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Abstract: Economicandcultural resilienceamongpastoralists inEastAfrica is threatenedby the interconnected
forces of climate change and contagious diseases spread. A key factor in the resilience of livestock dependent
communities is human decision making regarding vaccination against preventable diseases such as Ri� Valley
fever and Contagious Bovine Pleuropneumonia. The relationship between healthy and productive livestock
andeconomic development of poor households and communities ismediatedbyhumandecisionmaking. This
paper describes a coupled human and natural systems agent-basedmodel that focuses onOneHealth. Disease
propagation and animal nutritional health are driven by historical GIS data that captures changes in foraging
condition. The results of a series of experiments arepresented thatdemonstrate the sensitivity of a transformed
RandomField IsingModel of humandecisionmaking to changes in humanmemory and rationality parameters.
Results presented communicate that convergence in the splitting of households between vaccinating or not is
achieved for combinations ofmemory and rationality. The interaction of these cognition parameters with pub-
lic information and social networks of opinions is detailed. This version of the PastoralScapemodel is intended
to form the basis upon which richer economic and human factor models can be built.

Keywords: Agent-BasedModel, RandomField IsingModel, LivestockHealth, Ri�ValleyFever, ContagiousBovine
Pleuropneumonia, Economic Decision Making

Introduction

1.1 The relationship between livestock ownership and poverty status is an important issue. It is estimated that be-
tween 750 million to 1 billion people globally are poor livestock keepers (McDermott et al. 2010). While these
households are distributed globally, they are predominantly located in South America, Sub-Saharan Africa and
Asia (Thornton et al. 2003). Considerable debate exists regarding the e�ectiveness of small scale livestock pro-
duction as a means of li�ing households out of poverty. McDermott et al. (2010) argue that expected increases
in demand for livestock produce may be met by small scale producers. With respect to nomadic and semi-
nomadic livestock keepers (i.e. pastoralists), Herrero et al. (2016) argue that climate changemay e�ect smaller
herd sizes and household production. Evaluations for the e�ect of livestock production on household income
also presents a mixed picture. Quantitative evaluations find positive e�ects of livestock ownership on income,
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nutritional intake, and human capital investment among poor households (Banerjee et al. 2015; Argent et al.
2014; Marsh et al. 2016). However, qualitative evaluations also find that some households are prone to not
realise the full benefits of livestock production due to the e�ects of disease, premature sale of animals and
environmental loss (Hedge & Leith 2016).

1.2 There exists a pressing policy need tomodel coupled human-environmental systems as they a�ect agricultural
production. The apparent intensification of extreme climate events and the increasing reliance of the global
population on fragmented environments gives rise to the (re)emergence of diseases and challenges agricul-
tural production (Cohen et al. 2020; Galvani et al. 2016). Modeling the interaction between human and natural
systems is complex andmay give rise to adaptive behaviors (Liu et al. 2007), which therefore require modeling
paradigms that can incorporate such complexity. Acknowledgment of the potential feedback between these
systems in evaluating the medium and long-run sustainability of agricultural production is important. Kramer
et al. (2017) a�irm the importance of coupled human-natural systems (CHANS) to agricultural production. The
importance of this relationship is further heightened given that many of the global poor are crop and livestock
dependent.

1.3 Economic resilienceamongpastoralist inEastAfrica is threatenedby the interconnected forcesof climatechange
andcontagiousdiseases spread. The roleofmosquitovectors, and their dependenceonElNiño/SouthernOscil-
lation forces, in the transmissionofRi�Valley fever (RVF) is oneexampleof thedual threatof climate changeand
disease to pastoralists. Increased predicted climatic variability – increased frequency of droughts and periodic
flooding – threatens the stability andwell-beingof semi-nomadicherdsmenamong theMaasai and relatedpeo-
ple groups of Kenya, Tanzania and Ethiopia. The ability of households to recover from adverse environmental
and economic events is believed to be dependent, in part, on the decision-making ability of households. Agent
or individual-based modeling (ABM) provides a tractable means of analyzing the e�ects of interconnected dy-
namics of human and natural environments on household decision-making. This modeling approach provides
a means of assessing the e�ects of natural environments on human decision making and the economic well-
being pastoralists.

1.4 The results of a series of randomized control trials of the short-run e�ects of livestock asset transfers to ultra-
poor households of Banerjee et al. (2015) has proved influential. Results indicate that at the end of the first time
period that per capita consumption increased by 0.12 standard deviations (SD), while food security increase by
0.11 SD. These results are based on relatively rigid study design. Households received initial training in livestock
management (including vaccinations, feed, and disease treatment), follow-up visits every 6-weeks, consump-
tion support equivalent to Purchasing Power Parity (PPP) $24 - $72 per month, and sometimes forced savings.
The suite of interventions evaluated had an average cost of 100% of household baseline income. Despite the
clearly positive results, the e�ect of the study design on outcomes raises questions of the robustness of results
without controlling for livestock disease and ecological change.

1.5 The human decision modeling of many ABMs assume fully rational agents or rely on a hierarchy of decision
rules. Reviews of the ABM literature document the static nature of most human decision-making sub-models
(An 2012; Schlüter et al. 2012). Existing ABMs concerned with the dynamic environments of pastoralists in East
Africa are typically concernedwith tribal conflict (Skoggard &Kennedy 2013; Hailegiorgis et al. 2010), rule based
decision-making (Kennedy & Bassett 2011), humanitarian crises (Hailegiorgis & Crooks 2012), risk-sharing and
cooperation (Aktipis et al. 2016, 2011; Hao et al. 2015), and climate change adaptation (Hailegiorgis et al. 2018).
This collective work primarily utilizes three basic ABMs – Herderland (Skoggard & Kennedy 2013; Hailegiorgis
et al. 2010; Kennedy & Bassett 2011; Hailegiorgis & Crooks 2012; Kennedy et al. 2014, 2010b,a), Osotua (Aktipis
et al. 2016, 2011; Hao et al. 2015) and Osoland-CA (Hailegiorgis et al. 2018). While the present ABM shares fea-
tures from thesemodels, its primary contribution is the further introduction of a cognitively controlled human
decision-making sub-model.

1.6 The present work provides a less rigid andmore realistic method for modelling the welfare of livestock depen-
dent households in the face of on-going environmental forces. Instead of relying on costly institutions tomain-
tain healthy financial and livestockmanagement environments among the poor, we present a coupled human-
ecological systemsmodel with a dynamic human decisionmaking sub-model. The PastoralScape agent-based
model links actual environmental data to the incidence of livestock disease and livestock movement and in-
teraction. The present version of PastoralScape extends the preliminary prototype PastoralScape in important
ways (Iles et al. 2020). The model described in this work uses an event-driven design across all model compo-
nents. This addresses significant obstacles in coupling submodels in our priorwork. Wealso removedanumber
of heuristic submodels and replaced them with data driven components to better reflect observed conditions
in the physical region. Mentions of ‘prior’ or ‘preliminary’ versions of themodel in the body of this paper are re-
ferring to this earlier prototype. The code for themodel as described in this paper aswell as the prior prototype
can be obtained online from: https://github.com/mjsottile/pastoralscape
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1.7 ThecurrentPastoralScapeABMdocuments adatadrivenmodel of herdmovement, incidenceofRi�Valley fever
(RVF) and livestock foraging conditions over an 11 year period (2004 - 2015). Natural and human environments
are linked via a humandecision sub-model that utilizesmemory and ‘rationality’. The primary decision of inter-
est is the vaccination of cattle for Ri� Valley fever (RVF) and Contagious Bovine Pleuropneumonia (CBPP). The
di�erence in the frequency of vaccinations for each disease provides ameans for assessing the e�ects of mem-
ory and ‘rationality’ on one-time (RVF) and repeated decision-making (CBPP). The ABM introduces a Random
Field Ising Model to estimate the binary choice of vaccination. Such a decision is modeled in the context of the
uncertainty of disease transmission risk of each disease.

1.8 This version of PastoralScape contributes to the agent-based modeling literature in several ways. Firstly, it
documents the sensitivity of modeled binary human decision-making for livestock vaccine choice to mem-
ory and rationality parameters. These parameters are part of a logit transformed Random Field Ising Model
(RFIM) (Bouchaud 2013; Iles et al. 2020). Secondly, the CHANS agent-based model is proposed where environ-
mental data drives: i) disease incidence of RVF and ii) herd nutritional health and reproduction. Finally, the
PastoralScape model presents a framework to holistically evaluate One Health (interconnectedness between
people, animals, plants and their shared environment) e�ects on sustainable small herd production andman-
agement among the global poor.

1.9 Following this introduction, the paper is structured according to model components, implementation, experi-
ments and conclusion. The critical sub-models and the simulation ’world’ are detailed in Section 2. Details of
human and livestock agents are provided, alongwith their spatialmodeling. Description of the use of historical
environmental data to drive RVF incidence and herd nutritional health is also provided. The RFIM human de-
cision sub-model is detailed in this section. The systematic evaluation of RFIM parameters and the associated
logit transformed parameters - memory and rationality - are then presented in the Experiment Section.

Model Components

World

2.1 Theworld is defined as a cartesian grid of square cell objects. Each cell has a unique integer cell identifier, a grid
coordinate (i, j) and aworld coordinate (lat, lon) corresponding to the centroid of the grid cell. Each grid cell is
based on a generic cell object that holds GIS state data as well as an indicator for if the cell contains permanent
water features. A derived cell object is provided to represent human villages. A village contains a set of fixed
agents (e.g., heads of household) as well as paths that agents who reside at the villagemay traverse when they
choose to take their herds out to graze beyond the village.

2.2 External inputs come from either physical observations available via GIS, or third-party simulations. Ourmodel
represents the world as 1km-by-1km cells, and GIS data is obtained at that resolution. Other data sources typi-
cally give data at a coarser resolution and are mapped to the world grid using linear interpolation. The model
currently inputs two GIS sources, NDVI and precipitation, and one external simulation source, foraging condi-
tion index, or FCI (Stuth et al. 2005; Matere et al. 2020).

Movement tracks

2.3 Human agents are constrained to pre-defined paths when they move. A path p = (c1, c2, · · · , cn) is defined as
anordered sequenceofwaypoints corresponding to cell identifierswhere c1 is a village cell and cn = c1,making
p a loop. Waypoints c2 through cn−1may not equal c1 - a pathmay only start and terminate at the same village.
These paths reflect knowledge of village residents with respect to what areas of their surroundings are known
to be good for grazing. Path data is an input to the model and has been obtained via surveys from residents
who reside in the region as of late 2019.

2.4 In Figure 1a a hand-drawn map obtained from community members in the region shows the five modeled vil-
lages (indicated as labeled squares) with a set of movement tracks indicated using dotted lines. Unfortunately,
this hand-drawnmap lacks cartographic precision. For example, the water feature in Figure 1a near Kisima is in
a di�erent location than the water feature shown in a GIS map obtained via the Mathematica system in Figure
1b. Weperformedabest-e�ort digitization of the hand-drawnmap in a standardGIS system todigitize the paths
for input into themodel, which resulted in the simulated agent occupancies shown as filled red circles in Figure
1b.
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Figure 1: Hand-drawnmovement loopmap compared to modeled paths followed by agents.

2.5 We chose to use path data from human sources residing in the region instead of heuristic decisions made by
agents. Initial experiments with designing heuristics to drive agent movement were unable to replicate the
observed behavior of people living in the region. As such, the use of available track data allows the model to
best reflect the actual activities that humans in the region engage in. Future extensions to themovementmodel
may use a hybrid approach in which track data obtained from residents are used to constrain computationally
generated paths.

Geospatial data

2.6 Ourmodel is driven by external data obtained fromGIS sources for the central Samburu county region of Kenya.
The region we have considered spans the latitude/longitude bounding box (0.91264, 1.24496) and (36.38761,
36.89965) as shown in Figure 2.
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Figure 2: Geographic origin of GIS data within Kenya a) and Samburu county b)

2.7 Within this regionwehave a set of village coordinates, permanentwater feature coordinates, and knownmove-
ment paths that herdsmen traverse. The region of interest is discretized into a cartesian grid of cells 1km-by-
1km. Each cell is assigned a unique identifier used tomerge GIS data sources. The latitude and longitude of the
centroid of each cell is also stored. This is used to map between world cell coordinates and real world coordi-
nates for sub-models definedon continuous latitude/longitude coordinates. For example, the agentmovement
model tracks the precise location of agents to allow for a fixedmovement speed regardless of direction. An e�i-
cient bisection search algorithm is used to perform the mapping from latitude/longitude coordinates and grid
cells.

2.8 Weconsider the followingGISdata sources at the cell level: precipitation (cm); normalizeddi�erencevegetation
index (NDVI); and foraging condition index (FCI). NDVI and FCI are unitless index values. Precipitation and NDVI
are available to the model, but are not currently used in the governing equations at runtime. Precipitation is a
driver for diseases in whichwaterborne vectors (mosquitos) are the primary infection source for RVF. Instead of
usingdirectlymodeling thediseasevectorsasanemergente�ect fromprecipitationobservations (as inGachohi
et al. 2016 and Gachohi 2015), we use precipitation to precompute the coe�icients for a harmonic function that
drives infection (see Section 2.30).

Vegetation availability

2.9 One of the core concerns of the model is to capture vegetation availability for two purposes. First, vegetation
availability is used to drive the health of grazing livestock. Second, relative vegetation availability between cells
gives human agents the necessary input to calculate a preference that drivesmovement decisions. The current
model uses foraging condition index (Stuth et al. 2005; Matere et al. 2020) as a proxy for vegetation availability.
The ideal model would allow us to use some measurement of vegetation (e.g., NDVI or FCI) to estimate the
vegetation mass present in a grid cell that is available to the livestock for nutritional input. This could then
be connected directly to knowledge about animal physiology with regard to the amount of biomass necessary
for livestock to maintain a specific level of health. Unfortunately, reasonable estimates of available vegetation
mass components, quality and quantity are unavailable within the literature.

2.10 Instead, vegetationavailability is calculatedbasedon the following reasoning. Over thesimulationepoch (2004-
2015), we assume that the average climate conditions in the region are in fact average, and do not represent a
long-term drought or high precipitation period. As such, the average conditions represent the conditions un-
der which the livestock and residents of the region expect as a baseline for what constitutes average health.
Instead of computing the absolute vegetation presence as a measure of mass or volume, we instead calculate
the deviation from this average at each time step. For a grid cell (i, j) at time t, we calculate:

vegij(t) =
FCIij(t)

avg(FCIij)
(1)
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This value is used by herdsman agents when making decisions about the quality of the cell they reside within
when making movement decisions. We explored the use of precipitation and NDVI measurements for estimat-
ing vegetation accessible to livestock as food. Unfortunately, NDVI alone cannot distinguish this accessible food
from other forms of vegetation that are not livestock food sources such as tree canopies. As a result, themodel
uses FCI exclusively for livestock-accessible vegetation estimates.

Agents

2.11 The human agents are the primary component of themodel bridging submodels for animal health, movement,
and vaccination decisions. Two classes of human agents aremodeled: heads of household and herdsmen. This
is intended to mimic the social structure present in the region of interest in which a senior member of a fam-
ily is responsible for decision making with respect to the economic state of a family. A junior member of the
family plays the role of herdsman, directly managing the herd of livestock owned by the family by making de-
cisions regarding grazing and herdmovement. Themodel currently associates a single herdsman to each head
of household. The simulation supports households inwhich a head of householdmanagesmultiple herdsmen,
but that mode is not currently used.

2.12 Each head of household and herdsman has a single village that they consider to be home. Heads of household
are immobile agents and always reside within the village, and herdsmen prefer to remain at the village unless
driven to move due to environmental factors where movement to a di�erent region is preferable to meet the
grazing needs of their herd. The event-based architecture of the model is easily extended to allow agents to
initiate movement due to other factors, such as calendar date or decisions from heads of household. Such
extensions will be explored in future revisions of the baseline model defined in this paper.

2.13 The head of household has state variables related to their recent vaccination decisions aswell as their personal
inclination for vaccination. These state variables are used in the decision model described below.

2.14 Herdsmenmake the decision to move based on the vegetation state of their home village cell. Herdsmen start
at these home cells and reside there until vegij(t) < vegthresh. At that point, the agent decides that the cell is
no longer able to provide su�icient nutrition for their herd andmovement is necessary.

Movementmethod

2.15 Initial versions of themodel attempted tomodel movement purely computationally, but themovement tracks
that were obtained did not exhibit realistic patterns as found in the literature (Liao 2018b,a). Instead, we ob-
tained maps of tracks drawn by people local to the area and digitized them as polygons (Figure 3). Each path
starts at a known village and forms a closed cycle that ends at the same village. A path is defined as a set of cell
waypointswhere the agents traverse a straight line path betweenwaypointswith a speed of 1kmper day. Given
that this results in movement at a finer granularity than the model cell size, herdsman location is modeled as
direct latitude/longitude coordinates.
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Figure 3: Paths superimposed over the map of the region of interest.

2.16 The rationale behind this movement model is based on information obtained from residents of the region.
Herdsmen typically leave their village with their herds to seek regions known to have higher vegetation con-
tent, o�en around permanent (or frequent) water sources. When the foraging condition of their village drops
below a pre-defined threshold, the agents pick a track that originates at their village at random, and traverse
it in a cycle until they return to the home village. In the current model we do not allow agents to dwell at way-
points. A future revision of the model will include the ability to augment paths with information about dwell
times at waypoints to represent expected behavior such as lingering at a known water feature or area rich in
vegetation. This will be dependent on obtaining further information from residents of the region regarding
movement habits.

Social network

2.17 Agents that communicate for decision-making purposes are connected in a social network. In this model the
heads of household are the primary decisionmakers and are the only human agents in the network. Herdsmen
communicate onlywith their corresponding head of household to receive vaccination commands. While herds-
men communicate with each other in the real world, those connections are currently not represented as they
have no impact on any of the submodels. Future versions of the model may be extended in which herdsmen
may communicate (e.g., long-distance phone calls to inform an agent about distant foraging conditions).

2.18 The social network is defined as a directed, weighted graph. For any agent i that has a social connection to
a di�erent agent j, the weight matrix entry Jij represents the weight of influence that agent j has on i. The
network is directed since the influence between individuals may not be symmetric. Any agents i and j that are
not connected have weight Jij = Jji = 0. This weight matrix J is used within the decision model described in
Section 2.19, specifically in the calculation of the agent incentive (Equation 2). We assume that the entries of J
are in the interval [−1, 1].

Decisionmodel

2.19 The RandomField IsingModel (RFIM) introduced by Bouchaud (2013) defines a spin systemmodel for decisions
in which individuals are influenced by the decisions of one or more others. Ising models are frequently used in
economics to model the e�ect of network pressure on decision-making (Hokamp & Pickhardt 2010; Pellizzari
& Rizzi 2014; Pickhardt & Seibold 2014). In our model we are concerned with the decision that each head of
householdmakes regarding whether or not to vaccinate their animals against each of the diseases considered.
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The choice of an agent i is a boolean decision Si ∈ {−1, 1}. The decision model to compute Si integrates a
number of factors both internal and external to an agent.

• The social influence Jij between any two agents i and j.

• Each agent i has their own internal preference fi, where fi < 0 indicates a preference towards Si = −1
and fi > 0 indicating a preference towards Si = +1.

• All agents have access to a public, time varying information source F (t) representing information from
local authorities, public health o�icials, and so on. F (t) has a similar interpretation as fi.

2.20 For a single topic that an agent makes a decision about, we first calculate the perceived incentive for the ith
agent:

Ui(t) = fi + F (t) +
∑
j∈Vi

JijSj(t− 1) (2)

This incentive blends the internal preference of the individual agent, the public information, and the weighted
influence of themost recent decisionsmade (at time t−1) by all agents that they are connected to. GivenUi(t),
we model the probability of each option for Si(t) by taking into account bothUi and Si(t− 1). For example:

P (Si(t) = +1|Si(t− 1) = −1;Ui) =
µ

1 + e−βUi
(3)

P (Si(t) = −1|Si(t− 1) = −1;Ui) = 1− µ

1 + e−βUi
(4)

P (Si(t) = −1|Si(t− 1) = +1;Ui) =
µ

1 + eβUi
(5)

P (Si(t) = +1|Si(t− 1) = +1;Ui) = 1− µ

1 + eβUi
(6)

2.21 At the start of the model each agent needs to be initialized with a decision value Si(0). For each disease we
define a probability P (Si(0) = +1), and randomly assign initial decisions to each agent. This is defined on a
per-disease basis to reflect di�erences in opinion within the population about the risk of infection and value of
vaccination for each disease.

Selection of β and µ parameters

2.22 The important parameters to consider in defining this probability are µ and β. The µ parameter is interpreted
byBouchaudasmodeling aone-stepmemory inwhich themost recent choice at time t−1has somebearing on
the choice for time twhen µ ≤ 1. When µ = 1 the probability is memoryless. The β parameter is analogous to
the temperature in a classical spin-glass system and is used to model noise. Bouchaud notes that when β → 0
incentives play no role and the decision reduces to a coin flip, and β → ∞ reduces to the opposite extreme in
which the rule is deterministic where the choice corresponds toUi exceeding some threshold valueUth.

2.23 Thesigmoidal function that appears inEquation3 (i.e. logistic function) is definedover all reals, but the function
is very close to 0 or 1 over all but a small region of its domain (approximately [−4, 4]). As a result, the range
of β and Ui are important to consider. Examining Equation 2, the factor that accumulates the contribution of
neighbors viaJijSj(t−1) is going to take on a value proportional to the number of agents in the neighborhood.
Assuming that we restrict Jij , fi, and F (t) to the interval [−1, 1], then Ui ∈ [−(n + 2), n + 2]. Thus we can
select β ∈

[
0, 4

n

]
in order to explore the dynamics that emerge when P is not at the extreme values 0 or 1.

Diseasemodel

2.24 The infectious disease component of the model uses a compartmented Susceptible, Infected, Recovered, Vac-
cinated (SIRV) model represented as a Markov transition system. The state transition system is illustrated in
Figure 4.

2.25 Each animal has a disease state for each modeled disease corresponding to one of the allowed compartments
in the transition system. All animals are created in the susceptible (S) state. The death state (D) is not directly
modeled as a state, but is included to represent the possible transition from the infected (I) state to death. For

JASSS, 24(4) 11, 2021 http://jasss.soc.surrey.ac.uk/24/4/11.html Doi: 10.18564/jasss.4686



Figure 4: SIRV model transition system. The V → S transition is modeled as a time-dependent event external
to the transition system.

some diseases there is the possibility that an animal that has recovered (R) from infection may become sus-
ceptible in the future. Similarly, an animal that has been vaccinated (V) may become susceptible if the vaccine
requires a periodic booster to keep it e�ective.

2.26 The transition edges represent the probability of an animal in a given state to transition to another state. An
implicit self-transition is present for each state representing the probability that an animal in that state remains
in it. For example, the probability that an infected animal remains infected is pII = 1.0 − (pIR + pID). All
transitions except pSI are independent of the size of the herd that the animal resides within. The pSI transition
represents an infection event, which is proportional to the number of infected animals versus the herd size.
Thus for a given animal, the probability of the S → I is pSI #I

N whereN is the herd size and#I is the number
of animals in the herd in the I state.

2.27 The transition probabilities are defined for a specific time scale. For the purposes of this model we have estab-
lished a time scale of one day (Mariner et al. 2006). We obtained the transmission probabilities for RVF (Leedale
et al. 2016) and CBPP (Mariner et al. 2006) from the veterinary medicine literature. These are shown in Table 1.

Transition RVF CBPP
S→ I 0.14 0.024
I→ R 0.0001 0.0045
I→ D 0.3 0.009
R→ S 0.0 0.0

Table 1: Transition probabilities.

2.28 The V → S transition is modeled separately from the transition system since it has a time dependence. Due to
the limited e�icacy of the CBPP vaccine, when an animal is vaccinated at time t, an event is scheduled reflecting
depleted e�icacy at some time t + δt where δt ∼ N(µd, σd) with µd and σd being the mean and variance for
vaccine e�ectiveness period for disease d. Our model currently adopts a model of e�icacy for the RVF vaccine
in which animals require only one vaccination during their lifetime.

2.29 Disease transmission occurs between all animals colocatedwithin a grid cell. Doing so allows diseases to trans-
fer between herds while reflecting the knowledge that transmission requires proximity. This proximity factor
would be lost using a simpler model in which we consider the entire population of animals regardless of loca-
tion.
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Environmental infections

2.30 Infection is introduced into a population from environmental vectors for each disease. For diseases in which
seasonal e�ects (e.g., precipitation driving mosquito populations) are the primary factor (i.e. RVF) we use a
harmonic function fit to data obtained in a similar region (Lofgren et al. 2007). Specifically, we consider amodel
of the following form:

Y (t)i = exp {β0,i + β1,i cos(2πωt) + β2,i sin(2πωt) + ε} (7)

where Y (t)i is the disease incidence at time twithin a season i. ω = 1/M whereM is the length of one disease
cycle. In the absence of data on RVF infections in Samburu county, we instead use RVF disease data for the
period ofMay 2009 throughMay 2012 in the neighboring Baringo district. The use of data fromaneigboring dis-
trict gives us a rough approximation of the seasonal e�ects within Samburu county given their close proximity.
The corresponding coe�icients were computed for this district using available GIS precipitation data, and are
shown in Table 2. A point Poissonmodel using robust standard errors was performed to obtain the coe�icients
using the Stata so�ware package.

Parameter Coe�icient Std. Err. z P > |z| 95% Conf. Interval
β0,i -3.835099 .5630832 -6.81 0.000 -4.938722 -2.731476
β1,i 1.487041 .7208338 2.06 0.039 0.0742325 2.899849
β2,i -1.610063 .8473459 -1.90 0.057 -3.27083 0.050705

Table 2: Coe�icients for the harmonic function modeling environmental infections from RVF based on precipi-
tation and RVF incidence data from the Baringo district.

Figure 5: Harmonic function fit for RVF introduction based on Baringo district data.

2.31 For diseaseswith a uniformprobability of a randomanimal becoming infectedwe set a probability p∗I for some
number of days δt (e.g., the probability of a single animal being infected in a single week). We then draw a
sample every δt days and if an infection is determined to have occurred, we pick a random animal from the
entire population to expose. All animals in the population are considered, whichmeans that an exposure event
may occur for an animal that is already infected or has immunity. This is intended to reflect that the prevalence
of a disease in a population does not a�ect its ambient presence in the environment: the increase in spread due
to its increase prevalence is taken care of via the animal-to-animal transmission dynamics discussed earlier.
This assumption of a constant ambient disease source doesn’t reflect e�ects of an infected population on the
environment (e.g., deposition onto surfaces and food sources), but is su�icient for our purposes in which the
dominant mechanism of spread is inter-livestock transmission.
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Livestock

2.32 Livestock are modeled at the individual animal level and herds managed by herdsmen (one herd per herds-
man). Defining livestock agents by sex, age, reproductive capacity and nutritional health provides necessary
realism to modeling herd dynamics. This aspect of realism in PastoralScape represents an advanced feature,
relative to other ABMs (see Fust & Schlecht 2018; Bradhurst et al. 2016 for comparisons). The individual animals
encapsulate health, reproductive, and disease state. A herd owned by a herdsman (and by proxy, a head of
household) represents an economic unit. The herd also encapsulates reproduction dynamics and allows de-
cisions made by individual human agents regarding movement and vaccination to be delegated to the correct
set of individual animals.

2.33 A head of livestock has the following state variables:

• Health h ∈ [0, 1]where 1 is optimal health, and 0 represents an animal that has died of malnutrition.

• Disease state. For each disease d, an animal has a disease state from the set {S, I,R, V }.

• Vaccination state. For each disease, the animal has a time of most recent vaccination tdvacc. This is used
to drive the transition V → S for vaccines requiring periodic boosters.

2.34 An animal may die due to three factors: disease, malnutrition, and old age.

Aging

2.35 Age-related e�ects are modeled by defining a mean lifespan µage and the variance σage of that expected lifes-
pan. When an animal is created the lifespan is determined assuming that it survives disease and malnutrition.
An event is created corresponding to this natural death event and scheduled upon animal creation. If an animal
dies for some other reason, the agent is deactivated and this (and any other) event that occurs a�er its death is
ignored.

Nutritional health

2.36 Nutritional health of the animal corresponds is represented by h. When h = 0, the animal is considered to
have died of malnutrition. Nutritional health is updated for a whole herd at once with the assumption that
available food is distributed uniformly amongst all members of the herd. Themodel has a parameter pfoodneed
representing the number of units of food required by an individual animal in a single week. In the absence of a
measure of vegetationmass, we instead calibrate the food requirement by grazing area required. For example,
for a 1km2 cell, if a single animal requires 10m2 of grazing per day, then pfoodneed = 10−5. Thus for a timestep
of δt days for a herd of size nwith the provided parameter pfoodneed, the required food is:

foodreq = pfoodneed ∗ δt ∗ n. (8)

2.37 We calculate the proportion of required units of food for a grid cell from the vegetation capacity (Equation 1).

2.38 When vegij(t) = 1.0, the cell is guaranteed to have su�icient food to satisfy all of the needs of the animals
present. When vegij(t) < 1.0, the cell is partially barren and can only produce a fraction of the required food.
Similarly, when it is greater than 1.0, the cell has more food than average available. For a 1km2 cell, we then
calculate:

foodavail = min

(
10002 ∗ vegij(t)

foodreq
, 1.0

)
(9)

representing the fractionof foodavailable relative to thatwhich is required. It is clampedat amaximumof 1.0 to
avoid animals from obtaining more food than required. The available food is then portioned equally amongst
all animals present in the cell such that they obtain

r =
foodavail
foodreq

(10)

fraction of food. When the number of animals is far below the holding capacity of the cell, this is equivalent
to using the vegetation capacity directly. This more complex calculation is necessary in the event that more
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animals are colocatedwithin a cell than it has capacity for based on the cell area versus per-animal grazing area
required.

2.39 Two rate parameters are defined hfed and hstarve. The hfed parameter dictates the rate at which the health
of the animal increases per day as it obtains food, while hstarve dictates the rate that it degrades per day when
insu�icient food is provided. These rates are separate tomodel a slowerdeclinedue to starvation versus a faster
rate of recovery due to su�icient food. The health h of an animal is updated via:

h = min (0.0,max (1.0, h+ hfed ∗ r ∗ δt− hstarve ∗ (1.0− r) ∗ δt)) (11)

Reproduction

2.40 Animal reproduction is modeled very simply. The lifecycle of a cow is split into four phases: immature, mature,
pregnant, and nursing (Figure 6). An immature cow has not reached sexual maturity and cannot reproduce
yet. A mature cow is able to reproduce if their health is above a threshold hreproduce. This health threshold
captures the requirement that a cow must be su�iciently healthy to both maintain their own health as well as
that of the developing o�spring. A mature and healthy cow may become pregnant with some probability that
is a function of the number of bulls co-locatedwithin a cell during a timestep. Finally, a pregnant cow that gives
birth to a single o�spring enters the nursing phase during which it cannot get pregnant again until it exits the
nursing state a�er a fixed period of time and returns to themature state. It is important to note that the nursing
periodmodeled only reflects the nursing period duringwhich a cow cannot becomepregnant again. A cow that
returns to themature state a�er nursingmay still nurse their o�spring, but this “nursing and fertile” state is not
currently explicitly modeled.

Figure 6: State transition system for cow reproduction.

2.41 The state transition system for a head of cattle is represented by scheduled events. When a cow is born an
event is scheduled to flag it asmature. Whena cowbecomespregnant, an event is set at the endof the gestation
periodwhen it gives birth. Upon giving birth, the newanimal is created and the cowenters the nursing state. An
event is scheduled for the time at which the animal becomes fertile and can reproduce again. It is important to
note that this transition does not correspond to the biological end of the nursing period, as cattlemay continue
nursing their o�springa�er theyhavebecomepregnant again. Insteadweonlymodel theperiodduringnursing
when a new pregnancy cannot occur.

2.42 The set of PastoralScape sub-models, describedabove, represent a complex set of interconnected systems. The
modeling approachused captures realismof agents. This realism is reflected inmodeling agents’ environments
and social networks, their movements, nutritional health status of livestock, and informational and cognitive
factors that a�ect human decision-making. The next section details the sequencing and initialization of the
model.
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Implementation

3.1 Themodel is implemented in Python 3 using an event-driven architecture. Our initial model used a singlemain
time-stepping loop with a fixed timestep, but this proved inflexible for a number of reasons. First, di�erent
components of themodel naturallymap to di�erent time scales: GIS data is updated at the start of eachmonth;
movement is defined in terms of distance travelled per day; disease progression and livestock health are mod-
eled on a fortnight or weekly basis; vaccination decisions are made at specific calendar dates throughout the
year. As such, we had two choices: run at the finest timescale such that each action tomodel falls on a timestep,
or use an event driven model in which the progress of time is driven by the timing between events. The later
proved to be simplest to implement and is most flexible for future model extensions, and has been adopted in
other ABMs for similar reasons (Meyer 2015).

3.2 The core of the model is a driver that moves through an initialization phase and then an execution phase. The
initialization phase entails creating all model objects (agents, world objects, disease objects, and so on) fol-
lowed by the creation of all events that are known to occur over the span of the simulation - specifically, the
week-granularity events for disease propagation and livestock health and the monthly events to update the
world state from GIS data sources. The execution phase is then a simple loop in which the event queue (imple-
mented as a min-heap, or priority queue) is checked to obtain the next event in time. An event is represented
as a triple: the time for the event, the type of event, and the subject of the event.

3.3 Time is represented using Python date objects that allow a representation of calendar dates as well as date
arithmetic (e.g., days between events; some date plus 2 weeks; etc.). Dates are serialized in the model output
as days elapsed from the start of the simulation epoch. This overcomes issues with date representation in the
output while retaining a straightforward mapping from day-of-simulation to calendar date given the calendar
date of the simulation start.

3.4 Event types are a simple enumeration value. The model currently implements the following event types with
corresponding event subject types.

• GISUPDATE: AGISupdate corresponds to adata input event inwhich static dataobtained fromsources ex-
ternal to themodel are input as environmental sources. Thesemay be real-world data measurements or
outputs fromexternalmodels (such as a climate or vegetation simulation). No subject object is necessary
given that the model contains one and only one world object.

• MOVEMENT: Amovementevent representsa step inapath that anagent inmotion is traversing. The subject
of themovementevent is the individualherdsmanagent that ismoving. Theevent ishandledby theagent
taking a single step along their movement path and checking whether or not they have returned to their
home village. If they are not yet back home, the agent adds an event with themself as the subject to the
event queue corresponding to the future time of their next movement step. A WORLDSTEP event is also
added to ensure that the disease and foraging models step forward as well.

• LIV_BIRTH: A birth event is created upon the start of pregnancy at a point in time in the future when the
gestation period is over. The subject of this event is the pregnant cow, andwhen the event occurs the cow
transitions into the nursing state and a new animal is created. The transition to nursing causes a future
event to be scheduled for when the cow returns to fertility. During creation of the new animal the set of
lifetime events (maturity, death by old age) are also scheduled.

• LIV_FERTILE: A fertility event occurswhenananimal eithermatures fromchildhoodor is alreadymature
and is transitioning out of the nursing state. The subject of the event is the cow that is entering the fertile
state.

• WORLDSTEP: A world-step event drives disease propagation and herd foraging activities. These activities
progress by δt days representing the time since the last world-step event. The use of variable timestep
sizes allows for the model to adapt to the finest timescale necessary at any given point in time. For ex-
ample, while no agents are moving the model can proceed at a large step size (e.g., δt = 7 days). When
agentsmove at a speed of 1km/day, it is necessary to step faster to avoid a case where an agentmay pass
through a cell without foraging and disease propagation occurring. This is critical since movement and
the resulting colocation of herds from di�erent villages is necessary for disease to propagate across the
full agent set. No explicit subject is associated with the event since it applies to the single world object
for the model.
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• AGENTSTEP: Agent-step events correspond to regular, frequent decisionmaking by human agents. In the
current model heads of household do not make regular (e.g., daily or weekly) decisions so they ignore
these events. Herdsmen use these events to assess the vegetation state of the cell in which they currently
reside to determine if it is necessary to move. If such a decision is made, the herdsman creates a move-
ment event and a worldstep event to ensure that a�er taking a step and potentially crossing into a new
cell, the disease and foraging models step forward.

• VACCINATE: A vaccination event represents a time atwhich all heads of householdmake a decision about
vaccinating their herd. This is typicallymodeledasacalendardate (e.g., Sept. 1st every year). This triggers
the evaluation andupdate of theRandomField IsingModel state and calculation of a boolean vaccination
decision for each disease present in the population.

• WEAROFF: A “wearo�” event is scheduled for vaccines that require periodic boosters (i.e. CBPP) due to
the short duration of immunity provided by the vaccine. The subject of the event is the animal that will
transition fromvaccinated to susceptible, aswell as thedisease to consider. The timeof theevent is based
on themeanandvariance for theperiodof e�ectiveness for thedisease relative to the timeof vaccination.

• INFECTION: Infectionevents correspond tospontaneous transitions fromsusceptible to infected for some
livestock. These are intended to capture environmental infections versus animal-animal transmission.
Each disease is sampled with the appropriate environmental infection model (harmonic vs uniform) as
described in Section 2.30.

• CULL_OLDAGE: An age-based culling event represents the animal subject of the event naturally dying of
old age. These events are predeterminedwhen an animal is created by sampling the distribution of lifes-
pans for animals. Upon this event occuring, an animal is removed from all herds and set inactive. The
inactive state allows any future events related to this animal that are already in the queue to be disre-
garded.

3.5 Events that are delegated to an agent set are handled in three phases. First, a pre-handler is called in order
to perform bookkeeping prior to the set of agents handling the event. In the case of the decision model, this
pre-handler shi�s the most recent decisions simultaneously for all agents to the prior decision slot. This must
occur before the core handler steps the decisions forward. A final post-handler is called a�er each agent in the
set has handled the event. This currently performs no actions, but is present for potential future use with new
event types.

Initialization

3.6 The model is initialized by creating a set of model objects corresponding to the input data and parameter set.
The world grid and grid cells are created based on the discretization of the world into 1km-by-1km cells. A set
of village cells are created at the coordinates specified in the input parameters. A set of heads of household are
created and uniformly allocated amongst the villages. For each head of household a single herdsman is created
and colocated with the head of household. The set of animals is created and allocated amongst the herdsmen
uniformly. The distribution of animals is defined by the following parameters:

• pbull: To reflect the expected steady-state population, the sex distribution is determined by the fraction
of animals that are bulls versus cows.

• min_age andmin_remain: Animals are createdwith a non-zero age. This age has someminimumvalue,
and each animal must have someminimum time remaining alive from the start of the simulation epoch.
Ages are uniformly distributed between those values given the lifespan distribution of animals.

• hstart: All animals start with some initial health value. Currently all animals are created with the same
initial health.

3.7 The initial population is created with some proportion in the vaccinated state for each disease. A per-disease
proportion is specified in the input parameters. Those animals that are selected to be vaccinated are assumed
to have been vaccinated in the most recent vaccination round prior to the start of the simulation based on the
specified vaccination schedule. If the wearo� period of a vaccine from this date is calculated to fall before the
start of the model, the corresponding animal is treated as unvaccinated.
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3.8 With respect to the reproduction submodel, any cow beyond their age of maturity starts in a fertile state and
can begin the reproductive process immediately. No animals are created in the pregnant state.

3.9 Once the herds and human agents have been created and all model objects created, the initial schedule of
events is established by populating the model event queue. Using the specified default time step δt, these
initial events include:

• World and agent step events at a regular interval of δt days.

• GIS update events at the start of each calendar month.

• Vaccination dates at one or more calendar dates each year (e.g., September 5th).

• Environmental infection source sampling events at regular intervals of δt days.

• Old-age culling and animal maturation events for the initial animal population.

Experiments

4.1 A series of experiments are run to: i) test the speed of convergence and population split according to di�erent
µ and β parameter values, ii) the number of livestock deaths (all causes) as µ changes, and iii) the distribution
of RVF and CBPP deaths seasonally. These experiments demonstrate the utility of the PastoralScape model.
The flexibility and realism of allowing for rationality and memory capacities to di�er over time and between
individuals captures cognitive dynamics evident among the global poor (Iles et al. 2021).

Sensitivity of RFIM to β and µ selection

4.2 Understanding the interplay between the parameters for the RFIM component of the overallmodel is important
in parameter selection. We consider configuration of the RFIM component as defined in Table 3 in isolation of
the other model components.

Parameter Value
Population size n = 60
Social network Jij U [−0.2, 0.8]

Internal preference fi = 0
External information F (t) varied over [−8, 8] by steps of 0.2
Initial decision state P (Si(0) = +1) = 0.4 ; P (Si(0) = −1) = 0.6

Timesteps 100
β {0.01, 0.1, 0.3}
µ {0.05, 0.3, 0.75}

Table 3: RFIM response study parameters.

4.3 The population of n individuals is created in a fully connected social network with weight of influence ranging
from−0.2 to 0.8. This choice of interval causes themajority of connections to be positively reinforcing, and the
few that are negatively reinforcing do so with relatively small weight. Given that both fi andF (t) are similar in
the definition ofUi, we fix fi at 0 for all individuals and fixF (t) at a constant during a run. For a given selection
ofβ andµwe varyF (t) to see how the evolution of the decision state across the population varies. We initialize
the decision state, Si(0), for all individuals in the population to have a slight bias in one direction. For each
parameter combination, we perform an ensemble of 25 runs and calculate the average |{S = +1}| − |{S =
−1}|. When all agents are in agreement, this value takes on±n (color axis of Figure 7 ranges from -60 to +60),
and when the population is split in half it is zero. Otherwise it gives a measure of the degree of imbalance with
which the population is split.

4.4 The results of these experiments are shown in Figure 7. We can see a few interesting features emerge. First, the
lowest β value agrees with the interpretation given by Bouchaud - when β → 0 the system is noise-dominated
regardless of the memory that agents have of past decisions. As β increases, we see that the system reaches a
stable statemuchmore quickly since the lack of noise prevents this convergence frombeing disrupted. Second,
as µ is varied, we see the e�ect of the last-decision memory. For example, when β = 0.1we see for the lowest
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value of µ the system takes longer to stabilize, while for the largest µ value it stabilizes within only a few itera-
tions. This appears to indicate thatwhen the system ismemoryless the state of the agents relaxes to agreement
based on the current state of the population, while the presence of amemory causes some agents to e�ectively
resist changing to the lower energy state from their previous decision.

4.5 Finally, we are able to see that the public information F (t) is able to influence the collective opinion with a
transition that depends on the parameter selection. For example, with the moderate β and µ values we see a
rapid shi� where the population collectively takes on one value of S and a�er a slight change in F collectively
changes their mind. When noise dominates for low β, the value of F (t) has no e�ect. Interestingly, when β
increases,µ does not appear to have any e�ect on the sharpness of the transition and the e�ect ofF (t) ismuch
smoother.

4.6 Weuse these results to calibrate our choice of parameters for theRFIM in integrationwith the other sub-models.
Specifically, given a desiredmodel period of 11 years with one or two vaccination decisions per year, we expect
µ around 0.3 to be ideal - it allows the system to converge to a consensus state relatively quickly while allowing
the agents to retain somememory of past choices. Similarly, β should be kept near 0.1.

Figure 7: For each β and µ combination, the average |{S = +1}| − |{S = −1}| for F (t) varying over [−8, 8]
with a population of n = 60 individuals.

E�ect of µ in overall model

4.7 The computational experiments presented span a time period from 2004 through 2015. Transition parameters
for the Markov SIRV model are shown in Table 1. The timestep is δt = 7 days. RVF infection introduction is
governed by a harmonic function fit to precipitation data. The parameters for this function are shown in Table
2. TheCBPP infection rate ispcbpp = 0.025 (theprobability that a single animal in thepopulationwill be infected
over δt days). The initial population of households is n = 150 distributed uniformly between all five villages,
with a single head of household agent and herdsman per household. The initial livestock count is n = 1500
uniformly distributed amongst the herdsmen. The initial livestock population is composed of 30% bulls and
70% cows. Livestock are created with ages uniformly distributed between 1.5 and 9 years old, with no animals
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pregnant initially. The fi parameter of the RFIM for each head of household is set to 0.1, with a 60% probability
of having S0 = +1 as their starting decision state.

4.8 Using the results from the isolated RFIM study regarding themodel response to β andµ variation, we perform a
set of studies with β = 0.1 and vary µ from 0 through 1. This allows us to explore the short-termmemory e�ect
modeled by µ on the overall outcome of herds over the 11 year period. As we see in Section 4.1, the memory
parameter appears to play a role in the population reaching consensus for some fixed public informationF (t).
When consensus is reached, the agents either all choose to vaccinate or abstain. This occurs rapidly within only
a few decision making steps for high values of µ, but for lower values consensus either takes longer to emerge
or fails to emerge at all. The choice of F (t) = 1.0 falls within the region of the parameter space where we see
the phase transition from universal vaccine abstinence to universal acceptance. An ensemble of 100 runs was
performed for each choice of µ varying the randomnumber generator seed for each run. The results are shown
in Figure 8.

4.9 The results show that, as expected, the memory e�ect does make a di�erence. When no memory of the most
recent decision is considered, a high death count occurs, especially for CBPP. As µ increases and this short
term memory plays a stronger role in the vaccination decision, we see the number of deaths flatten out a�er
µ ≈ 0.35.

Figure 8: Average cumulative death counts by cause as µ is varied.

E�ect of annual vaccine timing

4.10 The seasonal variation in disease prevalence for Ri� Valley Fever implies that the date of vaccinationmay have
an impact on the overall resilience of herds to disease, especially with respect to animals born in the time pe-
riod since the last vaccination event. In this study we fix all parameters other than the date of vaccination. We
perform an ensemble of 1,000 runs for vaccinations timed at the start of each month (for a total of 12,000 runs
to cover the entire year). The results are shown in Figure 9.

4.11 We observe that CBPP has amuch higher variability than RVF largely due to the selection of spontaneous envi-
ronmental infections aswell as declining (or less durable) vaccinal immunity. RVF exhibits less variability across
runs due to themodeled lifetime e�ectiveness of the vaccinewhich results in a lower number of susceptible in-
dividuals at any given time. We do observe an increase in RVF deaths when the vaccination occurs later in the
year, as that corresponds to the higher probability of infection driven by the harmonic function shown in Figure
5. This is due to animals born since the previous vaccination being more likely to be infected during the period
of the year in which mosquitos are more prevalent.
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Figure 9: Average number of deaths by each cause as the annual vaccination date is varied, with regions of±1
standard deviation shown.

Parameter selection discussion

4.12 Themost significant gap in this work requiring further data collection is the selection of parameters for disease
prevalence and the relationship between vegetation measures (FCI or NDVI) to available food for livestock. In
both cases the literature is limited within this region. We have found, for example, that the choice of environ-
mental infection probability for both diseases has a significant impact onmortality - especially for CBPPwhere
vaccination is not lifetime. Similarly, the choice of parameters to calculate the necessary food per head of live-
stock is based on information from western farming sources. Very limited information is available for animals
in the Kenya region that are managed very di�erently than those present in dedicated livestock farms. Finally,
while we used available data from the geographically nearby Baringo district, further work is necessary to de-
termine what di�erence is to be expected in the Samburu region. In particular, the Samburu region contains
mountainous areas which may impact precipitation patterns di�erently than those in Baringo.

Conclusions

5.1 This paper presents amodel for humandecisionmaking for disease vaccination via a coupled human and natu-
ral system (CHNS). ThePastoralScapeCHNSmodel uses historical environmental data to drive livestock disease
transmission, livestock health and reproduction. The development of the PastoralScape model in this paper,
first introduced by Iles et al. (2020), details the behavioral utility of the logit transformed RFIM in capturing
human decision making. The interaction between the values of µ, β and fixed values of RFIM parameters pro-
vides one indication of the potential of this human decision making paradigm to add value to ABM modeling
of human agents. Although convergence of opinion is reach across various µ and β values, the speed of this
convergence di�ers. As such, we demonstrate that depending on the frequency of modeled human decisions,
the rate of convergence may be tailored to fit.

5.2 In the context of evaluating the utility of the logit transformed RFIM in modeling one-time (i.e. once-for-life
vaccines) and annual decisions (i.e. annual booster vaccines), the frequency of annual decisions shows greater
sensitivity to changes in µ and β. Applications of the logit transformed RFIM to decision contexts with greater
frequency of decisions is needed.

5.3 Although the selection of µ and β in each run is uniform and constant across all decision makers in this paper,
this need not be the case. A likely more realistic scenario is where the µ and β parameters are allowed to vary
acrossdecisionsmakers. In thecontextofmodelingabsolutepoor livestockowners, variablesa�ectingchanges
in cognition parameters (µ and β) include: rainfall and perceptions of financial well-being (Iles et al. 2021; Mani
et al. 2013). In so doing, greater levels of coupling between human and natural systems may be achieved. The
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use of the logit transformed RFIM with dynamic cognition parameters across decisionmakers would represent
a significant advance inmodelinghumandecisionmaking inABMenabled coupledhumanandnatural systems.
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