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ABSTRACT 
 

Aiming at agricultural production in a sustainable, satisfactory manner and with less impact on the 
environment, cultivation systems such as crop-livestock integration, crop-livestock-forest 
integration, direct planting systems and agroforestry have been adopted. Crop-Livestock-Forest 
Integration Systems allow the increase in agricultural production without the need to convert new 
areas to agriculture, increasing the diversification of agricultural production on rural properties and 

Review Article 



 
 
 

Ferreira et al.; Int. J. Plant Soil Sci., vol. 35, no. 20, pp. 1093-1104, 2023; Article no.IJPSS.106763 
 
 

 
1094 

 

applying different scales of agricultural enterprises. Thus, crop-livestock-forest integration systems 
are an important alternative for the sustainable expansion of Brazilian agriculture, reducing 
negative environmental impacts. 
 

 
Keywords: Sustainable; environmental quality; socioeconomic. 
 

1. INTRODUCTION  
 

In Brazil, one of the main challenges faced by 
agricultural production is soil degradation [1], 
which is largely caused by continuous 
conventional tillage, animal trampling, intense 
traffic of agricultural machinery and implements, 
suppression of vegetation cover and lack of 
pasture management [2] [3]. These factors not 
only compromise the sustainability of food 
production but also reduce the soil's ability to 
effectively maintain essential ecosystem services 
for human development [4] [5]. 
 

According to FAO estimates, the world 
population should reach around 9 billion people 
in 2050, directly impacting agriculture, which 
should increase its production by at least 60% to 
meet this demand for food. Agriculture thus has 
the challenge not only of producing more but of 
ensuring sustainable production in its three axes: 
economic, environmental, and social, that is, 
producing more food and less degrading of the 
available natural resources [6]. 
 

In this context, maintaining soil quality, or even 
obtaining improvements through sustainable 
production systems, becomes essential to 
increase food and nutritional security without 
compromising the balance between the 
chemical, physical and biological conditions of 
the soil [7] [8]. In an attempt to seek a balance 
between agricultural productivity and 
environmental conservation, in recent decades 
new agricultural concepts have been developed 
based on soil conservation, nutrient cycling, and 
crop diversification [9]. 
 

Among these new concepts of sustainable 
agricultural production, integrated production 
systems such as crop-livestock integration (iLP), 
crop-livestock-forest integration (iLPF), direct 
planting system (PD), and agroforestry (SAFS), 
have been adopted in replacement of 
conventional production systems, since, in 
addition to the numerous benefits they provide to 
the soil, they increase food production and 
satisfactorily reduce the negative impact on the 
environment [10] [9] [11]. 
 
The Crop-Livestock-Forest Integration Systems 
(ILPF) stand out in the so-called sustainable 

intensification, as they allow the increase in 
agricultural production without the need to 
convert new areas for agriculture, based on the 
diversification of agricultural production within the 
scope of the property rural, applicable in different 
scales of agricultural undertakings. It is an 
approach that benefits from the synergistic 
effects of its components and that promotes the 
recovery of the productive capacity of the soil, by 
producing straw and by covering the soil all year 
round, avoiding erosion losses, contributing to 
the improvement of environmental quality and 
socioeconomic of production [6]. In this way, the 
ILPF has become one of the sector's main bets 
for the sustainable expansion of Brazilian 
agriculture, as it allows for increased productivity 
with the reduction of negative environmental 
impacts. 
 

2. GENERAL ASPECTS OF THE CROP-
LIVESTOCK-FOREST INTEGRATION 
SYSTEM – ILPF 

 
The sectoral plan to mitigate climate change for 
the consolidation of an economy with low carbon 
emissions in agriculture, better known as the 
ABC Plan, was implemented through Federal 
Decree number 7,390/2010 and aims to organize 
and plan the actions to be carried out for the 
adoption of sustainable technologies and 
reduction of greenhouse gas (GHG) emissions 
by national agriculture [12]. This plan is designed 
to have a 10-year extension, from 2010 to 2020, 
and comprises seven core programs: 
 

1) Recovery of degraded pastures; 
2) Crop-Livestock-Forest Integration (iLPF) 

and Agroforestry Systems (SAFS); 
3) No-Tillage System (SPD); 
4) Biological Nitrogen Fixation (BNF); 
5) Planted forests; 
6) Treatment of animal waste; 
7) Adaptation to climate change. 

 
Integrated agricultural production systems, such 
as crop-livestock-forestry integration, together 
with direct planting, were the systems with the 
highest rate of expansion in recent years. 
Research carried out in 2015 by the ILPF 
Network indicates that the total area of integrated 
production systems in Brazil increased from 1.87 
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million hectares in 2005 to 11.47 million hectares 
in 2015 [13]. 
 
These field estimates indicate that between the 
2015/2016 harvest, there were 11,468,124 
hectares in Brazil with integrated agricultural 
production systems [13]. The last survey took 
place in 2020 and the total area was 17 million, 
exceeding the expectations of the Low Carbon 
Emission Agriculture Plan (ABC Plan), which had 
estimated a total of approximately 6 million 
hectares for the year 2020. The region with the 
greatest implementation of integrated systems is 
the Midwest, with 40% of the total amount of 
areas implemented with this type of system. 
 
The forestry livestock farming integration system 
(ILPF) are sustainable production systems (milk, 
meat, energy, grains, fiber, and forestry 
products) that can integrate agricultural, 
livestock, and forestry activities in the same area, 
and crops can be intercropped, in succession or 
rotated. It is an approach that aims at sustainable 
production, benefiting from the synergistic effects 
of its components in search of environmental 
sustainability, and economic and social viability 
[14] [15]. 
 
The idea of ILPF encompasses four strands, and 
each one has the proper uniqueness for 
production, as shown below: 
 

1. Agropastoral (ILP), combines the elements 
of crop and livestock for rotation and 
practice of consortium or succession, in 
addition to remaining the activity in the 
same enclosure for a considerable period; 

2. Silvipastoral (IPF), aggregates the 
livestock and forestry part only in the 
consortium; 

3. Silviagrícola (ILF) transports the forestry 
and agricultural environment to the extent 
that there is a consortium of vegetables 
linked to annual or perennial cultivation 
and; 

4. Agrosilvopastoral (ILPF) which includes 
the items mentioned above: agricultural, 
livestock, and forestry, can follow in the 
rotational environment, consortium or 
succession, within the same region [16]. 

 
These productive systems promote greater 
stability and sustainability in agricultural 
production when compared to traditional 
production systems, with an increase in research 
related to these systems [17]. There are known 
positive points in the implementation of these 
systems, such as productive soil recovery, 

increased infiltration capacity, and nutrient 
cycling, re-establishment of the good quality of 
chemical, physical, and biological soil attributes, 
improvement of comfort conditions animals, 
increase in income generation per area, carbon 
sequestration and mitigation of greenhouse gas 
emissions and mitigation of the use of pesticides 
[18]. In addition, there is the possibility of using 
the cultivation area throughout the year, which 
contributes to the increase of biodiversity, and 
reduces the pressure for deforestation, due to 
income diversification the farmer is less 
susceptible to market changes [19]. 
 

They are still excellent in the recovery of 
degraded pastures, since with the insertion of 
integration practices, there is a greater 
dispersion of residual leaves and branches in 
periods of drought, which will help to increase the 
availability of organic matter in the soil, directly 
influencing the capacity of cation exchange and 
the presence of nitrogen in the surface zone of 
the soil as an essential nutrient for plants [12]. 
 

3. SOIL FERTILITY 
 

To assess soil quality, indicators can be used in 
two different and complementary methods: 
evaluating the variation of the indicator over time 
within a single system and comparing different 
systems with each other. Therefore, the definition 
and delimitation of the indicators need to be 
essentially related to the management 
transformation processes. Some physical 
attributes such as the density and total porosity 
of the soil, and chemical attributes such as 
organic carbon content, have been used to 
assess changes caused by different 
management practices [20]. 
 

Inadequate soil management can lead to losses 
in its physical and chemical properties, causing 
the loss of its quality, and ability to maintain 
biological productivity and sustain environmental 
quality [21]. The term soil quality does not have 
an absolute definition, but it can be understood 
as the capacity of the soil to perform its functions 
in order to guarantee the growth and 
development of plants [22] [23]. It is a broad 
concept, which refers to the balance between the 
physical, chemical, and biological conditions of 
the soil, in order to sustain productivity, maintain 
and increase the quality of the environment, 
promoting the health of plants, animals, and man 
[24]. 
 

In this sense, quality indicators should be used in 
order to seek to maintain adequate soil physical 
and chemical conditions, so that they do not 
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compromise agricultural productivity, adopting 
resilient and sustainable production systems. 
However, due to the heterogeneity and dynamics 
of the soil compartment, its quality cannot be 
measured directly and can be estimated from 
quality indicators arbitrated by man, correlating 
with interventionist practices and its natural 
composition [25]. 
 
Generally, quantitative systems are used with 
appropriate indicators in the evaluation of soil 
quality, making comparisons with desirable 
values in different time intervals, for a specific 
purpose, in different agroecosystems [26]. For 
this, it is necessary to use a minimum set of 
indicators that present characteristics such as 
ease of evaluation, applicability in different 
scales, wide use, and sensitivity to management 
variations [27]. 
 
Doran and Parkin [24], were pioneers in soil 
quality assessment studies and proposed a basic 
set of physical, chemical, and biological quality 
indicators, namely: texture, effective soil, and 
root depth, soil density, soil, infiltration, retention, 
storage and availability of water in the soil, 
carbon and total nitrogen contents in the soil, pH, 
P, K, respiration, and nutrient contents in the 
microbial biomass. 
 
According to Vezzani and Mielniczuk [28], these 
indicators were proposed in order to correlate 
with five soil functions: 
 

1) Ability to regulate and compartmentalize 
water flow; 

2) Ability to compartmentalize the flow of 
chemical elements; 

3) Promote and sustain root development; 
4) Maintain suitable biological habitat and 

ultimately 
5) Respond to management by resisting 

degradation. 
 

4. SOIL QUALITY INDICATORS 
 

4.1 Physical Indicators of Soil Quality 
 
The physical quality of the soil is determined 
using indicators that quantify the degree or level 
of quality. They refer to measurable soil 
attributes that influence the soil's ability to 
perform agricultural production or environmental 
functions, highlighting the attributes most 
susceptible to alterations by soil management 
[29]. Soil bulk density (Ds) and porosity are 
physical attributes recurrently used in the 
evaluation of soil physical quality. However, it is 

important to take into account the variation in Ds 
as a function of soil texture when comparing 
limiting values. The cited indicators still show 
high susceptibility to soil management systems, 
type of agricultural machinery, animal trampling, 
and environmental conditions of the environment 
[30]. 
 
According to Silva et al. [16], the components of 
the physical properties of soils, in certain cases, 
are strong against erosive actions due to the 
aggregating particles that fulfill the function of 
sustaining the soil. While for Castaldelli et al. 
[31], these elements are essential parts of plant 
nutrition as they promote root growth of species 
in order to penetrate through the soil profile in 
order to extract nutrients necessary to supply life, 
which justifies macroporosity. Finally, the 
structure of the soil has important physical 
particularities, which are similar to countless 
senses of microbial action and organic matter 
that are excellent indicators of soil productivity 
[32]. 
 
Proper soil management is one of the most 
important steps in ensuring good soil physical 
quality, greater sustainability, and maximization 
of the food production chain. Inadequate pasture 
management stands out as one of the major 
causes of the degradation of soil physical quality 
and causes the formation of compacted layers 
[33]. 
 
The ILPF has been shown to be efficient in the 
recovery of degraded pasture areas, after the 
implementation of the Integration Lavoura 
Pecuária Floresta (ILPF) system, many areas 
showed improvement in the physical quality of 
the soil [34]. Costa et al. [35] report that the 
implementation of SILPF causes a decrease in 
compaction, influencing an increase in 
macroporosity and total porosity and a decrease 
in mechanical resistance to penetration and soil 
density. 
 
In the case of soil physical properties, its 
dynamics are strongly influenced by soil texture 
and mineralogy, which can affect soil resistance 
and resilience in the face of a given agricultural 
practice. In this case, changes in physical 
properties can be evaluated through indicators 
related to their stability, such as aggregate 
stability, soil density, total porosity, and 
mechanical resistance to penetration [36]. 
 
One of the most important physical properties to 
be used in assessing soil quality is total porosity, 
due to its relationship with microbial activity and 
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CO2 storage from the atmosphere. A 
macroporosity value lower than 0.10 m

3
 m

-3
 is 

quite restrictive for plants, o it compromises the 
diffusion of gases and reduces the growth of the 
root system of most crops. 
 

Another physical attribute that has been used as 
an indicator of soil quality is resistance to 
penetration (RP), o it is directly related to plant 
growth [37] and is directly related to soil density, 
grade compaction, water content, and soil class 
[38]. For penetration resistance, the critical limit 
of 2 mPa has been used as an indicator of soil 
physical quality, both in environments under no-
tillage and in areas managed under conventional 
soil preparation [39]. 
 

Soil density, calculated through the ratio between 
dry soil mass and soil volume, is a good indicator 
of soil quality, as in addition to indirectly 
predicting the degree of soil compaction, it can 
be used to estimate soil density. Soil structure 
correlates it with the leaching potential, crop 
productivity, and soil erosive aspects [40]. 
 

When talking about soil physical-hydric 
attributes, water dynamics is used as an 
important indicator of soil quality, o it is a 
continuous process that controls the movement 
of soil chemical elements, soil formation, and 
evolution, nutrient availability to plants, and 
satisfaction of water demand by plants [41]. In 
the study of the dynamics of water in the soil, 
hydraulic conductivity is generally used as an 
evaluation variable, and it correlates with several 
other physical attributes of the soil, such as 
structure, texture, soil density, particle density, 
total porosity, macroporosity and microporosity of 
the soil. 
 

The soil water retention curve (WHC) has been 
widely used to describe soil water dynamics [42], 
o it graphically represents the relationship 
between water retention energy (matrix potential) 
with its respective content of water [43]. It is an 
attribute that depends on the intrinsic 
characteristics of each soil, and results from the 
joint action of attributes such as texture, 
structure, mineralogy, and soil organic matter 
content [44]. It is a valuable soil physical quality 
indicator, since through it, it is possible to 
estimate the moisture content at field capacity 
[45], permanent wilting point, and water capacity 
available in the soil to plants [46]. 
 

The stability of soil aggregates, a process that 
involves a set of elements such as clay, iron and 
aluminum oxides, and organic matter as 
cementing agents in its formation process, is an 

important indicator of the physical quality of soil, 
o it restores soil porosity, influencing the water 
infiltration process and resistance to erosion [47]. 
It depends on the soil texture and, together with 
the degree of flocculation and clay dispersed in 
water, can be used as parameters for evaluating 
the quality of soils under different management 
systems [48]. 
 

The determination of attributes such as clay 
dispersed in water and degree of flocculation is 
important, as these directly reflect on the 
formation of soil compaction, in addition to 
influencing the aggregation of soil particles [49]. 
In this case, the determination of soil texture 
becomes essential in the study of compaction, 
formation of aggregates, and credibility, in 
addition to enabling an indirect estimate of 
several other factors, among them: water 
dynamics, soil resistance to traction, and 
penetration, cation exchange capacity, a dosage 
of fertilizers and correctives [50]. 
 

Another indicator that can be used in the 
evaluation of the physical quality of the soil is the 
degree of compaction, o it presents a close 
relationship with physical soil attributes that are 
easy to determine, but which are great allies in 
studies on the influence of different management 
systems on soil quality., such as soil density, 
total porosity, aeration capacity and mechanical 
resistance to penetration [51]. 
 

4.2 Soil Quality Chemical Indicators 
 

Other attributes can be used as soil quality 
indicators, in this case, the chemical and 
biological ones, as they are involved in the 
measurement of nutrient release processes, 
mainly organic matter into the soil [7]. The 
evaluation of chemical and biological indicators 
of soil quality is very useful for defining the 
quantities and types of fertilizers required by 
plants and maintaining or recovering productivity, 
especially in tropical soils, where exposure to 
climatic factors such as rain and sun, make poor 
nutrients, with high acidity and water deficit [52]. 
 

Soil chemical attributes directly influence soil 
productivity, pH, for example, plays a 
fundamental role in productivity, which is to 
control the solubility of nutrients in the soil and 
consequently influences the absorption of these 
nutrients by plants [53]. Some attributes that can 
be used to identify soil fertility are pH, organic 
matter, phosphorus, calcium, magnesium, 
potassium, sodium, hydrogen plus aluminum, the 
sum of bases, cation exchange capacity, and 
base saturation [23]. 
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Soil organic matter (SOM) is considered by many 
scholars as the ideal indicator for assessing soil 
quality, o it is very effective in determining the 
quality of soils altered by management systems 
[54]. Soil organic matter (SOM) comprises all 
organic material contained in the soil, ie leaf 
litter, microbial biomass, water-soluble organic 
substances, and humus (stabilized organic 
matter). By determining the SOM, it is possible to 
determine the appropriate management that 
contributes to the sustainability of natural 
resources and the environment [55]. 
 
Studies indicate that the use of integration 
systems leads to improvements in soil quality. 
The positive results have been attributed to the 
nutrient cycling process resulting from the 
presence of animals in the system, which 
accelerates the nutrient cycling process by 
making them available in mineralized form 
through feces and urine [17]. Pasture systems 
associated with annual crops to produce grains 
are more efficient in conserving soil fertility, 
favoring plant growth, since species with root 
systems of different morphologies provide 
greater nutrient cycling [56]. 
 
Oliveira et al. [18] state that inefficient soil 
management impairs the quality of nutrients 
dispersed for its fertility in SILFP, analyzed in the 
municipality of São Domingos do Araguaia - PA. 
[57] concluded that, after research in Santa Fé – 
PA, the percentage of organic carbon favored the 
elevation of microbiological processes and a 
greater probability of absorbing subsidies to 
plants in ILPF systems, which provides 
improvements in soil chemical attributes. 
 
Soil quality chemical indicators are of great 
relevance in agronomic and environmental 
studies and are usually divided into four groups: 
 

1) Those that indicate soil processes or 
behavior, such as pH and Organic Carbon; 

2) Those that indicate the capacity of the soil 
to resist cation exchanges, such as: type of 
clay (1:1 or 2:1), CTC, CTA, iron oxides, 
and aluminum oxides; 

3) Those that indicate the nutritional needs of 
plants: macro and micronutrients; 

4) Those that indicate contamination or 
pollution: heavy metals, nitrate, 
phosphates, and pesticides [58] [59]. 

 

4.3 Biological Indicators of Soil Quality 
 
Soil organic matter has commonly been used as 
an indicator of soil quality, due to its susceptibility 

to alteration in relation to soil management 
practices and because it correlates with most soil 
properties. SOM is an important component of 
the soil and refers to all organic material present 
in the soil including litter, light fraction, microbial 
biomass, water-soluble organic substances, and 
stabilized organic matter, better known as humus 
[60]. 
 
Therefore, determining the content of organic 
matter in the soil and its constituents becomes 
an indispensable tool for assessing soil quality, 
especially for tropical ones, since they are highly 
weathered and organic matter favors the 
retention and availability of water, in addition, to 
acts in the release of nutrients for plants [61]. For 
Nanzer et al. [62], among the soil quality 
indicators related to soil organic matter, the 
carbon stock is one of the most reliable, because 
depending on the management system adopted, 
its contents can remain stable, increase or 
decrease, in relation to the areas where there is 
no anthropic interference. 
 
It is related to the amount of organic matter in the 
soil, the rates of decomposition of this matter and 
the root activity of plants [63]. In forest areas, the 
carbon stock tends to be greater in surface area 
due to the greater deposition of organic material, 
mainly leaves and branches [64], while in forest 
areas with a predominance of savannah species, 
there is an allocation of biomass to the roots, 
increasing the carbon stock in the deeper layers 
of the soil [65]. 
 
Changes in Total Organic Carbon (TOC) 
contents are difficult to detect in the short term, 
partly due to the high natural variability of soils, 
however, its determination in production systems 
over time is essential, o it may allow measuring 
the degree preservation of natural ecosystems 
and the possible impacts caused in agricultural 
systems with different types of soil management 
[9]. 
 
The study of soil carbon modifications caused by 
land use change makes it possible to adopt 
management measures that reduce the risks of 
future negative impacts on the soil [7]. Generally, 
when forest soils are converted to pasture or 
agriculture areas, a drastic reduction in soil 
organic carbon content is observed [66], mainly 
in the top twenty centimeters of the soil profile 
[67], a consequence of inadequate soil 
management, through tilling or even lack of 
maintenance of the soil cover. There is a strong 
interaction between organic carbon and soil 
physical attributes with management activities, 
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assuming then that the evaluation of this variable 
(TOC) is important in the process of choosing the 
most appropriate soil management practices, 
which can make agriculture a more socially and 
environmentally correct activity, and to act in the 
mitigation of greenhouse gas emissions into the 
atmosphere, in order to reduce the pressure for 
opening new production frontiers [68]. 
 

According to Assmann et al. [69], increases in 
soil organic carbon stocks are influenced by a 
combination of factors that affect the soil-plant-
animal-atmosphere relationship. Climatic 
conditions, such as rainfall and rainfall 
distribution, as well as soil type, quantity, and 
quality of plant and animal residues added to the 
soil, influence the dynamics of organic matter. 
According to Loss et al. [70], practices such as 
soil turning promote the breakdown of 
aggregates and consequent exposure of organic 
matter, favoring its mineralization and reduction. 
Oliveira et al. [71] highlighted the non-
mobilization of the soil, the continuous 
contribution of biomass, the permanent presence 
of soil cover, and the replacement of nutrients as 
fundamental practices for maintaining and/or 
increasing the levels of organic matter in the soil. 
Assmann et al. [69] also reported that the 
frequency and method of grazing (rotated or 
continuous) alter the dynamics of soil organic 
matter. 
 

5. EFFECTS OF ADOPTING INTEGRATED 
AGRICULTURAL PRODUCTION 
SYSTEMS ON THE PHYSICAL, 
CHEMICAL AND BIOLOGICAL 
IMPROVEMENT OF SOILS 

 

Currently, several studies have been carried out 
with the aim of identifying management systems 
that promote an increase in soil quality [72]. 
Integrated agricultural production systems seek 
to increase SOM and promote improvements in 
the physical, chemical, and biological properties 
of the soil, enabling an increase in productivity 
and a reduction in expenses with irrigation, 
fertilizers, soil conditioners, and other agricultural 
inputs [73]. 
 

The integrated production systems work to 
increase and maintain the levels of organic 
matter, which favor the complexation of toxic 
elements, the ability to exchange cations, such 
as cementing agents in the soil structure, and 
buffering power over the pH [74]. Despite some 
questions about the possible negative effects 
that integration systems can promote on the soil 
over time, such as soil compaction and increased 

density, authors such as Souza et al. [75], and 
Vilela et al. [76] observed an increase in 
phytomass, a decrease in nutrient leaching and 
an increase in soil microbial biomass in 
consolidated integration systems. 
 
The vegetation cover maintained on the soil 
surface reduces the negative impacts caused by 
mechanical compression, whether caused by 
animal trampling or by the inappropriate use of 
agricultural machinery and implements. Studies 
prove that the mechanical compression applied 
to the soil causes less physical damage, when it 
has considerable levels of coverage (green or 
dry), as observed by Moreira et al. [77]. They 
found that, after eight years of implementation of 
the iLPF system, animal trampling did not 
change the aeration porosity and soil 
permeability to air in relation to the area without 
grazing. 
 
With regard to fertility, improvements in 
phosphorus availability are observed in 
production systems that adopt crop-livestock-
forest integration, due to the maintenance of 
permanent cover on the soil, which acts on its 
adsorption through the release of organic anions 
that compete for the same absorption sites [78]. 
 
ILPF systems can promote increases in soil 
organic matter content under different 
edaphoclimatic conditions. In this context, 
positive results regarding the quantity and quality 
of soil organic matter were observed in 
integrated production systems [69] [70] [79] [73] 
[80] [71]. 
 
Despite the results at the level of Brazil, much 
remains to be done when it comes to integrated 
production systems, especially with regard to the 
advancement of knowledge and technology 
transfer, as they present high complexity, 
diversity, and synergy between components [81]. 
 
Silva et al. [57] studied the physical attributes 
and availability of soil carbon in Integrated Crop-
Livestock-Forest (ILPF), Homogeneous, and 
Santa Fé systems, in the state of Pará (Brazil) 
and found that eucalyptus rows in the iLPF 
system and Santa Fé improved the soil density 
and porosity conditions, as well as the 
accumulation of organic carbon. These results 
for the physical attributes are explained by the 
fact that Brachiaria ruziziensis forage was 
introduced in the iLPF (iLPF2.5 and iLPF10) and 
SSF systems as a cover plant, with the formation 
of organic matter, which improves the soil 
structure, o it helps in cementation and 
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stabilization of soil particles, in addition to 
mitigating the negative impact of animal 
trampling and uniformly distributing the weight of 
agricultural machinery and implements. 

 
Coser et al. [80] when assessing short-term 
carbon accumulation from a low-productivity 
pasture to an agroforestry system in the Brazilian 
savannah. These authors found that both stocks 
and C accumulation rates increased with the 
adoption of the integrated production system and 
that the carbon management index (CMI) 
increased mainly in the 0.00-0.10 m layer, 
showing the ability of the agricultural system to 
raise the labile organic matter and reach the 
same MIC as the reference area (native 
cerrado). 

 
It is known that the conservation management 
practices that make up these systems promote 
the long-term construction of soil fertility, which 
provides an improvement in physical, chemical, 
and microbiota attributes. This fact is evidenced 
in the numerous works that show consolidated 
results through the adoption of these systems. 

 
6. CONCLUSION 
 
Integrated production systems promote greater 
stability and sustainability in agricultural 
production through productive soil recovery, 
increased infiltration capacity, and nutrient 
cycling, reestablishment of good quality soil 
chemical, physical and biological attributes, 
improved comfort conditions for animals, 
increase in income generation per area, carbon 
sequestration and mitigation of greenhouse gas 
emissions and mitigation of the use of pesticides. 
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