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Abstract
The massive amount of data produced during simulation on high-performance computers has
grown exponentially over the past decade, exacerbating the need for streaming compression and
decompression methods for efficient storage and transfer of this data—key to realizing the full
potential of large-scale computational science.

Lossy compression approaches such as JPEG when applied to scientific simulation data realized
as a stream of images can achieve good compression rates but at the cost of introducing
compression artifacts and loss of information. This paper develops a unified framework for in situ
compression artifact removal in which the fully convolutional neural network architectures are
combined with scalable training, transfer learning, and experience replay to achieve superior
accuracy and efficiency while significantly decreasing the storage footprint as compared with the
traditional optimization-based approaches.

We demonstrate the proposed approach and compare it with compressed sensing
postprocessing and other baseline deep learning models using climate simulations and nuclear
reactor simulations, both of which are driven by hyperbolic partial differential equations. Our
approach when applied to remove the compression artifacts on the JPEG-compressed nuclear
reactor simulation data (using a transfer-trained model that was pretrained on the climate
simulation data and updated incrementally as the nuclear reactor simulation progressed), achieved
a significant improvement—mean peak signal-to-noise ratio of 42.438 as compared with 27.725
obtained with the compressed sensing approach.

1. Introduction

Digital image acquisition and processing have a rich history with active and robust research that has
accelerated up to the present day [1]. A major challenge for digital imaging has been compression, a
necessary tool for image analysis that has direct impact on the cost of data storage and movement.
Traditionally, compression algorithms have been developed to perform optimally for consumer imaging and
video needs. A related problem has arisen in the high-performance computing (HPC) science community,
where the growth of computational power has enabled an explosion of data from increased spatial and
temporal resolution of scientific simulations that has outstripped the ability to store the valuable information
produced [2], creating a strong need for compression in this field [3].

The field of study for compression algorithms has a long history and is currently very active [4]. In this
work, we consider the scientific data reduction obtained through the application of image compression
methods to a stream of images being produced by high-performance simulations. At the rates of
compression necessary for large data streams, lossy compression algorithms that maximize compression rates
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are preferred, but it comes with the cost of introducing compression artifacts and loss of information. The
lossy compression algorithms used for scientific data are either prediction-based or transform-based [5].
While ZFP is the current state of the art in transform-based compression for integer and floating-point
scientific data, we adopted JPEG (discrete cosine transform-based) [6] in this work because it is arguably the
most popular, and commonly used form of lossy compression [1, 7]. Moreover, since we seek to develop in
situmachine learning-based approaches to improve the accuracy of lossy compressed data streams,
considering a JPEG that is well studied in machine learning literature gives good baselines to build upon. The
ability to accurately and efficiently restore large quantities of the lossy-compressed image data generated
while storing and transferring scientific simulation data holds the key to realizing the full potential of
large-scale computational science [8].

Image compression artifact removal (CAR) (is a example of image restoration which also includes
denoising and super-resolution) on single images has also been studied in great detail, with early approaches
using handcrafted filters [9], iterative optimization approaches [10], sparse dictionary learning [11]. Among
the traditional optimization-based approaches, compressed sensing has shown great potential for image
reconstruction and denoising [12–15], regularization, and uncertainty quantification in scientific simulation
[16–20]. Compressed sensing algorithmically exploits the sparsity patterns in the data through regularization
and thus finds a compressed representation. Several deep learning (DL) approaches that pose this as a
supervised learning problem in which a functional mapping is learned between corrupted and restored
images by using several training examples have also been proposed [21, 22] and showed notable
improvements over the traditional approaches. AR-CNN is one of the early approaches that used a shallow
neural network architecture for JPEG artifact removal. Models with deeper architectures [23] and those
based on residual networks [24] have also been adopted. Other approaches such as image priors [25] and
generative adversarial networks [26] have also been explored in the context of CAR. A different stream of
work has addressed the artifact removal in sequential data (e.g. videos), where a temporal correlation exists
between frames. A simple assumption made by several works is to ignore the correlation and use the
single-image CAR approaches [27]. Other works that exploit the temporal correlation are either seeking to
explicitly estimate the motion between the frames [28] or use nonlocal operators and recurrent architectures
without motion estimation [29, 30].

In this paper, we focus specifically on artifact removal for JPEG-compressed images from large-scale
scientific simulations corresponding to two different domains—climate simulations and nuclear reactor
simulation. In contrast to the previous works in CAR, we are interested in the in situ training of the CAR
model as the simulation progresses, as well as in transfer learning across domains. The goal of the in situ
training is to mitigate the model training time as well as the need to store full data on disk by storing
compressed data and a trained CAR model instead. The transfer learning across domains is motivated by the
fact that both the domains are governed by hyperbolic partial differential equations (PDEs), which include a
significant fraction of the simulations performed on HPC systems [2]).

To achieve this goal, we propose an incremental transfer learning (based on discrepancy-based deep
domain adaptation (DA) [31] along with an experience replay mechanism [32–35]) that efficiently updates
the model by using knowledge from previous checkpoints as well as pretrained models from other domains.
In this framework, we adopt artifact removal approaches based on DL that employ fully convolutional neural
networks (CNNs) to learn the mapping between the images with JPEG compression artifacts and their
corresponding uncompressed images. We compare our approach with compressed sensing and other offline
DL-based CAR approaches, which are used as baselines. In addition, we compare our approach with
DL-based approaches that take into account the full spatiotemporal correlation of the image sequence in a
simulation while removing artifacts, which is the best-case scenario in the offline setting.

Although DL-based CAR has been extensively studied in the literature, its application to scientific
simulation data is very limited, let alone to transfer learning across scientific domains or in situ training.
With this work we fill these gaps by making the following contributions:

• We adopt a DL-based CAR approach for scientific simulation data and show that it is an accurate and
efficient alternative to traditional optimization-based compressed sensing approaches.

• We propose an incremental batch transfer learning approach that updates the DL-based CARmodel in situ,
simultaneously as the simulation is run, and does so efficiently by transferring knowledge from previously
trained models (using data from within and across domains) as well as employing data-parallel training
strategies.
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2. Data—scientific simulations

The scientific simulation community has many reduced models that represent simplified versions of more
complicated systems. These models are well studied and form a basis of understanding for application
scientists analyzing simulations. In this section, we introduce reduced models for climate and nuclear reactor
simulations, two different applications that are actively studied within the scientific computing community.

2.1. Climate
The shallow water equations on the sphere are a reduced-order model used to simulate basic dynamics of the
Earth’s atmosphere. The climate community has developed various test case scenarios to understand the
numerical properties of discrete methods for the shallow water equations. Most notable are the original test
cases proposed in [36], the moving and stationary vortices on the sphere test [37], the cross-polar flow test
[38], and the barotropic instability test [39]. In this paper we consider the barotropic instability test case that
is simulated by using a fourth-order Runge–Kutta method [40] for time-stepping and a discontinuous
Galerkin (DG) spatial discretization with a Legendre basis on a cubed-sphere mesh [41] for the spatial
discretization.

The cubed sphere, first developed in [42], has proven to be a particularly useful gridding technique for
solving PDEs on the sphere. In this study we use the shallow water equations on the rotating sphere in flux
form, given in [41], on the barotropic instability test defined in [39]. This is a standard test for assessing the
quality of atmospheric numerical methods and involves perturbing the atmospheric flow by a localized
bump to the balanced height field. In this paper we use three variants of the barotropic instability test, by
setting the localized bump to the balanced height field as ĥ= 120 m, 180 m, and 240 m.

2.2. Nuclear reactor simulation
Kinetic transport equations are used to simulate the movement of particles, such as neutrons in a reactor,
that interact with a background material medium. In a three-dimensional geometry, these equations describe
the evolution of a distribution function that is defined over a six-dimensional phase space. However, under
the assumption that there is zero variation in the vertical direction and the particles have unit speed, the
phase space can be reduced to four dimensions. Moreover, if the particles scatter isotropically, then a kinetic
transport equation reduces to the form given in [43] that has structural similarities with the shallow water
equations. Indeed both are hyperbolic balance laws, in other words, hyperbolic conservation laws with
additional source terms. However, substantial differences exist. First, the kinetic equation typically requires
more unknowns for accurate simulations than do the shallow water equations. Second, whereas the kinetic
transport equation is linear, the shallow water equations are non-linear and thus exhibit a richer
evolutionary structure that includes shock waves and rarefactions.

2.2.1. Numerics.
In this paper, we use simulation results based on a spherical harmonic approximation, referred to as the
filtered spherical harmonic equations. For more details, see [44, 45]. Once derived, it is discretized by using the
kinetic scheme from [46, 47]. This is a second-order finite volume method that uses upwind fluxes at the
kinetic level but no limiters on the slope reconstructions. The evaluation of the fluxes requires integration,
which is performed with a standard tensor product quadrature; see, for example, [48, 49]. The time
integrator is an SSP-RK2 method (also known as Heun’s method). See [47] for details.

2.2.2. Lattice problem.
The lattice problem, proposed in [50], is based loosely on the geometry of an assembly in a nuclear reactor
core. The problem is specified on a two-dimensional spatial domain [−3.5, 3.5]×[−3.5, 3.5] that consists of
a purely scattering medium with strongly absorbing regions embedded as a checkerboard and an isotropic
source at the center, as shown in figure 1(a). In this figure, the absorption regions are colored in white with
σt = σa = 10; the purely scattering regions are colored in black and red with σt = σs = 1; and the red region
has an external isotropic source S= 1. The initial condition for this problem is fin(x,y,Ω) = 0, and the value
at the boundary is set to zero.

Figure 1(b) shows a heat map of the particle concentration ⟨f⟩ (in log10 scale, with nonpositive values
marked in white) at time t= 2.5. To generate these results, we use a degree N = 19 spherical harmonics
approximation, a quadrature rule for flux evaluations with precision 2N + 1 (that is, it can integrate
polynomials on the sphere up to degree 2N + 1, but there is a polynomial of degree 2N + 2 that is not
integrated precisely), and a filtering parameter σf = 50. In space we use a 256× 256 uniform square mesh,
and in time we use a step size of∆t= 0.0025.
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Figure 1. Lattice problem. (a) Layout, (b) solution.

3. Methodology: incremental batch transfer learning

Most machine learning approaches assume that the training and test data belong to the same feature space
and have the same distribution. However, when the feature space or distribution changes (for example, with
data from different domains), the models need to be retrained from scratch by using the new training data.
For the scientific simulation data studied in this work, the feature space and the data distribution are
expected to change, for example, between the climate and nuclear reactor simulation data. Also, since we
employ DL models that have millions of tunable parameters, they require large amounts of data in order to
build accurate models. We intuitively know that although CAR is performed on data from two different
scientific domains, it shares the common task of removing compression artifacts produced by JPEG
compression. Moreover, we know that both simulations are hyperbolic PDE-driven. Hence, the learning
process would be more efficient and potentially lead to more accurate models if we are able to transfer
knowledge between the datasets. Several approaches that facilitate this knowledge transfer are studied under
the umbrella of transfer learning [51].

Formally, let a domain be defined asD = {X ,P(X)}, where X is the feature space, X is the random
variable representing the inputs such that X= {x1,x2, ...,xn} ∈ X , and P(X) is the marginal probability
distribution. A task is defined as T = {Y,P(Y|X)}, where Y is the output feature space and P(Y|X) is the
conditional distribution of Y given X that defines the mapping between the inputs and outputs learned from
the labeled data {xi,yi}, where xi ∈ X and yi ∈ Y . In traditional machine learning, one assumes thatDs =Dt

and T s = T t, where the superscript s represents the source and t the target. For CAR in this work, we assume
that the tasks remain the same (T s = T t) and the difference between datasets is caused only by domain
divergence (Ds ̸=Dt). This class of problems is studied under a subcategory of transfer learning called
DA [52]. The domain divergence between the datasets could be due to feature spaces being different
(X s ̸= X t), data distributions being different (P(X)s ̸= P(X)t), or both. Transfer learning between two
scientific domains might have to account for change in both feature space and data distribution, while
transfer learning in the same scientific domain might need to account only for the change in data
distribution.

We adopt the discrepancy-based deep DA approach [31] for transfer learning of CAR within and across
scientific domains. In this approach the base neural network is trained by using the source data, followed by
which the parameters in the first few layers of this network either are frozen or are used as the initial starting
point, while the rest of the layers are initialized randomly and trained by using the target data. The
assumption in this approach is that fine-tuning the deep network model with labeled target data can
diminish the shift between the two domains.

3.1. Incremental batch transfer learning
In this work, we are interested in in situ (as the simulation progresses) training, instead of waiting till the end
to gather all the data and train the model. To accomplish this by batch learning, we incrementally update the
model at every checkpoint. However, we expect to see nonstationarity in the sequence of frames observed as
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the simulation progresses and is observed at progressive checkpoints. For this reason, we propose to adopt
discrepancy-based deep DA along with experience replay buffers [32–35] that stores a random subset of data
collected at each of the previous checkpoints and uses them to augment the training data. Experience replay
is a simple yet effective biologically inspired mechanism that can mitigate catastrophic forgetting; in our case
we seek to maintain the model’s ability to generalize across the progressive checkpoints for the full work. In
addition, we synchronize the training of the CAR model with the simulation so that long periods of time do
not need to be spent in training the new CAR model at the end of a simulation.

We consider two scenarios for incremental batch transfer learning. First is when the training and the
prediction data are generated by using simulations that are from the same scientific domain but differ in a
parameter value used in the simulation that generated it. Figure 3 depicts this scenario in which the model
could start either with a DL-based CAR model pretrained on the simulation data from same scientific
domain (that has been trained with historical data) or with randomly initialized weights. Then, at each
checkpoint, the model is updated by using the proposed incremental batch transfer learning approach. For
this case, the data could be augmented from the historical data or with the data observed at the earlier
checkpoints. In the second scenario, we seek to transfer the knowledge between simulations from different
scientific domains (see figure 5). Here, we use the model pretrained on one scientific domain as a starting
point to do incremental batch transfer learning for a simulation from a different domain. In this case, the
data is augmented only from the previous checkpoints.

In addition to the compressed sensing, we compare the proposed incremental batch transfer learning
approach with an offline transfer learning approach, where the CAR model is trained by using the labeled
data obtained at the end of a simulation from a different scientific domain while ignoring the domain
divergence between the two datasets. We refer to this as offline because the transfer learning is done after the
end of the second simulation when we have access to the full data. The advantage of this approach is that the
model does not need to be retrained every time simulation data from a different domain is obtained.

4. Methodology: compression artifact removal

In this section we first provide details about the compressed sensing approach used as a baseline and then
introduce the DL-based approaches used for image enhancement.

4.1. Compressed sensing
Let f : [0,1]2 → R be a function with discrete cosine transform (DCT),

f̂kx,ky =
N−1∑
i=0

N−1∑
j=0

f(xi,xj)cos
( iπ
N
(kx + 1/2)

)
cos

( jπ
N
(ky + 1/2)

)
, (1)

for xi =
i
N , and i, j,kx,ky = 0, . . . ,N− 1. Suppose we are given a finite set of DCT coefficients,

f̂Ω = {̂fkx,ky : (kx,ky) ∈ Ω},

corresponding to an index set

Ω⊆ [0, . . . ,N− 1]2, |Ω|=m.

The problem of image compression is to reconstruct f given a subset of DCT coefficients, f̂Ω. The
compressed sensing approach is the solution of the optimization problem

min
g

∥Φg∥1 subject to ∥PDg− f̂∥2 ≤ σ. (2)

Here P ∈ Rm×N2
is a row selector matrix consisting of the subset of rows of the identity matrix corresponding

to the index set of the acquired DCT samples Ω,D is the discrete cosine transform, Φ is a discrete sparsifying
operator, and ∥ · ∥1 is the l1-norm. Note that although the inverse problem can be regularized in a number of
different ways, in (2) a l1 term is used to promote the sparsity of f̂Ω in the transform domain corresponding
to Φ. The choice of sparsifying transform Φ depends on the particular application. Typical choices include
total variation (TV), discrete wavelet transforms, or higher-order transforms such as developed in [53, 54].
In our simulated examples, we have found that TV is effective. This corresponds to the transform

Φf=

[
∇xf
∇yf

]
, (3)
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where∇x and∇y are the discrete x and y derivatives, respectively, with periodic boundary conditions.
Various algorithms such as in [55–60] have been developed to efficiently solve (2). In this investigation

we use a split-Bregman technique, as developed in [60] and [57]. In [60] the authors showed that (2) could
be solved by using a Bregman iteration of the sequence of two unconstrained problems of the form

fk+1 = min
f

λ
(
||∇xf||1 + ||∇yf||1

)
+
µ

2
||PDf− f̂

k
||2, (4)

f̂
k+1

= f̂
k
+ f̂− PF fk+1, (5)

where λ,µ > 0 control the fidelity and regularization, respectively. There exists parameter tuning methods
for the split split-Bregman methods, but in general setting 1

λ = µσ2 is a robust choice [61]. Solving (4) is
generally computationally challenging, but for the case where the DCT samples are taken at integer
frequencies, (4) can be solved accurately at the cost of a few DCTs.

4.2. DL-based image enhancement
In this methodology, the image enhancement is posed as a supervised learning problem in which a DL model
is trained to take a corrupted (JPEG compressed image in our case) image as an input and predict the
restored image (i.e. image free of JPEG compression artifacts in our case) as an output. We adopt CNNs that
are a class of deep, feed-forward artificial neural networks commonly applied to analyzing images. CNNs
assume that the underlying images are stationary (i.e. statistics of one part of the image are the same as
other) and that a spatially local correlation exists between the image pixels. This is particularly important for
modeling the artifacts introduced by lossy compression algorithms such as JPEG, whose effect on the
underlying image is not dependent on the spatial location of the underlying image features. The
convolutional layer is the core building block of a CNN and consists of filters whose size defines the extent of
spatial locality assumed; each filter corresponds to a specific feature or pattern in the image. The convolution
operation using these filters in each layer ensures stationarity and thus translational invariance. Several
convolutional layers are stacked in such a way that the complex image features are learned hierarchically by
composing together the features in previous layers. The CNN architectures are ideal for analyzing images, are
more efficient to implement than multilayer perceptron models, and vastly reduce the number of parameters
in the network, thus decreasing the memory requirement and training time.

In this work, we adopt two different CNN architectures: enhanced deep super-resolution network
(EDSR) [21] and residual dense network (RDN) [22], which are based on residual network and dense
networks, respectively. The residual and dense networks are CNN architecture abstractions that differ in how
the convolutional layers in the network are connected; both abstractions have shown state-of-the-art
performance for image data. We also compare our approach with the artifacts reduction convolutional neural
networks (AR-CNN) [62] model that is frequently used as a baseline to compare the JPEG artifact removal
performance in the offline learning setting. In addition, we compare our offline transfer learning with the
progressive fusion video super-resolution network (PFNL) approach [29] that exploits nonlocal spatiotemporal
correlations in the images sequences to enhance the images. We removed the upsampling layer to reflect the
CAR task, and we used all the hyperparameters consistent with the original paper except the learning rate,
which we decreases to 1× 10−4 to mitigate gradient explosion. This approach can be seen as the best-case
scenario for accuracy in the offline learning setting.

4.2.1. Enhanced deep super-resolution network.
EDSR utilizes an architecture that builds on ResNet [63], which incorporates skip connections between
residual blocks in a deep network and has been shown to work well for a variety of tasks [64]. In the original
ResNet architecture, each residual block consists of a series of convolutional and batch normalization layers
followed by a non-linear activation function. EDSR proposes to make this architecture efficient for
image-to-image tasks such as super-resolution by removing the usage of unnecessary layers (batch
normalization layers) to improve the performance of the ResNet model for super-resolution tasks. In this
work, we are interested in CAR where the input and output images have the same resolution, so we removed
the upsampling layer from EDSR architecture. In addition, we note that all the hyperparameters, both
learning parameters and network architecture are kept consistent with the EDSR paper [21] except the total
number of epochs, which are specified in the section 5. Moreover, the loss function (L1 loss) is also kept
consistent and used for model training.

6



Mach. Learn.: Sci. Technol. 2 (2021) 025010 S Madireddy et al

4.2.2. Residual dense network.
The RDN exploits hierarchical features from the low-resolution images (compressed images in our case) as a
way to enhance the images. The RDN approach uses residual dense blocks (RDB), where each block has all
the layers densely connected and fused into a 1× 1 convolutional layer (local feature fusion). In order to
further improve performance, residual learning between RDBs and local residual learning is applied in each
RDN such that all the RDBs and convolution layers are combined through dense feature fusion, consisting of
global feature fusion and global residual learning. In our experiments, we used three RDBs. For this model,
all the hyperparameters except the learning rate, optimizer, and the number of epochs are kept consistent
with the RDN paper [22]. The learning rate was chosen to be 0.0001, the optimizer was chosen to be Adam,
and the number of epochs is same as that used for EDSR experiments. The loss function (L1 loss) is also kept
consistent and used for model training.

5. Results and discussion

5.1. Same domain—climate data
The data used in this experiment is output fields produced from barotropic instability test simulations. The
localized bump to the balanced height field (ĥ) is set to a different value for each simulation and run for a
total of 2000 time steps. Every time step produces a 2D scalar field that is then represented as a 2D image,
thus producing a series of 2000 images for each simulation. The compressed version of each image is
obtained by applying JPEG compression to it at a compression rate of 0.01. Specifically, the value of ĥ is set to
120 m, 180 m, and 240 m in order to generate three different datasets. The value of ĥ= 120 m and 240 m
represents two extremities of ĥ used in the simulations. The goal of this experiment is to use the data from
these extremities to train a DL-based CAR model that can efficiently remove the compression artifacts on
JPEG compressed images for data produced at any intermediate ĥ value between 120 m and 240 m. The
data corresponding to the initial 700 time steps was not affected by the JPEG compression; hence, they were
ignored for all three datasets. The training, testing, and validation splits on the data obtained from
simulations with ĥ= 120 m and 240 m corresponds to 60%, 20%, and 20%, respectively.

In the EDSR-Offline-Random-init training experiment, the EDSR model (with all weights randomly
initialized) is trained by using a total of 1560 image pairs of original and JPEG compressed images on the
data obtained from simulations with ĥ= 120 m and 240 m. It was then utilized to remove the compression
artifacts (prediction) on the 1300 images from simulation data generated with ĥ= 180 m. The AR-CNN was
trained with the same corresponding training and testing data as the RDN-Offline-Random-init model.
The accuracy of this approach was evaluated by comparison with the original uncompressed images. Three
metrics—normalized mean squared error (NMSE), structural similarity (SSIM), and peak signal-to-noise
ratio (PSNR)—were used to evaluate this accuracy. Comparison also made with the original images for the
JPEG compressed images and the images enhanced using Compressed Sensing with 400 iterations. In
addition, we compared with the PFNL approach in this offline learning scenario. Since PFNL uses the data
sequences that are temporally aligned, however, the random data splits mentioned earlier cannot be directly
used. Hence, we use all the 2600 images from simulations with m and 240 m for training but use the same
1300 testing data from the simulation data generated with ĥ= 180 m. The results of these comparisons are
shown in table 1. The EDSR-Offline-Random-init and RDN-Offline-Random-init show significant
accuracy improvement over the AR-CNN, JPEG-Compressed and Compressed Sensing approaches, where
the latter approach in this case leads to worsening of the compression artifacts instead of removing them, as
indicated by its accuracy metrics that are worse than those of the JPEG-Compressed images. In addition, we
observe that their accuracy is on a par with that of PFNL, which indicates that the temporal correlation
consideration might not be significant in this context.

In the EDSR-Online-Pretrained experiment we follow the procedure described in section 3 and
shown in figure 3, where the weights of the model trained by using the 1560 images from the training data
are used as the pretrained model. The weights in the pretrained model corresponding to the first thirteen
residual blocks are frozen, while those in the remaining three blocks are allowed to be updated. At the end of
the first checkpoint from the simulation with ĥ= 180 m (which is treated as a live simulation), the data
generated until this point (325 images) is combined with a random subset of the data corresponding to
ĥ= 120 m and 240 m (650 images from the 1560 training images) that is added to the replay buffer and used
to train the model, that is, to update the trainable weights. This training process is repeated at the end of each
checkpoint, with the training data composed of the 325 images generated since the last checkpoint
augmented with the same 650 images as used previously. At the end of the simulation and after the final
model training, we have a transfer-trained DL model that has the potential to perform a better CAR on the
simulation data with ĥ= 180 m than by just using the pretrained model on simulations with ĥ= 120 m and
240 m. However, the results in table 1 show that there is not a lot of difference between the predictive
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Figure 2. Results of compression artifact removal on a single image (and a magnification of a small region inside it) for climate
data.

accuracies of the EDSR-Offline-Random-init and EDSR-Online-Pretrained models, which indicates
that there is not a lot of difference in the underlying features and the corresponding compression artifacts
between the simulation data corresponding to ĥ= 120 m, 240 m and that with ĥ= 180 m. Results similar to
EDSR are obtained by using corresponding RDN models (RDN-Online-Pretrained,
RDN-offline-Random-init).

Although the compressed sensing approach is unsupervised (i.e. does not require supervised training), its
inference time is significantly higher than that of the DL approach. The compressed sensing approach with
400 iterations takes approximately 5 min per image. On the other hand, EDSR-Offline-Random-init and
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Figure 3. Incremental batch transfer learning for the climate data that represents a scenario in which the neural network model
parameters are initialized with weights from a pretrained model (trained with historical data from same domain) or randomly
initialized. In the pretrained model case, the parameters in the first few layers are frozen, while the remaining are updated at each
checkpoint using the data generated at the checkpoint combined with data from experience replay. In the random initialization
case, all the model parameters are allowed to be updated.

Table 1. Comparison of the mean (standard deviation) predictive accuracy with respect to the original uncompressed data, where the
EDSR and RDN models are trained and tested on the climate data.

Method NMSE SSIM PSNR

JPEG-Compressed 0.038 (0.027) 0.971 (0.025) 37.245 (6.028)
Compressed Sensing 0.045 (0.021) 0.973 (0.019) 34.534 (3.369)

AR-CNN 0.027 (0.018) 0.989 (0.011) 39.769 (5.103)
PFNL 0.022 (0.017) 0.989 (0.010) 42.381 (6.652)

EDSR-Offline-Random-init 0.029 (0.017) 0.989 (0.011) 42.361 (6.990)
EDSR-Online-Pretrained 0.027 (0.017) 0.989 (0.011) 42.262 (6.760)
RDN-offline-Random-init 0.021 (0.015) 0.990 (0.010) 42.300 (5.472)
RDN-online-Pretrained 0.021 (0.014) 0.992 (0.007) 41.854 (5.220)

EDSR-Online-Pretrained are supervised learning approaches and hence take significant time for training
the model (training of EDSR for 1000 epochs took 5.5 h using 1 GPU (Nvidia P100) to get the pretrained
model) but only a few milliseconds for prediction. This training, however, is a one-time effort that could be
done before the target simulation is run and saved; this time could be further reduced by proposed parallel
training approaches. For the incremental batch transfer learning scenario, the training at every checkpoint
could be done simultaneously with the live simulation before the next checkpoint data is observed, thus
mitigating additional time delay.

5.2. Different domain—nuclear reactor simulation
In this experiment we follow the procedure in figure 5. The data corresponds to the 1000 timesteps from the
high-resolution nuclear reactor simulation experiment, as depicted in figure 4. We note that the image
snapshots (e.g. figure 1(b)) have been converted to grayscale before using them to train the compression
artifacts removal model. Three experiments are conducted for this scenario to demonstrate the effectiveness
of the proposed incremental batch transfer learning approach across data from different domains.

In the first experiment (EDSR-Offline-Pretrained), the model trained by using the climate data
corresponding to ĥ= 120 m, 240 m is directly used for CAR prediction on all the images corresponding to
the nuclear reactor transport simulation offline after the end of the simulation. In the second experiment
(EDSR-Online-RandomInit), we start with the EDSR model, where all weights in the model are initialized
randomly. The model is updated incrementally at every checkpoint with the data generated since the last
checkpoint augmented with a memory buffer that consists of a random subset extracted from the data
corresponding to each checkpoint period before the current one. The weights of the updated model are used
as the initialization for the training at the subsequent checkpoint. For example, in order to train the model
after checkpoint 3, the data generated between checkpoints 2 and 3 is augmented with a random subset of
data generated before checkpoint 1 and between checkpoints 1 and 2. The weights of the model trained after
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Figure 4. Results of compression artifact removal on a single image for nuclear reactor simulation data.

checkpoint 2 are used as the initialization for training after checkpoint 3. This process results in a model that
is sequentially updated in situ during the live simulation.

The third experiment (EDSR-Online-Pretrained) is similar to the incremental batch transfer learning
approach described for the climate data, with the difference that the data used to obtain the pretrained model
and the data obtained from the live simulation are from two different domains (climate and nuclear reactor
simulation, respectively). The data used at each checkpoint to update the model is the same as that used in
the second experiment. The weights corresponding to the first thirteen residual blocks are frozen as in the the
previous case, thus updating the weights only in the last three residual blocks.

In the second and third experiments, each checkpoint sees a total of 250 images while 50 images are
augmented from each of the previous checkpoint intervals. The prediction accuracy of the model in each of
these experiments is evaluated on 977 images (between time steps 23 and 1000; the first 22 are not used
because the JPEG compression did not affect them) from the nuclear reactor simulation experiment. Table 2
shows the accuracy metrics for each of the experiments along with a comparison of the original
uncompressed images with JPEG compressed and the images enhanced using compressed sensing with 400
iterations. The accuracy metrics of the images enhanced with EDSR-Offline-Pretrained are worse than
those of the baseline JPEG-Compressed images. The accuracy metrics improve significantly with the
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Figure 5. Incremental batch transfer learning for the nuclear reactor simulation data that represents a scenario in which the neural
network model parameters are initialized with weights from a pretrained model (trained with historical data from a different
domain, climate in our case) or randomly initialized. In the pretrained model case, the parameters in the first few layers are
frozen, while the remaining are updated at each checkpoint using the data generated at the checkpoint combined with data from
experience replay. In the random intialization case, all the model parameters are allowed to be updated.

Table 2. Comparison of the mean (standard deviation) predictive accuracy with respect to the original uncompressed data, where the
EDSR and RDN models are improved by using incremental batch transfer learning with the nuclear reactor simulation data.

Method NMSE SSIM PSNR

JPEG Compressed 0.154 (0.036) 0.903 (0.053) 26.748 (7.734)
Compressed Sensing 0.156 (0.081) 0.911 (0.069) 27.725 (9.466)

EDSR-Offline-Pretrained 0.175 (0.026) 0.873 (0.040) 24.752 (1.884)
EDSR-Online-Random-init 0.046 (0.029) 0.982 (0.011) 37.022 (2.859)
EDSR-Online-Pretrained 0.026 (0.008) 0.988 (0.009) 41.638 (4.868)
RDN-Offline-Pretrained 0.201 (0.019) 0.803 (0.055) 23.575 (1.654)
RDN-Online-Random-init 0.031 (0.008) 0.986 (0.011) 40.207 (3.732)
RDN-Online-Pretrained 0.024 (0.008) 0.993 (0.005) 42.438 (3.505)

EDSR-Online-Random-init approach where the transfer learning is limited to that across checkpoints
from the images corresponding to the same domain of nuclear reactor simulation. We also show that the
accuracy metrics are further improved significantly by transfer learning information from the climate data to
the nuclear reactor simulation using the EDSR-Online-Pretrained approach. Again, we find that the
RDN-based models have behavior similar to those of the corresponding EDSR-based models.

5.3. Data-parallel training
Model updating at every checkpoint can also take a long time to complete, hence, we adopt a data parallel
training approach to mitigate this problem, and help to synchronize the training of the CAR model with the
simulation. Specifically, we adopted a data parallelization approach that exploits the fast convergence rate of
synchronous SGD and focuses on addressing the expensive interprocess communication cost by adjusting
the mini-batch size and learning rates based on the linear scaling rule. To prevent the convergence rate of
SGD from dropping too low, we avoided using a mini-batch size greater than 10% of the training samples;
therefore, we set the mini-batch size to the largest power of 2 smaller than 10% of the training samples. In
addition, we adjusted the learning rate based on the linear scaling rule proposed in [65] to ensure a good
convergence rate while performing the large batch size training. When the mini-batch size increased from B
to B ′, we multiplied the learning rate by B ′

B .
We evaluated the performance of our data-parallel training on Summit, the leadership-class

supercomputer at Oak Ridge National Laboratory [66]. Summit consists of 4608 compute nodes, and each
compute node contains two sockets of IBM POWER9 CPUs and six NVIDIA Volta V100s GPUs. Our
implementation is developed by using TensorFlow [67] (v1.3), which supports GPU acceleration based on
CUDA and Horovod [68] (v0.16.0) that provides the parallel training framework.

Figure 6 shows the execution time for training a single mini-batch (left) and the strong-scaling speedups
(right) when the mini-batch size B is 16. We observe a speedup of 3.57 on 16 GPUs, and the speedup curve
shows a saturation starting from eight GPUs. This indicates the time when the internode communication
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Figure 6. Execution time for processing a single mini-batch (left) and speedups (right) of EDSR training. The batch size is 16.

Figure 7. Execution time for processing a single mini-batch (left) and speedups (right) of EDSR training. The batch size is 128.

cost starts to overwhelm the computation cost. Note that the maximum degree of parallelism (the maximum
number of workers) is 16, because the batch size is 16. In terms of timing for running 1000 epochs, the
training time was reduced from 5.21 h on one GPU to 1.61 h on 16 GPUs.

To allow a higher degree of parallelism, we increased the batch size to 128 (the largest power of 2 smaller
than 10% of the training samples). We proportionally increased the learning rate to minimize the impact that
using a large batch size has on the convergence rate. Figure 7 presents the execution time (left) and the
strong-scaling speedups (right) for the large-batch training. We observe a speedup of 14.77 on 128 GPUs,
and the speedup curve starts to saturate from 32 GPUs. By increasing the batch size and adjusting the
learning rate, we reduced the training time from 2.11 h on one GPU to 0.14 h on 128 GPUs. Note that we
achieve a regression accuracy almost the same as that of the small-batch training, even when the mini-batch
size is increased (lower than 1% of convergence PSNR difference).

6. Conclusion

We developed an in situ CAR approach that utilizes CNN-based architectures for feature extraction,
discrepancy-based deep DA for transfer learning, and experience replay buffers to mitigate catastrophic
forgetting in a unified framework. In this framework, the artifact removal model is updated in situ
simultaneously as the simulation is run, and it does so efficiently by transferring knowledge from previously
trained models using data from within and across domains.

We demonstrate superior recovery of compressed information as compared with standard image
compression and traditional optimization-based compressed sensing approaches using lossy
JPEG-compressed scientific simulation data from two diverse scientific domains with similar underlying
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physics that are driven by hyperbolic PDEs. We demonstrate that online training boosts the accuracy by
taking advantage of learning the restricted dynamics that are intrinsic to solutions of hyperbolic PDEs.

The proposed in situ approach synchronizes the training of the artifact removal model with the scientific
simulation run, in addition to obtaining improved accuracy. This approach saves significant time (as
compared with offline model training) and reduces the amount of data that needs to be stored. We further
improve the training efficiency using data-parallel training strategies to adjust the mini-batch size and
learning rates based on a linear scaling rule.

Identifying similarities between ML methods and PDEs [69], as well as incorporating ML into PDE
solvers is an active area of research [70, 71]. A new area of research that could benefit from the frameworks
developed in previous research is the adaptation of these methods to enhance online training of streaming
data from PDE simulations.
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