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Predators influence prey demography through consumption, but the mere presence of
predators may trigger behavioural changes in prey that, if persistent or intense, may also
influence prey demography. A tractable system to study such nonconsumptive effects
(NCEs) of predators involves intertidal invertebrates. This mini review summarises recent
research using barnacles and mussels as prey and dogwhelks as predators. The field
manipulation of dogwhelk density revealed that pelagic barnacle larvae avoid benthic
settlement near dogwhelks, which limits barnacle recruitment, a relevant outcome
because recruitment is the only source of population replenishment for barnacles, as
they are sessile. This avoidance behaviour is likely triggered by waterborne dogwhelk
cues and may have evolved to limit future predation risk. Increasing densities of
barnacle recruits and adults can prevent such NCEs from occurring, seemingly because
benthic barnacles attract conspecific larvae through chemical cues. Barnacle recruit
density increased with the abundance of coastal phytoplankton (food for barnacle
larvae and recruits), so barnacle food supply seems to indirectly limit dogwhelk
NCEs. By inhibiting barnacle feeding, dogwhelk cues also limited barnacle growth and
reproductive output. Wave action weakens dogwhelk NCEs likely through hydrodynamic
influences. Dogwhelk cues also limit mussel recruitment, as mussel larvae also exhibit
predator avoidance behaviour. The NCEs on recruitment are weaker for mussels than
for barnacles, possibly because mussel larvae can detach themselves after initial
settlement, an ability that barnacle larvae lack. Overall, these field experiments provide
evidence of predator NCEs on prey demography for coastal marine systems.
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INTRODUCTION

Predators influence the demography of prey through the consumption of organisms. The mere
presence of predators, however, may trigger behavioural changes in prey that may ultimately
also influence prey demography. For example, when detecting predator cues, prey can move
away (Werner and Peacor, 2003; Keppel and Scrosati, 2004; Metaxas and Burdett-Coutts, 2006;
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Zanette and Clinchy, 2019) or reduce feeding activities (Peacor
and Werner, 2000; Schmitz et al., 2008; Hermann and Thaler,
2014; Urban and Richardson, 2015; Boudreau et al., 2018) to limit
predation risk. Depending on the magnitude and persistence
of such behavioural responses, demographic consequences may
result. These consequences can be referred to as nonconsumptive
effects (NCEs) of predators on prey demography.

Predator effects on prey behaviour typically occur soon after
predator cues are detected by prey, so they have been studied
for many terrestrial and aquatic species (Peacor et al., 2020).
However, due to their inherent complexity and longer times to be
expressed, predator NCEs on prey demography have historically
been less studied. As they are seemingly widespread, however
(Peckarsky et al., 2008), their study has been gaining traction in
recent years. Thus, for example, negative predator NCEs on prey
reproduction (Creel et al., 2011; Zanette et al., 2011; Mukherjee
et al., 2014; Dulude-de Broin et al., 2020), recruitment (Benkwitt,
2017), and survival (MacLeod et al., 2018) have been described
for terrestrial and aquatic vertebrates and on prey survival for
freshwater invertebrates (McCauley et al., 2011; Siepielski et al.,
2014).

Given the large animal diversity on Earth, it is worth
examining how predator NCEs on prey demography may
take place in organisms with different life histories and
living in different environments. Such an approach will enrich
our understanding of the array of responses and underlying
mechanisms that can be found in nature. This mini review
focuses on intertidal sessile organisms as prey. In rocky intertidal
habitats (those between the highest and lowest tides on marine
rocky shores), sessile filter-feeders are often abundant, especially
barnacles and mussels (Menge and Menge, 2013; Valdivia et al.,
2015; Scrosati and Ellrich, 2018). Because sessile organisms
remain attached to the substrate, monitoring their demography
can be easily done, especially during low tides when such habitats
can be safely accessed on foot. In addition, their main predators
are often benthic invertebrates (e.g., snails) that move slowly
across the substrate, which facilitates their field manipulation.
Therefore, in recent years, studies have used these organisms
to enrich our knowledge on how predator NCEs on prey
demography can take place. This mini review summarises the
main findings of such studies.

MODEL SPECIES AND RELEVANT
LIFE-HISTORY TRAITS

A convenient model prey species is the barnacle Semibalanus
balanoides (Figure 1), which is often abundant in North Atlantic
rocky intertidal communities (Jenkins et al., 2000; Scrosati and
Heaven, 2007). Adults are benthic and live permanently attached
to the rocky substrate. They reproduce through pelagic larvae
that undergo various nauplius stages for 5–6 weeks in coastal
waters (Bousfield, 1954) until reaching the final stage (cyprid),
which lives on its own reserves without feeding and seeks
benthic settlement (Minchinton and Scheibling, 1991). Soon
after a cyprid settles on a substrate, it metamorphoses into a
recruit, which looks as a typical barnacle but is small (Figure 1).
For barnacles, then, settlement refers to the permanent contact

that pelagic cyprid larvae establish with the substrate, while
recruitment is the appearance of new benthic organisms on the
substrate as a result of the metamorphosis of settled cyprid larvae.

Recruitment is a key demographic step for barnacles because it
is the only source of population replenishment, as adult migration
is impossible because of their sessile nature. To find suitable
substrate for settlement, cyprids of S. balanoides follow chemical
cues produced by benthic conspecifics (Gabbott and Larman,
1987; Crisp, 1990; Hills and Thomason, 1998). In contrast,
cyprids of this barnacle species are repelled by chemical cues
from its main benthic predator, the dogwhelk Nucella lapillus
(Figure 1; Ellrich et al., 2015a). Thus, the field manipulation of
dogwhelk density has been useful to understand dogwhelk NCEs
on barnacle recruitment. NCE intensity is in turn modulated
by biotic and abiotic factors. Ultimately, by inhibiting barnacle
feeding, dogwhelk cues affect barnacle reproduction, another key
demographic rate. These findings are discussed below.

Blue mussels (Mytilus spp.; Figure 1) are also convenient
model prey species for NCE research, as they are also sessile
organisms with pelagic larvae and also frequently occur on North
Atlantic rocky intertidal communities (Hunt and Scheibling,
2002; Tam and Scrosati, 2011; Scrosati and Ellrich, 2018).
Intertidal blue mussels are also commonly preyed upon by
N. lapillus (Crothers, 1985; Sherker et al., 2017). Thus, dogwhelk
NCEs on mussel recruitment have also been investigated, which
is also discussed below.

DOGWHELK NCEs ON BARNACLE
SETTLEMENT AND RECRUITMENT

Predator NCEs on barnacle settlement and recruitment were
studied by manipulating dogwhelk density in rocky intertidal
habitats in Nova Scotia, Canada, that experience a moderate
degree of wave exposure. An experimental unit was a cage
divided with mesh in a central compartment and a peripheral
compartment (see photos in Ellrich et al., 2015a). The central
compartment hosted a plate covered by a tape with a sandpaper
texture (Permastik anti-skid safety tread, RCR International,
Boucherville, QC, Canada) that provided a settlement substrate
for cyprids similar to the natural rocky substrate (Ellrich et al.,
2016b). Cyprids were free to access the central compartment
during high tides through the cage’s mesh. The used mesh type
was found not to alter water flow in caging experiments done
in intertidal habitats (Beermann et al., 2013). The peripheral
compartment surrounded the central compartment and had
either no dogwhelks or dogwhelks at natural densities. The caged
dogwhelks were unable to access the central compartment, but
their waterborne chemical cues could reach it during high tides.

In Atlantic Canada, cyprids of S. balanoides settle on intertidal
substrates in May and June, which is thus the recruitment
season for this species (Scrosati, 2020). Thus, to investigate
dogwhelk NCEs, cages of both treatments were installed at
the intertidal zone in late April. Barnacle settlement (density
of settled cyprids) was measured in mid-May, while barnacle
recruitment (recruit density) was measured in late June, once new
recruits no longer appeared on the substrate. All macroalgae and
sessile invertebrates were previously removed from the vicinity
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FIGURE 1 | (A) Barnacles (Semibalanus balanoides), including (a) adults and (r) recruits (recruits being 1–2 mm in shell diameter), (B) blue mussels (Mytilus spp.;
shell length of up to a few cm), and (C) dogwhelk (Nucella lapillus; shell length typically of up to a few cm) from rocky intertidal habitats on the Nova Scotia coast, in
Atlantic Canada. Photographs taken at low tide by the author.

of the cages to eliminate their possible influences on barnacle
recruitment (Jenkins et al., 1999; Beermann et al., 2013). The
caged dogwhelks were not fed during the experiments but, to
prevent starvation, they were replaced every 2 weeks with new
dogwhelks. More details on methods are provided in Ellrich et al.
(2015a, 2016a).

Dogwhelk presence decreased barnacle larval settlement by an
average of 69% (Ellrich et al., 2016a) and barnacle recruitment by
experimentwise averages of 51–83% (Ellrich et al., 2015a). These
results suggest that cyprids exhibited an avoidance behaviour in
the presence of waterborne dogwhelk cues, ultimately decreasing
benthic recruitment. Such a decrease should be demographically
relevant because recruits are the only source of barnacle
population replenishment, as these are sessile organisms. A lower
recruitment might also limit reproduction because, barnacles
being internal cross-fertilisers, reproductive success depends on
the proximity to neighbours (Anderson, 1993). On the Japanese
Pacific coast, dogwhelks (Nucella lima) were also found to exert
negative NCEs on barnacle (Balanus glandula and Chthamalus
dalli) recruitment (Yorisue et al., 2019).

BIOTIC DRIVERS OF NCE INTENSITY:
DOGWHELK DENSITY

The value of dogwhelk density used in the cages referred to above
(3 dogwhelks dm−2) was common on the shore. A separate field
experiment showed that lower densities cause either a weaker
limitation of barnacle recruitment or, if too low, no limitation at
all (Ellrich et al., 2015b). This finding is consistent with increases
in predator density increasing levels of waterborne predator
cues (Loose and Dawidowicz, 1994; von Elert and Ponert, 2000;
Kesavaraju et al., 2007; Ferland-Raymond et al., 2010).

BIOTIC DRIVERS OF NCE INTENSITY:
BARNACLE DENSITY AND FOOD
SUPPLY

Chemical cues from adult barnacles attract conspecific cyprids
that are seeking settlement (Gabbott and Larman, 1987;

Prendergast et al., 2008). This is thought to allow cyprids to find
suitable habitat for benthic development (Clare, 2011), a critical
choice because recruits cannot move away after metamorphosis
from a settled cyprid. Therefore, a field experiment found that
the presence of adult barnacles can prevent the occurrence
of dogwhelk NCEs on barnacle recruitment (Ellrich et al.,
2016b). Barnacle recruit density has similar effects. Under recruit
densities of up to experimentwise averages of 200 recruits
dm−2, dogwhelk cues (from 3 dogwhelks dm−2) limited barnacle
recruitment by 51–83% (Ellrich et al., 2015a), but no NCEs
occurred under recruit densities averaging 300 recruits dm−2

(Ellrich et al., 2015a). The absence of NCEs at high recruit
densities may have resulted from an abundance of cyprid
settlement cues produced by the quickly accumulating recruits
(Shanks, 2009) and by more abundant chemical footprints
left by cyprids exploring the substrate for settlement, which
also attract conspecific cyprids (Yule and Walker, 1985; Phang
et al., 2008). Settling cyprids might also become less selective
themselves under high densities. Ultimately, food supply may
have been critical for the occurrence of the high recruit densities
that prevented dogwhelk NCEs from happening. In barnacles,
the pre-cyprid larval stages (nauplii) and the recruits feed on
phytoplankton (Anderson, 1993). The high recruit densities
noted above occurred under a high coastal phytoplankton
abundance (Ellrich et al., 2015a), which may have enhanced the
survival of larvae and recruits (Scrosati and Ellrich, 2016, 2018),
thus increasing their density.

DOGWHELK NCEs ON BARNACLE
GROWTH AND REPRODUCTIVE
OUTPUT

A laboratory experiment showed that waterborne cues from
N. lapillus limit feeding activity in adult S. balanoides (Johnston
et al., 2012), presumably because the cirral swipes that barnacles
make to harvest plankton can also disperse metabolites that
attract dogwhelks (Barnes, 1999). Correspondingly, a field
experiment showed that dogwhelks have negative NCEs on
barnacle growth from spring to fall. As body size is related
to reproductive output in barnacles (Wethey, 1984), dogwhelk
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cues also limited egg production per barnacle in the fall
(Ellrich et al., 2016a). Although not measured, such NCEs may
have resulted in a lower larval production in the following spring.

ABIOTIC DRIVERS OF NCE INTENSITY:
WAVE EXPOSURE

The experiments discussed above were done in habitats subjected
to a moderate wave action. A field experiment using the same
cage design found that a higher degree of wave exposure (in
habitats where dogwhelks also occur) prevented the occurrence
of dogwhelk NCEs on barnacle recruitment (Ellrich and
Scrosati, 2016). This result is consistent with a pattern of
predator cue dilution under increased water velocities and
with the notion that turbulent conditions decrease the ability
of mobile organisms (such as cyprids) to locate cue sources
(Finelli et al., 2000; Large et al., 2011; Robinson et al., 2011;
Pruett and Weissburg, 2019, 2021).

DOGWHELK NCEs ON MUSSEL
RECRUITMENT

Through an experiment done in the same sheltered habitats
where dogwhelk NCEs on barnacle recruitment were revealed
(Ellrich et al., 2015b, 2016b; Ellrich and Scrosati, 2016), dogwhelk
NCEs on mussel recruitment were also evaluated (Ehlers et al.,
2018). Two intertidal mussel species (Mytilus edulis and Mytilus
trossulus) occur on the studied rocky shores (Tam and Scrosati,
2011, 2014), both of which are preyed upon byN. lapillus (Sherker
et al., 2017). Because of morphological similarities (Innes and
Bates, 1999) and hybridisation (Riginos and Cunningham, 2005),
their visual identification is difficult, so mussel recruits were
counted as Mytilus spp., as commonly done in field studies
with these species (Cusson and Bourget, 2005; Le Corre et al.,
2013). The same cage design was used to manipulate dogwhelk
density but, instead of a plate, the central compartment of
the cages hosted a plastic mesh scourer (Our Compliments
Pot Scrubber, Mississauga, ON, Canada; see a picture in
Ehlers et al., 2018). Mesh scourers are often used to quantify
intertidal mussel recruitment because they resemble preferential
habitat (filamentous algae or byssal mussel threads) for mussel
larval settlement (Menge and Menge, 2013; South, 2016). This
experiment ran between late May and late July and found that
dogwhelk cues limited mussel recruitment, but only by 13% on
average (Ehlers et al., 2018).

The weaker dogwhelk NCEs on mussel recruitment than on
barnacle recruitment suggest that prey life history traits may help
to predict NCE intensity. While barnacles cannot move away
after recruitment, mussels can relocate, albeit limitedly, across the
substrate after recruitment (Bayne, 1964; Hunt and Scheibling,
2002). Mussel adults can also immobilise dogwhelks with byssus
(Farrell and Crowe, 2007). Overall, these abilities allow mussels
to avoid predation through mechanisms that barnacles lack.
Such differences might explain why mussel recruitment was
less responsive to dogwhelk cues than barnacle recruitment.

It will be interesting to evaluate if actively mobile benthic
prey (e.g., herbivore snails) have even weaker responses to
dogwhelk presence.

CONCLUDING REMARKS

Overall, this mini review summarises recent studies with
intertidal invertebrates that have revealed predator NCEs on prey
demographic traits and external factors modulating such effects
(Figure 2). Barnacles and mussels have demonstrated to be good
model species to monitor demographic responses in prey, as
counts can be accurately done because they are sessile organisms.
The acquired body of knowledge is valuable because it resulted
from field experiments, done under complex natural conditions
that laboratory experiments cannot fully reproduce, as noted by
other researchers (Weissburg et al., 2014; Babarro et al., 2016;
Wiggins et al., 2018).

The predator avoidance behaviour shown by barnacle and
mussel larvae when seeking settlement may have evolved to limit
predation risk for the subsequent benthic stages. This could be
so because adult movements across the substrate are impossible
for barnacles and limited for mussels. Although predators could
eventually reach an area where they were absent at the time
of prey settlement, the avoidance of predators by settling prey
larvae does reduce future predation risk to an extent. Ultimately,
the occurrence of negative predator NCEs on the recruitment of
barnacles and mussels should locally limit population density for
these organisms because of their sessile nature. For barnacles, this
could be detrimental for reproduction because they need nearby
neighbours to cross-fertilise.

The presence of barnacle adults and high recruit densities
prevented the occurrence of dogwhelk NCEs on barnacle
recruitment. Benthic barnacles attract conspecific cyprids
through chemical cues, which is thought to aid cyprids find
favourable habitats to settle. It appears that an abundance of
conspecific settlement-inducing cues would thus neutralise the
effects that dogwhelk cues would otherwise exert on cyprids
seeking settlement. However, the occurrence of too many adult
barnacles on the substrate might limit conspecific recruitment,
as high adult densities may indicate cyprids the potential for
strong intraspecific competition after recruitment (Scrosati and
Ellrich, 2017). Therefore, for a given dogwhelk density, NCE
intensity may have a non-linear dependence on adult barnacle
density. On the other hand, a very high supply of cyprids from
the water column (favoured by a high phytoplanktonic food
supply) could swamp the shore with settlers, making benthic
recruitment less responsive to dogwhelk cues. Factorial field
experiments manipulating these variables could clarify these
possible interactions. It could also be of interest to obtain more
realistic estimates of NCE intensity given that dogwhelks move
across the substrate (which cages do not allow to happen). The
main goal of the field experiments hereby described was to
demonstrate that NCEs on prey demographic traits can occur.
Measures of NCEs on demography could thus be refined by
manipulating dogwhelk density over time to mimic natural
dogwhelk movements across the substrate.
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FIGURE 2 | Diagram summarising the current evidence on dogwhelk NCEs on barnacle and mussel demography supported by field experiments (solid black lines).
The factors listed on the left have experimentally been shown to prevent the occurrence of such NCEs (solid grey lines). The three items depicted at the bottom
represent possible additional outcomes (dotted black lines).

The chemical nature of the dogwhelk cues that trigger
the observed NCEs on barnacle and mussel demography is
not known with certainty. Based on studies for other aquatic
predator–prey systems (Poulin et al., 2018; Puglisi et al., 2019),
such cues could be constitutive and/or related to the dogwhelks’
diet. Identifying their chemical nature should thus help to
understand the physiological constraints affecting dogwhelks that
can ultimately influence their remote detection by prey.

It is worth noting that predation risk can trigger
morphological and physiological responses in prey besides
behavioural responses (Hawlena and Schmitz, 2010). For
brevity and consistency, this mini review has focussed on
behavioural responses influencing prey demography. Through
a field experiment, dogwhelk cues were also found to trigger
shell thickening in mussels, which was experimentally shown
to increase handling times of mussels by dogwhelks during
attacks (Sherker et al., 2017). Whether that outcome decreases
mortality rates in populations remains untested, but it is possible
because longer handling times may limit predation success.
Thus, investigating demographic influences of prey responses to
predation risk other than behavioural might also be interesting
using intertidal invertebrates.

It also worth emphasising that this mini review was aimed
at summarising the current evidence of predator NCEs on
prey demography using intertidal invertebrates. Its goals did
not include aspects of NCE research that are more common
in the literature, such as comparisons of consumptive versus
nonconsumptive effects of predators (Peckarsky et al., 2008;
Weissburg et al., 2014; Peacor et al., 2020). Such studies
could be done using intertidal invertebrates by, for example,
manipulating the ability of dogwhelks to consume barnacle and

mussel recruits in addition to manipulating dogwhelk presence
to evaluate their NCEs.

Finally, as for all interspecific interactions (Menge and
Sutherland, 1987; Kondoh, 2001; Silliman and He, 2018), the
intensity of predator NCEs on prey demography likely depends
greatly on the abiotic context and food supply (Kimbro et al.,
2020; Wirsing et al., 2021). In fact, as noted above, the intensity
of dogwhelk NCEs on barnacle recruitment was found to depend
on wave exposure and prey food supply. These factors, in turn,
depend on coastal oceanography and climate (Ardhuin et al.,
2019; Menge and Menge, 2019; Shanks and Morgan, 2019). Thus,
for predator–prey systems in general, future research could aim
to understand environmental influences on predator NCEs on
prey demography.
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