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ABSTRACT 
 

Several environmental conditions were identified to influence the growth and morphogenesis of 
Candida albicans. The present study quantitatively examined the growth rate and described the 
kinetic profile of C. albicans under different pH, temperature, and culture medium. When C. albicans 
was monitored over the 12-h period under different culture media, temperature values, and pH 
levels, the growth kinetic profile of the organism behaved in accordance with the first-order rate 
equation. The organism exhibited a relatively faster growth rate when incubated at 37ºC in modified 
Sabouraud glucose broth medium with pH 7.4. Moreover, the growth profile exhibited a linear 
pattern between 1.5 h and 6 h after inoculation of C. albicans culture which coincides with the 
mycelium production, and subsequently shifted to an exponential increase beyond 6 h. Given the 
environmental conditions selectively supporting the growth and morphogenesis of C. albicans, 
quantitative descriptions of the rate kinetic profile of C. albicans population offer an objective 
approach in comparing environmental conditions with varying physicochemical characteristics and 
biochemical compositions. 
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1. INTRODUCTION  
 

Candida albicans, a relatively harmless 
commensal organism, normally thrives in the oral 
cavity, skin, and genitourinary and 
gastrointestinal tracts of healthy individuals [1]. 
However, disturbances in the normal microbiota 
resulting from surgical procedures, antibiotic 
therapy, and prolonged use of medical devices 
can lead to C. albicans infection [2], the most 
prevalent opportunistic fungal infection in 
humans [3]. During fungal infections, host 
microenvironments of varying physicochemical 
and biochemical conditions can significantly 
influence the growth, survival, and pathogenicity 
of the organism [4-6]. Moreover, there were 
several known factors influencing the 
morphogenesis [7] and filamentation [4] of C. 
albicans such as biochemical and nutritional 
compositions of the medium, CO2 and O2 
concentrations, pH, temperature, and cell 
density, which apparently suggest an array of 
signals [4] recognized by the organism. 
 

Candida albicans is capable of reversible 
morphogenetic transitions between yeast and 
filamentous growth [3,7,8], and these 
morphological structures differ in population 
dynamics, architectural dimensions, molecular 
chemistry, genetic expression, virulence, and 
pathogenicity [9]. Considering that C. albicans 
survives in different host niches with varying 
available nutrients, pH levels, O2 and CO2 
concentrations [6,10], the present study 
quantitatively described the growth kinetic profile 
of C. albicans under environmental conditions of 
varying temperature, pH, and culture medium. 
Although yeast growth is favored in low pH and 
temperatures, enriched media, and high cell 
density and osmolarity [7], no study has been 
done to quantify growth rates in order to describe 
the kinetic profile of C. albicans population under 
specified conditions. The quantitative 
descriptions on the rate kinetic profile of C. 
albicans population offer an objective criterion in 

comparing population dynamics of organisms 
under environmental conditions with varying 
physicochemical characteristics and biochemical 
compositions. 
 

2. MATERIALS AND METHODS  
 

2.1 The Data Set [11] 
 

In the present study, information regarding C. 
albicans population was obtained from literature 
[11], where yeast to hyphal transition of Candida 
albicans was investigated under different growth 
media, pH, and temperature. Briefly, the 
morphogenesis of C. albicans was studied using 
three different growth media, namely Horse 
serum medium (HSM) at pH 6.8, RPMI-1640 at 
pH 7.4, and modified Sabouraud glucose broth 
(MSGB) at pH 7.4 [11], which were all incubated 
at 37°C for 12 h. Moreover, the compositions of 
the three media were described as follows [11]: 
HSM contained yeast extract peptone dextrose 
(YEPD) broth and serum; RPMI-1640 medium 
contained distilled water, inorganic salts, amino 
acids, vitamins, glucose, glutathione, and phenol 
red; and MSGB medium contained distilled 
water, peptone, and glucose. The three media 
were warmed to their incubation temperature 
prior to C. albicans inoculation. For the inoculum 
preparation, C. albicans culture was maintained 
on SDA at 4ºC, subsequently inoculated in YEPD 
broth and incubated at 37ºC for 24 h. The final 
suspensions were prepared by adjusting the 
centrifuged washed yeast cells with sterile water 
to 0.5 Mc Farland solutions. The effect of 
temperature on the morphogenesis of C. 
albicans was investigated using MSGB    
medium at pH 7.4 under varying temperature 
values (34ºC, 37ºC, and 40ºC). Assessment on 
the effect of pH (5.4, 6.4, and 7.4) was          
done using MSGB medium incubated at 37ºC    

for 12 h. In all experimental setups, the growth  
of C. albicans was monitored at 1.5-h interval 
using hemocytometer to measure cell 
concentrations. 

 

Table 1. Nonlinear and linear forms of the different growth models [12-14] 
 

Kinetic model Nonlinear model Linear form 
Zero-order ���

��
= �� 

�� = ��� +  �� 

First-order ���

��
= ���� log �� = log �� +

��

2.303
 � 

Second-order 
 

���

��
= ����

� 

 

−1

��

= ��� + �
−1

��

� 

Pt (count/ml): yeast population at time t (h); P0 (count/ml): initial yeast population; ko (count/ml/h): zero-order rate 
constant; k1 (count/ml/h): first-order rate constant; k2 (ml/count/h): second-order rate constant 
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2.2 The Kinetic Models 
 
In this study, nonlinear curves were generated to 
describe the relationship between C. albicans 
population (count x 10

6
 per ml) and time (h). 

Several kinetic models [12-14] including zero-
order, first-order, and second-order rate 
equations were utilized to elucidate the rate 
mechanisms and to describe the growth profile of 
C. albicans under specified conditions. The 
model parameters were estimated employing the 
linearized forms of the kinetic equations (Table 1) 
using linear regression analysis. All statistical 
and numerical analyses were performed using 
Microsoft Excel

®
 at 5% level of significance. 

 
3. RESULTS AND DISCUSSION 
 
When the growth of C. albicans was monitored 
over the 12-h period under different culture 
media, the kinetic profile of the organism 
behaved in accordance with the first-order rate 
equation (Table 2). The organism exhibited a 
relatively faster growth rate in MSGB medium 
compared to HSM and RPMI-1640. However, it 
was reported that MSGB medium promoted 
moderately low filamentation while HSM had 
noticeable filamentation [11]. Moreover, as early 
as 1.5 h at 40ºC, the germ tube of C. albicans 
developed, but with highest germ tube formation 
at 37ºC [11]. In the present study, C. albicans 
population had a relatively faster growth rate  
(2.3 x 105 yeast count per ml per h) when 
incubated at 37ºC in MSGB with pH 7.4 (Table 
2). Under varying pH levels, the growth profile of 
the organism behaved under the first-order 
kinetic equation and there is a direct relation 
between the pH level of the culture medium and 
the growth rate of the organism (Table 2). This 
was a similar phenomenon exhibited between pH 
levels and the induction of filamentation of C. 
albicans, higher pH favored filamentation, with 
pH 7.4 identified as best suited for germ tube 
formation [11]. Similar to the different culture 
media and temperature values, the growth profile 
of C. albicans under varying pH values likewise 
obeyed the first-order kinetic equation. 
 

In the present study, C. albicans exhibited a 
remarkably heterogeneous growth pattern when 
monitored under varying environmental 
conditions suggesting variability in the kinetic 
growth profile of the organism which can likewise 
influence the structural architecture, adhesion 
potential, and biofilm formation. C. albicans 
hyphae developed synchronously in methionine 
assay medium, Eagle’s minimal essential 

medium, serum, and buffered N-
acetylglucosamine, but hyphal evaginations in 
modified Sabouraud broth and amino acids salts 
medium emerged over a relatively extended 
period [15]. In an in vitro study, when C. albicans 
was incubated at 37ºC in phosphate buffer saline 
adjusted at pH 5, maximum adherence to the 
vaginal epithelium was identified for a logarithmic 
phase-culture grown at 25ºC [16], and potent in 
initiating and forming in vitro biofilms in RPMI-
1640 medium [17]. The formation of these fungal 
biofilms was dictated not only by the 
morphogenetic state and structural diversity of C. 
albicans [18-22], but also by substrate 
biomaterial and contact surface type [18,19,22], 
and other environmental parameters [23] 
including growth medium [24], carbohydrate 
source and concentration [25], oxygen availability 
[26], and pH [27,28]. 
 
The morphological development of C. albicans is 
influenced by environmental pH [29], similar to 
any other nutritional and stress signals, pH is 
important in the regulation of morphogenesis and 
pathogenesis of the organism [4]. In a hypoxic 
environment, secondary to tissue necrosis 
resulting from pathogen invasion and influx of 
immune cells at the infection site, C. albicans can 
adapt to oxygen limitation [30]. However, 
proteolytic activity is critically regulated by pH, 
relatively small changes in pH can significantly 
modify extracellular proteolytic activity [31], and 
proteolytic action on the fungal cell surface can 
alter hydrophobicity and subsequent adherence 
to the host-cell surface [32]. 
 
Furthermore, at room temperature, C. albicans 
cells produced abundant germ tubes which 
escaped phagocytosis, and were more virulent 
[33], since morphogenesis of C. albicans from 
yeast to hypha is one of the virulence factors 
promoting its pathogenicity [1,34]. This suggests 
that differences in growth temperature can 
influence yeast cell surface hydrophobicity 
[35,36], since C. albicans cells grown at 25ºC

 

and 37ºC were hydrophobic and hydrophilic, 
respectively [36,37].  Moreover, C. albicans yeast 
cells can synthesize heat-shock proteins at 
elevated temperatures, with 45ºC optimum 
temperature for the heat-shock response [38]. 

 
In the present study, during 1.5 h to 6 h, the 
yeast count increased linearly, however, the 
increase shifted exponentially beyond 6 h (Figs. 
1-3). The peak of mycelium production appeared 
between 1.5 h and 6 h after inoculation of C. 
albicans culture [11]. The mycelia of the
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Table 2.  Parameter estimates of the different kinetic models describing growth of Candida albicans under varying conditions 
 

Kinetic 
model 

Parameter Medium+ Temperature# pH* 
HSM RPMI-1640 MSGB 34ºC

 
 37ºC  40ºC 5.4 6.4 7.4 

Zero-
order 

�� 0.5397 1.1706 1.0159 0.7222 0.4167 0.3810 1.1556 0.9357 1.1310 
�� -0.5179 -2.3393 -1.2321 -0.6250 0.5000 0.6786 -0.9250 -1.7536 -1.7964 
R2 0.9370 0.7087 0.9716 0.9213 0.8883 0.9458 0.9059 0.8412 0.9043 
SSE 1.8512 53.2173 2.8512 4.2083 2.0625 0.7857 13.1083 15.6182 12.7882 
p 8.01e-5 8.75e-3 7.24e-6 1.57e-4 4.55e-4 5.08e-5 2.70e-4 1.33e-3 2.84e-4 

           
First-
order 

�� 0.1914 0.2177 0.2316 0.1965 0.1282 0.1246 0.1903 0.2146 0.2180 
�� 0.6972 0.9392 0.8892 0.9123 1.2601 1.2778 1.5488 0.8109 1.0280 
R2 0.9704 0.9078 0.9326 0.9516 0.9592 0.9535 0.9307 0.9845 0.9838 
SSE 0.0199 0.0857 0.0691 0.0350 0.0125 0.0135 0.0481 0.0129 0.0139 
p 8.16e-6 2.54e-4 9.84e-5 3.61e-5 2.16e-5 3.20e-5 1.07e-4 1.16e-6 1.33e-6 

           
Second-
order 

��  0.0868 0.0666 2.0757 0.0735 0.0450 0.0451 0.0438 0.0680 0.0592 
�� 0.9298 1.2823 1.1807 1.1486 1.4878 1.4798 1.9081 1.2047 1.4406 
R

2
 0.8774 0.7022 0.77111 0.7818 0.9291 0.9210 0.7053 0.9481 0.8530 

SSE 0.0993 0.1780 0.1608 0.1426 0.0146 0.0165 0.0758 0.0239 0.0570 
p 6.04e-4 9.38e-3 4.12e-3 3.56e-3 1.15e-4 1.60e-4 9.08e-3 4.45e-5 1.05e-3 

k0 (count/ml/h): zero-order rate constant; k1 (count/ml/h): first-order rate constant; k2 (ml/count/h): second-order rate constant; 
 P0 (count/ml): initial yeast population; R

2
: coefficient of determination; SSE: sum of squares of the error; p: p-value; 

HSM: Horse serum medium; MSGB: modified Sabouraud glucose broth; 
+
Horse serum medium (pH 6.8), RPMI-1640 (pH 7.4), and MSGB (pH 7.4) incubated at 37°C for 12 h; 

#
MSGB medium with pH 7.4; *MSGB medium incubated at 37°C
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dimorphic fungus C. albicans in serum-containing 
medium, early colony formation displayed 
unusual characteristics of linear germ tube 
extension with prolonged delay between 
septation and the onset of branch formation [39]. 
The lag phases of C. albicans hyphae 
development in serum, methionine assay 
medium, modified Sabouraud broth, Eagle’s 
minimal essential medium, amino acids salts 
medium, and buffered N-acetylglucosamine were 

never more than 1 h with C. albicans hyphae 
extending at a linear rate and with parent yeast 
cells having constant volume throughout the first 
3 h of growth [15]. Despite of the variations in the 
physicochemical characteristics and biochemical 
compositions of the environmental conditions 
influencing the morphogenesis of C. albicans, the 
organism can sense its surroundings, adapt to 
evolving microenvironments for survival, and 
eventually still cause opportunistic infections [4]. 

 

 
 

Fig. 1. Population kinetic profile of Candida albicans incubated at 37°C for 12 h under different 
growth media (HSM: Horse serum medium; MSGB: modified Sabouraud glucose broth) 

 

 
 

Fig. 2. Population kinetic profile of Candida albicans inoculated in modified Sabouraud 
glucose broth medium under pH 7.4 incubated for 12 h at different temperature values 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

Y
e
a

s
t 

c
o

u
n

t 
(x

 1
0

6
 p

e
r 

m
l)

Time (h)

HSM

RPMI-1640

MSGB

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0

Y
e
a
s

t 
c
o

u
n

t 
(x

 1
0

6
 p

e
r 

m
l)

Time (h)

T = 34 °C

T = 37 °C

T = 40 °C



 
 
 
 

Sumalapao; ARRB, 24(6): 1-8, 2018; Article no.ARRB.40071 
 
 

 
6 
 

 
 

Fig. 3. Population kinetic profile of Candida albicans inoculated in modified Sabouraud 
glucose broth medium incubated at 37ºC for 12 h under different pH values 

 
4. CONCLUSION 
 
The growth kinetic profile of Candida albicans 
under different culture media, temperature 
values, and pH levels obeyed the first-order rate 
equation with relatively faster growth rate in 
modified Sabouraud glucose broth medium, pH 
7.4, and 37°C incubation temperature. Between 
1.5 h and 6 h after inoculation, the growth profile 
of C. albicans culture exhibited a linear pattern 
which coincides with the mycelium production, 
and subsequently shifted to an exponential 
increase beyond 6 h. These quantitative 
descriptions of the rate kinetic profile of C. 
albicans population offer an objective criterion in 
comparing population dynamics of organisms 
under environmental conditions with varying 
physicochemical characteristics and biochemical 
compositions. 
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