incidence of their component individual sequela.

A plethora of manuscripts have identified host genes hijacked by SARS-CoV-2 and
have explored the genetic predisposition to COVID-19 severity, and they have improved
our understanding of the role of host genes in facilitating or limiting disease severity [4,5].
Key host genes include those encoding SARS-CoV-2 and coronavirus-associated receptors
and factors (SCARFs), that is, molecules involved in SARS-CoV-2 cell entry, replication,
and assembly, as well as those encoding host defense mechanisms. In a recent example,
a common HLA-B allele (HLA-B*15:0) explains why around 20% of persons infected by
SARS-CoV-2 remain asymptomatic, as it is associated with memory T-cell cross-reactivity
to a peptide from seasonal coronaviruses [6]. However, an understanding of the molecular
mechanisms of susceptibility to severe COVID-19 in patients with kidney disease has
lagged, despite chronic kidney disease (CKD) being the most common risk factor for severe
COVID-19 worldwide and one resulting in the most increase in the risk of COVID-19-
related death [7–9]. We now first review the concepts of CKD and acute kidney injury
(AKI) and the clinical interaction between COVID-19 and CKD or AKI. This is followed
by an assessment of persistent unmet needs, ranging from the suboptimal response to
SARS-CoV-2 vaccines in some populations of patients with CKD to the persistent risks
represented by novel coronaviruses or SARS-CoV-2 variants. We then proceed to assess
and extract data regarding the recent information on the specific molecular pathogenesis of
COVID-19-associated AKI and the molecular mechanisms that may underlie the increased
severity of COVID-19 in patients with CKD, which illustrate the feasibility and need
to better understand the molecular pathogenesis of COVID-19 in the context of kidney
disease as a means to develop kidney disease-specific targeted therapeutic approaches that
improve the COVID-19 outcomes in patients with kidney disease. Finally, we propose a
research agenda.

2. Acute Kidney Injury and Chronic Kidney Disease

According to Kidney Disease: Improving Global Outcomes (KDIGO), kidney disease
may be acute or chronic, and the diagnostic criteria are used to identify patients with
adverse health outcomes [10,11]. Since 2002, CKD has been defined as the presence of
structural and/or functional alterations in the kidneys persisting for longer than 3 months
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with an impact on health [12]. However, the current, more precise definition dates from
2012 [10,13]. This timing should be considered, as when the SARS-CoV-2 pandemic hit
in 2020, most healthcare professionals worldwide had not studied the current concept of
CKD in medical schools and neither had the health authorities. Consequently, the striking
negative impact of COVID-19 in persons with CKD flew initially under the radar, unlike
other comorbidities that were soon identified as risk factors for severe COVID-19, such
as diabetes, hypertension, and cardiovascular disease [14]. The diagnostic criteria that
by themselves allow for the detection of CKD include an estimated glomerular filtration
rate (eGFR) < 60 mL/min/1.73 m2 or urinary albumin–creatinine ratio ≥ 30 mg/g, or
pathological changes in the urinary sediment, kidney histology or imaging, or kidney
transplantation [13]. eGFR and albuminuria allow for the categorization of CKD into
mild, moderate, or severe categories, which are associated with increasing risks of CKD
progression, premature all-cause death, or AKI, among others [15] (Figure 2).
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Figure 2. Mild, moderate, and severe CKD according to KDIGO risk categories based on simul-
taneous assessment of eGFR and albuminuria. Albuminuria is usually assessed as the urinary
albumin–creatinine ratio (UACR in a spot urine sample. Figure shows the risk of all-cause death
for each cell) [10,15]. * No CKD if ther is no other evidence of CKD as imaging, hematuria or oth-
ers. +++ Kidney failure: patients needing kidney replacement therapy and cardiovascular risk is
extremely high.

Globally, there are 850 million people with CKD, and the number is expected to
increase as the world population ages [16–18]. Prior to the SARS-CoV-2 pandemic, it was
estimated that, by 2040, CKD would be the fifth global cause of death, as it is growing faster
than most other common causes of death [16,17]. Indeed, the loss of key kidney functions,
such as the production of the anti-aging protein Klotho, or the decrease in glomerular
filtration and tubular secretion of waste molecules leading to the accumulation of uremic
toxins, is believed to accelerate biological aging, leading to premature death, mainly from
cardiovascular causes, infection, malignancy, and the lack of access to kidney replacement
therapy (KRT) [16].

The progression of CKD is frequently non-linear, as CKD predisposes to AKI, and AKI
may accelerate the progression of CKD [19,20]. As for CKD, the cut-off points selected to
define AKI (an increase in serum creatinine by ≥0.3 mg/dL within 48 h) are associated
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with an increased risk of death that increases to 45–50% in those requiring KRT and may
persist for up to a year [21–23].

3. CKD as a Risk Factor for COVID-19

Identifying the factors associated with severe COVID-19 is important to protect those
in high-risk groups and, eventually, develop specific therapeutic approaches if the molec-
ular mechanisms underlying the increased susceptibility are identified. CKD is the most
common and the most influential comorbidity associated with COVID-19 severity. Accord-
ing to the prevalence data from the Global Burden of Diseases, Injuries, and Risk Factors
Study (GBD) together with the UN population estimates for 2020, CKD is deemed the most
prevalent risk factor for severe COVID-19 in adults [9]. In addition, CKD alone explains the
increased risk of severe COVID-19 in approximately 5% of the global population. Another
study conducted in the UK using primary care electronic records of 17,278,392 persons
examined the factors associated with COVID-19-related death [8]. While older age, expect-
edly, showed the strongest association with poor outcomes, CKD was among the top five
comorbidities conferring the highest risk of COVID-19-related death. The adjusted HR was
2.52 (2.33–2.72) for subjects with G4–5 CKD (eGFR < 30 mL/min/1.73 m2), 3.53 (2.77–4.49)
for transplant recipients, and 3.69 (3.09–4.39) for patients with kidney failure, including
those receiving dialysis. The Madrid REMER Registry study also showed that, in 2020,
COVID-19 was the most common cause of death among patients on kidney replacement
therapy (KRT), with overall mortality increasing by 34% compared with the average in
the previous decade [24]. In this regard, patients on dialysis are at high risk of death from
infection as a category encompassing different microbes. While the rate of mortality from
infection decreased from 224 to 163 per 10,000 person-years for those commencing dialysis
in 1980–2005 and 2006–2018, respectively, it remains over 20-fold higher than in the general
population and disproportionally affects women and minorities [25]. Thus, the increased
severity of COVID-19 should not come as a surprise, and the key question is to what extent
the predisposition of CKD patients to severe COVID-19 is a further manifestation of the
non-specific immune suppression in this population, or whether it is driven by specific
factors that merit specific management.

4. COVID-19, AKI, and Mortality

COVID-19 may be complicated by AKI. This may result from systemic cytokine release
syndrome due to the SARS-CoV-2 infection of kidney cells, specific disease entities such
as collapsing focal segmental glomerulosclerosis or thrombotic microangiopathy, or a
combination of these and other factors [26–30]. As is the case for AKI in other contexts,
AKI is associated with an increased risk of death in patients with COVID-19 [31–33]. In the
regions and countries hit earliest and hardest by the pandemic, the lack of enough resources
to provide both ventilation support and KRT to all those in need may have contributed to a
further increase in the mortality of COVID-19 AKI [34]. The fact that there is evidence of the
infection of kidney cells during AKI and that AKI in COVID-19 is associated with adverse
outcomes means that it is also of interest to understand the susceptibility of kidney cells to
SARS-CoV-2 infection. Indeed, the SARS-CoV-2 infection of kidney cells was associated
with an increased risk of death in patients with COVID-19 [35].

5. Suboptimal Response to SARS-CoV-2 Vaccines in Some Patient Populations
with CKD

The most obvious preventive measure for those at high risk of severe COVID-19 is
vaccination [36]. However, patients on dialysis and even more kidney transplant recipients
have suboptimal responses to vaccines. As an example, patients on dialysis require specially
designed regimens to optimize the response to vaccination against hepatitis B virus, and
despite that, some patients are not immunized or are immunized only transiently [37].
There are multiple anti-SARS-CoV-2 vaccines, and reviewing the CKD literature on all of
them is beyond the scope of this review. However, the mRNA-based vaccines (BNT162b2
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and mRNA-1273) have been prospectively assessed using the same methods in patients
with CKD not on dialysis, on hemodialysis/peritoneal dialysis, and those who underwent
transplantation, and this may provide a flavor of the issues. After the initial vaccination
schedule, the BNT162b2 (30 µcg) vaccine was associated with a six-fold higher risk for
negative humoral response than mRNA-1273 (100 µcg), likely due to the different dose,
as is the case for hepatitis B virus vaccines [38]. During the first year after vaccination,
patients with non-dialysis CKD and those on dialysis presented good anti-spike antibody
responses. However, anti-spike antibodies decreased over time. A third dose of vaccine
induced seroconversion in a high percentage of antibody-negative patients after two doses,
although responses were poorer in kidney transplant recipients [39]. The fourth dose
seroconverted 72% of previously negative patients. Higher anti-spike antibody titers
at 12 months were independently associated with repeated exposure to antigen (fourth
vaccine dose and/or previous breakthrough infections). Breakthrough COVID-19 requiring
admission was observed in CKD patients with lower antibody titers, and the least benefit
from the fourth dose was observed in patients with the highest need for a vaccine booster
(i.e., those with lower pre-booster antibody titers or kidney transplant recipients) [40].
Overall, kidney transplant recipients presented suboptimal responses after any vaccination
schedule (initial, third, and fourth dose). Some patients had a persistently negative humoral
response despite boosters [41], and the mortality of patients on KRT remains high despite
increased access to critical care [42].

6. Multiple Severe Coronavirus Disease Outbreaks in the 21st Century

COVID-19 was the third major severe coronavirus outbreak in the 21st century. Al-
though most reported cases of COVID-19 are mild, it is highly transmissible, accounting
for the high global number of cases and death toll. Before the ongoing pandemic, two
human coronaviruses were considered highly pathogenic. In 2003, SARS-CoV was identi-
fied as the causal agent of an atypical pneumonia disease termed SARS, affecting mainly
China and Hong Kong [43]. In 2012, another novel coronavirus, now known as Middle
East respiratory syndrome coronavirus (MERS-CoV), was discovered in Saudi Arabia in
a patient presenting with pneumonia and multiorgan dysfunction [44]. SARS and MERS
share similar clinical presentations with COVID-19, including high fever, chills, dyspnea,
and dry cough, but are characterized by predominantly nosocomial transmission and
higher case fatality rates [43,44]. The high prevalence of coronaviruses in animals and their
frequent recombination lead to probable future spillovers to humans, causing periodic
disease outbreaks [45]. Overall, the fact that there were three major zoonotic coronavirus
outbreaks causing human disease over less than 20 years should be interpreted as the
existence of a high risk for future novel zoonotic coronavirus outbreaks causing human
disease. This risk exists on top of the risk for novel SARS-CoV-2 mutations that increase
the transmissibility or severity of the disease. Both facts mean that there is a high need
for a better understanding of the molecular mechanisms that underlie the increased risk
of death from COVID-19 (or future novel coronaviruses) in specific populations so that
comorbidity-specific preventive and/or therapeutic approaches can be developed.

Overall, the suboptimal outcomes of patients with CKD who develop COVID-19
or patients with COVID-19 who develop AKI and the persistent risks related to novel
coronaviruses or SARS-CoV-2 variants highlight the need for a better understanding of
the molecular pathogenesis of SARS-CoV-2 infection and its interaction with kidney cells
or with the systemic consequences of CKD, with the ultimate aim of developing novel
targeted therapeutic approaches.

7. Molecular Pathogenesis of COVID-19-Associated AKI

Recently, the gene expression of kidneys from patients with COVID-19 was charac-
terized, providing novel insight into the pathogenesis of kidney injury and, specifically,
kidney injury when kidney cells are infected with SARS-CoV-2 [35]. Interestingly, two
main components drove the kidney gene expression difference between COVID-19 status
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and the presence of renal SARS-CoV-2 RNA. Inflammation pathways were prominent
among differentially expressed genes [35]. Additionally, IFN-α and -γ response pathways
were specifically enriched in SARS-CoV-2-infected kidneys. The COVID-19 SARS-CoV-
2-infected kidney transcriptomic signature differed from another viral nephropathy, han-
tavirus nephropathy [35]. Furthermore, the kidney transcriptomic signature of COVID-19
AKI was compared with that of AKI in the absence of COVID-19. Overall, there were
1191 differentially expressed genes (DEGs) in COVID-19 AKI, but none were detected
in non-COVID-19 AKI, serving as potential specific players of COVID-19-induced AKI
(647 upregulated over 1.5-fold and 347 downregulated to less than 0.5-fold [35] (Table 1).

Table 1. Top 10 upregulated (A) and downregulated (B) genes in human COVID-19 AKI that are not
significantly differentially expressed (adjusted p value < 0.05) in human non-COVID-19 AKI when
either of them is compared with control. Data obtained from ref. [35].

(A) Upregulated Genes (B) Downregulated Genes

Gene Fold-Change * p-Adj Value Gene Fold Change * p-Adj Value

FABP4 36.0 0.002 GC 0.09 0.026
APOBR 23.5 0.000 SLC22A24 0.10 0.005
S100A9 19.4 0.050 OR2T35 0.11 0.012
CHTF18 13.0 0.004 CRYM 0.11 0.000
KIFC1 12.4 0.006 GJA3 0.11 0.023
NFAM1 11.9 0.006 NAT8B 0.11 0.008
PSTPIP1 11.9 0.000 SLC6A18 0.12 0.018
BTNL9 11.3 0.001 RNU2-1 0.12 0.018
TRPM2 10.8 0.000 CYP4A22 0.13 0.028
FER1L4 10.2 0.002 AGT 0.13 0.007

* Fold-change difference in gene expression of human AKI COVID-19 vs. control.

When analyzing the DEGs using the bioinformatic platform Enrichr-KG [46], the most
relevant transcription factors potentially driving the differences in kidney gene expression
between COVID-19 AKI and non-COVID-19 AKI were POLR2L, EIF3K, BOLA3, RFXANK,
and ZNF576 (Figure 3). POLR2L and EIF3K also contributed to explaining the full range of
upregulated genes. The authors also identified an X-linked inhibitor of apoptosis-associated
factor 1 (XAF1) as a critical target of SARS-CoV-2 infection of the kidneys [35].
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8. SCARF Genes

SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) are molecules
involved in SARS-CoV-2 cell entry, replication, and assembly or that may be involved
in these processes based on prior knowledge of the biology of other coronaviruses [4].
The entry mechanism of SARS-CoV-2, similar to other human coronaviruses, involves
initial viral spike protein binding to a cell-surface receptor and its posterior cleavage by
a host protease [46,47] (Figure 4). For both SARS-CoV and SARS-CoV-2, angiotensin-
converting enzyme 2 (ACE2) in the cell membrane was identified as the primary receptor,
and transmembrane serine protease type 2 (TMPRSS2) was indicated as the main cell-
surface protease promoting virus entry [48]. However, the expression levels of ACE2 in the
lung are relatively low and mostly limited to type 2 alveolar cells, while in other organs
less affected by COVID-19, such as the small intestine, colon, or testis, ACE2 expression
is much higher [49]. Thus, the evidence regarding ACE2 expression levels in different
tissues and its correlation with COVID-19 clinical manifestations suggests that alternative
factors are implicated in SARS-CoV-2 entry facilitation. This may include other molecules
as well as the polarized distribution of ACE2. For example, proximal tubular cells express
high amounts of ACE2 but on the tubular lumen [50]. Given the size of the SARS-CoV-2
virion, it is not expected to traverse a healthy glomerular filtration barrier, so proximal
tubular cell entry via ACE2 would require either the disruption of the glomerular filtration
barrier (e.g., glomerulopathy) or tubular injury (e.g., AKI) that disrupts the continuity of
the tubular epithelial layer or alters the localization of ACE2 expression.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 4. Selected SCARF genes and impact of CKD. Those differentially expressed in at least one 

organ (kidney, lung, heart, or aorta) of mice with CKD and whose differential expression may be 

expected to increase the severity of COVID-19 are identified in red. The increased expression of all 

the genes shown will favor the biology of SARS-CoV-2 except for IFITM1–3 and LY6E, whose 

increased expression would impair SARS-CoV-2 entry into cells. Modified from [51] with 

permission. 

Single-cell RNA sequencing identified cells expressing 28 SCARF genes in healthy 

human tissues [4]. SCARF genes include entry factors (ACE2 and TMPRSS2) and other 

potential cell-surface receptors validated in human cells that may facilitate cell entry as 

evaluated for SARS-CoV, SARS-CoV-2, hCoV-229E or MERS-CoV, such as basignin (Ok 

Blood Group, BSG), alanyl aminopeptidase (ANPEP), dendritic cell-specific intercellular 

adhesion molecule-3-grabbing non-integrin/cluster of differentiation 209 (DC-SIGN, 

CD209), C-type lectin domain family 4 member G/M (CLEC4G/M), and dipeptidyl 

peptidase-4 (DPP4) [52–55]. Several cellular proteases were also included, such as 

TMPRSS4 which functions with a priming factor; TMPRSS11A/B, which activates the S 

peptide of other coronaviruses; furin, which activates MERS-CoV and possibly SARS-

CoV-2 proteins; and cathepsins (CTSL/B), which can substitute TMPRSS2 to prime SARS-

CoV [56,57]. Additionally, there are restriction factors known to protect cells against 

SARS-CoV-2 entry such as lymphocyte antigen 6 family member E (LY6E) and interferon-

induced transmembrane proteins 1, 2, and 3 (IFITM1–3) [57,58]. 

At the post-entry level, DNA topoisomerase iii beta (TOP3B) and zinc-finger CCHC-

type and RNA-binding motif containing 1 (ZCRB1) are essential for SARS-CoV-2 and 

SARS-CoV genome replication, respectively [59,60]. Proteins involved in the assembly 

and trafficking of RNA viruses that physically interact with SARS-CoV-2 structural 

proteins include members of the Rho-GTPase complex (RHOA, RAB10, RAB14, and 

RAB1A), members of the activating protein 2 (AP2) complex (AP2A2 and AP2M1), and 

charged multivesicular body protein 2A (CHMP2A) [61]. 

More recently, SARS-CoV-2 was reported to form complexes with self-proteins to 

exploit receptor-mediated endocytosis through the interaction of its spike with soluble 

ACE2 (sACE2) or sACE2–vasopressin via angiotensin II receptor type 1 (AT1), the target 

of angiotensin receptor blockers (ARBs), or arginine vasopressin receptor 1B (AVPR1B), 

respectively [62]. Notably, sACE2 was at some point contemplated as a therapeutic agent 

for COVID-19, as it could compete for cell membrane ACE2 and, thus, decrease viral entry 

into cells [63–65]. However, the only results reported in clinicaltrials.gov were 

disappointing (NCT04335136). The fact that sACE2 can actually facilitate virus entry 

through alternative receptors may contribute to explaining the disappointing results. 

Figure 4. Selected SCARF genes and impact of CKD. Those differentially expressed in at least one
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Single-cell RNA sequencing identified cells expressing 28 SCARF genes in healthy
human tissues [4]. SCARF genes include entry factors (ACE2 and TMPRSS2) and other
potential cell-surface receptors validated in human cells that may facilitate cell entry as
evaluated for SARS-CoV, SARS-CoV-2, hCoV-229E or MERS-CoV, such as basignin (Ok
Blood Group, BSG), alanyl aminopeptidase (ANPEP), dendritic cell-specific intercellular ad-
hesion molecule-3-grabbing non-integrin/cluster of differentiation 209 (DC-SIGN, CD209),
C-type lectin domain family 4 member G/M (CLEC4G/M), and dipeptidyl peptidase-4
(DPP4) [52–55]. Several cellular proteases were also included, such as TMPRSS4 which
functions with a priming factor; TMPRSS11A/B, which activates the S peptide of other
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coronaviruses; furin, which activates MERS-CoV and possibly SARS-CoV-2 proteins; and
cathepsins (CTSL/B), which can substitute TMPRSS2 to prime SARS-CoV [56,57]. Addi-
tionally, there are restriction factors known to protect cells against SARS-CoV-2 entry such
as lymphocyte antigen 6 family member E (LY6E) and interferon-induced transmembrane
proteins 1, 2, and 3 (IFITM1–3) [57,58].

At the post-entry level, DNA topoisomerase iii beta (TOP3B) and zinc-finger CCHC-
type and RNA-binding motif containing 1 (ZCRB1) are essential for SARS-CoV-2 and
SARS-CoV genome replication, respectively [59,60]. Proteins involved in the assembly and
trafficking of RNA viruses that physically interact with SARS-CoV-2 structural proteins
include members of the Rho-GTPase complex (RHOA, RAB10, RAB14, and RAB1A),
members of the activating protein 2 (AP2) complex (AP2A2 and AP2M1), and charged
multivesicular body protein 2A (CHMP2A) [61].

More recently, SARS-CoV-2 was reported to form complexes with self-proteins to
exploit receptor-mediated endocytosis through the interaction of its spike with soluble
ACE2 (sACE2) or sACE2–vasopressin via angiotensin II receptor type 1 (AT1), the target
of angiotensin receptor blockers (ARBs), or arginine vasopressin receptor 1B (AVPR1B),
respectively [62]. Notably, sACE2 was at some point contemplated as a therapeutic agent for
COVID-19, as it could compete for cell membrane ACE2 and, thus, decrease viral entry into
cells [63–65]. However, the only results reported in clinicaltrials.gov were disappointing
(NCT04335136). The fact that sACE2 can actually facilitate virus entry through alternative
receptors may contribute to explaining the disappointing results. Additionally, neuropilin
1 (NRP-1) served as an entry factor that potentiates SARS-CoV-2 infectivity in vitro [66].

9. Susceptibility to SARS-CoV-2 Infection and Severity of COVID-19

Environmental, clinical (e.g., CKD), and social factors play a key role in SARS-CoV-2
infection and the severity of COVID-19, but host genetic factors may also contribute, as
indicated above for resistance to clinical infection [6]. A full understanding of the biological
role of genetic factors in the pathogenesis of COVID-19 may help to identify mechanistic
targets for therapeutic development [67]. However, susceptibility to SARS-CoV-2 infection
is not easy to define, due to the different viral, host, and environmental factors, in addition
to diverse phenotypes, vaccination response, and population differences, among others.
Different designs have been adopted to evaluate the role of genetics on the susceptibility
and severity of COVID-19, as recently summarized [5]. Information is derived mainly from
studies designed to identify common single nucleotide polymorphisms (SNPs) and rare
and ultra-rare variants associated with different phenotypes, obtained from analyses of
single genes or candidate-pathway association studies, genome-wide association studies
(GWAS), meta-analyses, or polygenic risk scores [67–78].

10. SCARF Genes and Kidney Disease

CKD is considered a systemic condition. Thus, CKD modifies the physiology and
function of multiple organs, inducing a state of systemic inflammation and accelerating
biological aging [79,80]. This is the consequence of the retention of uremic toxins or the loss
of key kidney functions, such as the clearance of small protein proinflammatory mediators
or the production of the anti-inflammatory and anti-aging protein Klotho [81–83]. This
altered pathophysiological state may be predicted to alter the expression of multiple genes,
potentially including SCARF and COVID-19 susceptibility genes. Additionally, both AKI
and CKD are associated with cause-specific and shared changes in kidney gene expression,
many of which are the consequence of local inflammation. As an example, kidney diseases
studied up to now share the early loss of Klotho expression, which is driven by tubular cell
stressors, including inflammatory cytokines [84,85]. Finally, AKI, COVID-19, and SARS-
CoV-2 infection of kidney cells result in specific local gene expression patterns (Table 1).

We have used two approaches to address the impact of kidney disease on the expres-
sion of genes relevant to COVID-19 susceptibility or severity either locally in the kidney
or systemically.
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In an experimental interventional approach followed by the validation of kidney data
in human kidney transcriptomic databases, we induced CKD in mice through the addition
of adenine to food and assessed the kidney and systemic expression of 21 SCARF genes [85].
Mice with adenine-induced CKD retain uremic solutes, and, thus, allow us to explore the
systemic impact of kidney disease, unlike other models of CKD, like unilateral ureteral
obstruction, that allow for the study of the local molecular mechanisms of kidney injury
but not the systemic consequences given the fact that one kidney is normal [86].

In mice with adenine-induced CKD, 20/21 (95%) SCARF genes studied were dif-
ferentially expressed in at least one organ [51,87–93] (Table 2). This very high rate of
differential gene expression already suggests that expanding the analysis to other SCARF
or disease susceptibility genes may uncover further abnormalities that sensitize to more
severe COVID-19. Indeed, for 15/22 (68%) SCARF genes, the differential expression would
be expected to favor SARS-CoV-2 infection and/or severity (Figure 4). The largest im-
pact of CKD on COVID-19-related gene expression was observed in the kidneys. Of the
15 differentially expressed genes whose differential expression would be expected to favor
SARS-CoV-2 infection and/or severity, 13 were differentially expressed in the kidney, and 8
of them were validated in human CKD kidney transcriptomic datasets, including those for
the most common cause of CKD, diabetic nephropathy.

Table 2. SCARF genes that are differentially expressed in kidneys, lungs, heart, or aorta in mice with
CKD [51].

Gene
Differential Gene Expression May Favor COVID-19 Severity Kidney Differential Gene Expression

Validated in Human CKD *Kidney Lung Heart Aorta

Ace2 No No No No Decreased
Agtr1 No No No No Increased
Ap2a2 Yes No No No 1 Increased, 1 decreased
Ap2m1 Yes No No No Decreased
Avpr1b No No No No Increased
Cd147/Bsg No No No No No change
Cd26/Dpp4 Yes No No No Decreased
Chmp2a Yes No No No Increased
Nrp1 Yes No No No Increased
Nrp2 Yes No No No Increased
Rab10 Yes No No No Increased
Rab14 Yes No No No Increased
Rhoa Yes No No No Increased
Tapt1 Yes No No No Increased
Tmprss2 Yes No No No Decreased
Tmprss4 Yes No No No Increased
Top3b Yes No No No Decreased
Ifitm1 No No No No Increased
Ifitm2 No No No No Increased
Ifitm3 No Yes Yes No Increased
Ly6e No Yes Yes Yes Increased

* In red are those whose change in kidney gene expression is concordant for murine and human disease and
their expression would be expected to increase the risk of severe COVID-19, and in green are those that are
concordant, but their expression would not be expected to increase the risk. Supplementary Tables S1 and S2
(from reference [51]).

Two genes were reported to protect from SARS-CoV-2 and were downregulated in at
least one non-kidney target organ: Ifitm3 in the lung and Ly6e in the aorta [51]. This means
that the downregulation of these genes during CKD may favor SARS-CoV-2 entry into
lung or vascular cells, potentially increasing the severity of lung or vascular manifestations
of COVID-19 in patients with CKD. The lungs and the vasculature are critical drivers of
COVID-19 mortality. These findings should be validated in protein studies in the lungs or
aorta of patients with CKD, ideally including immunohistochemistry studies that locate
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the cells where the differential expression is occurring. Additionally, the identification of
the drivers of these changes in gene expression may provide tools to prevent or reverse
them: Are they driven by uremic toxins, or by inflammatory cytokines or other factors?
It may be argued that other SCARF genes in these organs are not differentially expressed
in mice with CKD or even that the differential gene expression would be predicted to be
protected from COVID-19. However, we should consider the context of this research: We
already know that CKD patients are at increased risk of severe COVID-19, and the aim
is to identify potential drivers of this increased risk. The differential expression of genes
predicted to potentially result in protection from COVID-19 would not have a clinical
translation, meaning that either they are not so influential on the overall pathophysiology
of the disease, or they occur in non-relevant cell types, or they are not translated into
functional protein changes.

The second approach was based on data extraction from the 237 SCARF genes and
genes proposed to be involved in COVID-19 severity or SARS-CoV-2 susceptibility re-
trieved from the literature described above [5,53–55,57,59,60,62,67,75,77,94–130] (Supple-
mentary Table S1). They were assessed in murine and human transcriptomic databases.

First, we evaluated the expression in a normal murine kidney database (Table 3). The
rationale would be that early proof-of-concept studies will be more feasible in murine
models, and there are already humanized murine models of coronavirus infection [131].
A total of 178 COVID-19-related genes were found in the normal kidney database, with
143 genes considered to be expressed. Additionally, we evaluated the expression of COVID-
19-related genes in a human AKI single-cell transcriptomic database [132]. In bulk kidney
data, 94 out of 225 found genes (41.8%) were differentially expressed during human AKI
(Table 3): Of those, 22 were upregulated ≥1.25-fold, and 34 were downregulated to less
than 0.5-fold. All the analyzed cell types had some degree of differential expression of
COVID-19-related genes, with the bulk of them being differentially expressed in the thick
ascending limb of Henle and proximal tubular cells, while podocytes were on the other side
of the spectrum (Table 3), likely because they are not primary targets of the most common
cause of AKI, formerly known as acute tubular necrosis.

Table 3. Expression of 237 genes proposed to be involved in COVID-19 severity or SARS-CoV-2 sus-
ceptibility (Supplementary Table S1) in the murine normal kidneys [133] or human AKI kidneys [132].
Data are expressed as the number of genes or number (% of differentially expressed genes among
genes expressed by that cell).

Database Found Significant Expression */Differential Expression ** Upregulated
(≥1.5×) ***

Downregulated
(≤0.5×) ***

Normal murine
kidney 190 143 N/A N/A

Human AKI (Bulk) 225 94 (42%) 19 34
Human AKI PT 140 50 (36%) 14 25
Human AKI podocyte 118 17 (14%) 3 11
Human AKI thin-limb
Henle 106 35 (33%) 5 18

Human AKI TAL 128 58 (45%) 5 31
Human AKI DCT 94 27 (29%) 5 1
Human AKI CNT 113 32 (28%) 4 22
Human AKI CD-PC 107 20 (19%) 5 10
Human AKI
CD-IC-AC 108 29 (27%) 4 18

Human AKI CD-IC-B 103 13 (13%) 2 9
Human AKI EC 95 15 (16%) 3 6
Human AKI IntC 83 13 (16%) 3 5
Human AKI
leukocytes 88 7 (8%) 2 3

* Normal kidney; ** AKI vs. normal kidney, differentially expressed with p value < 0.05; *** AKI vs. normal
kidney, p value < 0.05; N/A: Not applicable, PT: proximal tubules, TAL: thick ascending limb of Henle, DCT:
distal convoluted tubule, CNT: connecting tubule, CD-PC: collecting duct principal cells, CD-IC-AC: collecting
duct intercalated cells type A, CD-IC-B: collecting duct intercalated cells type B, EC: endothelial cells, IntC:
interstitial cells.
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Finally, differentially expressed genes in the kidneys of patients with COVID-19
and AKI included 19 of 237 COVID-19 susceptibility genes: RPL24, OAS1-3, ARHGAP27,
PPP1R15A, GOLGA3, XCR1, MX1, RUSC1, TCF19, POLD1, NOTCH4, HLA-E, PROC, GC,
MRPS21, PDE4A, and ATP5PO [35].

11. Proposal for a Research Agenda

Overall, there is convincing evidence that kidney disease is associated with an in-
creased risk of COVID-19 death. Indeed, CKD is the most common risk factor for severe
CKD and the one that most increases the risk of COVID-19 death, while the development
of AKI during a COVID-19 episode also increases the risk of death. On top of this, vac-
cination in patients with CKD in response to the disease may be suboptimal in terms of
the duration of protective anti-spike protein antibodies or even, for kidney transplant
recipients, in terms of the development of protective antibodies. In recent months, a better
understanding of genetic risk factors for severe COVID-19 has inaugurated a new era, in
which the impact of comorbidities on the expression and activity of these key genes may
be explored to eventually develop comorbidity-specific therapeutic approaches (Figure 5).
Given its well-characterized impact on multiple organs and systems, CKD is an ideal
candidate for proof-of-concept studies that address this hypothesis. Early preclinical evi-
dence backed by data extracted from human transcriptomic databases suggests that kidney
injury is associated with the local differential expression of multiple genes involved in
SARS-CoV-2 pathogenicity or the host response against it. Moreover, the differential gene
expression was also observed in target organs of COVID-19 in mice with CKD. Some of
these changes in gene expression would be expected to favor a higher severity of COVID-19.
Box 1 summarizes potential next steps in the quest for comorbidity-specific approaches
to fight SARS-CoV-2 or future pandemics caused by coronaviruses or other viruses. The
research agenda proposes to advance preclinical research to initial clinical translation (the
observational validation of key preclinical findings) to advanced clinical translation (in-
terventional studies), recognizing that preclinical studies may not be feasible for certain
genes whose expression levels and/or functions significantly differ between humans and
mice. Preclinical studies should start from a data-mining exercise that identifies all human
and murine datasets that are informative on SCARF and COVID-19 host gene expression
in different organs under conditions of CKD. This should be followed by cross-validation
between human and murine data and the characterization of the regulators of differentially
expressed genes. Ideally, the function of key genes should be explored in humanized
models of COVID-19 in mice, as this will facilitate advances in the functional analysis of
specific genes through gene-targeting approaches. The key murine observational data then
should be validated in human samples. Finally, samples from interventional human studies
should be assessed to understand how key COVID-19 host genes are regulated in human
CKD. Finally, if safe drug interventions are identified (i.e., drug repurposing), a prospective
study should assess the feasibility of modulating COVID-19 host genes in order to increase
the resistance of CKD patients to COVID-19, eventually testing whether this is protective.
The analysis should not be limited to gene expression, as protein levels and even protein
function may be modified in CKD, for example, through post-translational modifications
such as carbamylation and others.
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Box 1. Toward developing comorbidity-specific therapeutic approaches. A research agenda.

Preclinical proof of concept *

• Use data-mining strategies to assemble all the available information from public databases
and explore the expression for all known COVID-19 host genes in the kidneys and key target
organs (e.g., lungs, vasculature, etc.) of mice with CKD;

• Develop ad hoc models of murine CKD to fill the gaps in knowledge. This will facilitate the
development of preclinical studies using tools such as genetically modified animals;

• Gene expression, protein levels, and protein post-translational modifications and function may
be explored;

• Once potential targets have been identified that may account for the increased severity of
COVID-19 in patients with CKD:

o Characterize the CKD-related modifiers that modulate gene or protein expression or
function;

o Confirm the role of the specific target in the severity of COVID-19 in humanized mouse
models.

(Given the differences between humans and mice, for some genes, preclinical studies should be obviated as
they will not be informative).
Initial clinical translation

• Use data-mining strategies to explore the expression for all known COVID-19 host genes in
the kidneys and key target organs (e.g., lungs, vasculature, etc.) of persons with CKD;

• Use focused analysis to confirm findings in murine models;
• Use focused biobank searches to address persistent gaps in knowledge.

Advanced clinical translation

• Identify interventions that restore the expression and function of the CKD-influenced COVID-
19 genes that appear key for the increased severity of COVID-19;

• Initiate clinical development of such therapeutic strategies.Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 13 of 20 
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host gene products (SCARFs) to enter cells and replicate, while host response genes try to eliminate
the virus. Genetic variants in the host may determine whether SCARFs and host response genes are
present and whether they are expressed and active at appropriate levels. Additionally, comorbidities
(e.g., CKD) may modify the expression or activity of SCARFs and host response genes or their
products. Proof-of-concept studies have demonstrated that CKD modifies the systemic expression of
some SCARF genes in a manner that may facilitate viral entry and replication and, potentially, increase
COVID-19 severity. The characterization of such interactions between comorbidities, SCARFs, and
host response genes may help design comorbidity-specific therapeutic approaches to SARS-CoV-2
or future viral threats that minimize the risk of sequelae or death. SCARF: coronavirus-associated
receptors and factors, CKD: chronic kidney disease.
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