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Abstract
In this paper, we construct codes over rings which have a Euclidean division, in the commutative
and non commutative cases. Such construction generalizes Reed-Solomon codes. We exemplify
the construction for Gaussian integers and Lipschitz quaternions.
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1 Introduction
In this paper, we construct error-correcting codes over rings equipped with a Euclidean division
algorithm. The method of encoding a message is similar to techniques introduced in [1] and [2],
or by using the Chinese remainder theorem (see [3]). As an important example, consider the Reed-
Solomon codes viewed as a Euclidean code following [3]. Let k be a fixed nonnegative integer, and
the ring A = Fq[X] of polynomials with indeterminate X over the Galois field Fq. The set of messages
is Ak = {f ∈ Fq[X] : deg(f) < k}. Let x1, ..., xn be distinct elements of Fq. Then the encoding is
given by the evaluation

ev : Ak −→ Πn
i=1A/〈X − xi〉

f 7−→ (f mod 〈X − x1〉, ..., f mod 〈X − xn〉)
(1.1)

In Section 2, we present a construction based on Euclidean commutative rings and estimate its
Hamming distance, after giving many properties of Euclidean rings. This is a kind of generalization of
the Reed-Solomon code (1.1). We illustrate the construction by the Gaussian integers. The resulting
codes are necessarily non linear and heterogeneous. Section 3 presents the analogue construction
for Lipschitz quaternions, a typical case of non commutative rings. Section 4 concludes with research
perspectives.

For basics on coding theory, refer to [4], and background on algebraic number theory consult
[5, 6].
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2 Codes over Euclidean Commutative Rings
Definition 2.1. A commutative domainA is said Euclidean if there exists a mapping ϕ : A \ {0} −→ N
called a Euclidean algorithm such that

(i) For all a and b in A \ {0}, ϕ(a) ≤ ϕ(ab);

(ii) For all a, b in A \ {0}, there exist q and r in A such that a = bq + r with r = 0 or ϕ(r) < ϕ(b),
(Euclidean division).

Note that if a and b are associate in the Euclidean ring A, i.e., there exits a unit u ∈ A such that
a = ub, with Euclidean algorithm ϕ, then ϕ(a) = ϕ(b). Note also that the condition (i) of the definition
may be removed by a result of Motzkin (see [7, 8] for more details).

Example 2.1. 1. The ring Z of integers is Euclidean. Indeed, ϕ(z) = |z| is a Euclidean algorithm
over Z.

2. Let K be commutative ring, then the polynomial ring K[X] is Euclidean with the Euclidean
algorithm defined by ϕ(P (X)) := deg(P (X)) if P (X) is nonzero, and deg(P (X)) = −∞ else.

3. The Gaussian ring Z[i] = {a+ ib : (a, b) ∈ Z
2

} is Euclidean with for all z = a+ ib,
ϕ(z) = |z|2 = zz = a

2

+ b
2

.

4. We give examples of Euclidean rings related to number fields (cf. [6]).

Let A1 = Z + Z
√
m (resp. A2 = Z + Z(

1 +
√
m

2
)) with the algorithm x + y

√
m 7→ |x2 −my2|

(resp. x+ y(
1 +
√
m

2
) 7→ |x2 + xy +

1

4
(1−m)y2|), where m is a squarefree integer.

• If m < 0, then A1 is Euclidean if and only if m = −1 or m = −2.

• Ifm > 0 withm ≡ 2, 3( mod 4), thenA1 is Euclidean if and only ifm ∈ {2, 3, 6, 7, 11, 19, 57}.
• Ifm > 0 withm ≡ 1( mod 4), thenA2 is Euclidean if and only ifm ∈ {5, 13, 17, 21, 29, 33, 37,

41, 73}.
• If m < 0 with m ≡ 1( mod 4), then A2 is Euclidean if and only if m ∈ {−3,−7,−11}.

Remark 2.1 ([9]). Let A be a commutative integral ring , which is not a field, with the Euclidean
algorithm ϕ, then ϕ(A) is isomorphic to (as an ordered set) N.

Remark 2.2. In general, we do not have uniqueness for the pair (q, r) in (ii) of the definition. For
example, let A = Z and ϕ(z) = |z|. We have 11 = 2 × 5 + 1 and 11 = 3 × 5 + (−4). For A = Z[i],
there exists one to four pairs (q, r) of Z[i].

The following theorem shows that ifA is a commutative integral domain with a surjective Euclidean
algorithm, for which the uniqueness of Euclidean division holds, thenA is either a field or a polynomial
ring over a commutative ring.

Theorem 2.2 ([9]). LetA be a commutative domain with a Euclidean algorithm ϕ such that ϕ(A \ {0})
= N. Then the following properties are equivalent.

• The Euclidean division is unique. i.e., for all a ∈ A and all b ∈ A \ {0}, there exist q , r unique
in A such that a = bq + r and ϕ(r) < ϕ(b).

• The ring A contains a sub-field K, and there exists X ∈ A such that the family (Xn)n≥0 is a
basis of the K-vector space A : A is a polynomial ring over the K. Furthermore the Euclidean
algorithm ϕ is defined by ϕ(P (X)) = deg(P (X)).

Let A be an integral commutative ring and ϕ a Euclidean algorithm over A. Consider the following
two properties:
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Property 1. For all a and b in A \ {0}, ϕ(a+ b) ≤ ϕ(a) + ϕ(b).

Property 2. For all a and b in A \ {0}, ϕ(a+ b) ≤ max(ϕ(a), ϕ(b)).

Note that property 2 implies property 1.

Remark 2.3. If ϕ verifies the property 2, then the Euclidean division is unique.

Proof. Suppose that for a and b 6= 0 in A, there exist q1, r1 and q2, r2 in A such that a = bq1 + r1 =
bq2 + r2 and ϕ(r1) < ϕ(b), ϕ(r2) < ϕ(b), with q1 6= q2 and r1 6= r2. From b(q2 − q1) = r1 − r2 and
q2− q1 6= 0, we obtain ϕ(r1− r2) ≥ ϕ(b). Then ϕ(b) ≤ max(ϕ(r1), ϕ(r2)) < ϕ(b), a contradiction.

Let(A,ϕ) be a Euclidean ring, n ≥ 2 and n, k in N.
Let I1 = 〈α1〉, . . . , In = 〈αn〉 be distinct prime ideals, different from A verifying the hypothesis

∀J ⊂ {1, ..., n}, ϕ(
∏
i∈J

αi) ≥ |J |, (2.1)

and the αi for i = 1, ..., n does not divide 2 in A , with 2 = 2.1A = 1A + 1A.
For the purpose of the construction of codes over Euclidean rings, we introduce the following

defintion, and we do not need property 1 to hold for all the elements of A.

Definition 2.2. A subset S ⊂ A is said to be ϕ-stable if :

∀x 6= y ∈ S,

{
−x ∈ S
ϕ(x+ y) ≤ ϕ(x) + ϕ(y)

Let S be a ϕ-stable subset. We set Ak = {a ∈ A : ϕ(a) < k} ∩ S and define the encoding
mapping (evaluation) by

ev : Ak −→ G = A/I1 × · · · ×A/In
x 7−→ ev(x) = (x+ I1 , . . . , x+ In)

Note that since A is supposed Euclidean, it is principal, and consequently it is a Dedekind ring. It
follows that A/Ii is a field of finite cardinality and G is a finite group.

Proposition 2.1. If 2k ≤ n, then ev is injective.

Proof. Let x and y in Ak such that ev(x) = ev(y). Then x − y ∈ Ii and αi divides x − y, for all

1 ≤ i ≤ n. So, α =

n∏
i=1

αi divides x− y. There exists b ∈ A such that x− y = bα. If we suppose that

b 6= 0, then ϕ(x− y) ≥ ϕ(α). We have x, y ∈ S. If x 6= −y, then

ϕ(x− y) ≤ ϕ(x) + ϕ(−y) = ϕ(x) + ϕ(y) < 2k.

The hypothesis (2.1) implies that n ≤ ϕ(α). Hence, 2k ≤ n ≤ ϕ(x− y) < 2k. A contradiction.
If x = −y then 2x ∈ Ii, and αi divides 2x for all 1 ≤ i ≤ n. As αi does not divide 2 in A, αi

divides x.

So, α =

n∏
i=1

αi divides x. Therefore k ≤ n ≤ ϕ(x) < k. A contradiction.

Then b = 0 and x = y. We conclude that ev is injective.

Let n , k in N such that 2k ≤ n. For x = (x1, ..., xn), y = (y1, ..., yn) in G, their Hamming distance
is d(x, y) = card{i : xi 6= yi}.
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Definition 2.3. The set Ck = ev(Ak ) = {(x+ I1 , . . . , x+ In) : x ∈ Ak} is called a Euclidean code
of size n and rate k over A. We denote by d the minimum Hamming distance of the code Ck which is
min{d(x, y) : x, y ∈ Ck et x 6= y}. We say that Ck is an [n, k, d]− code over A.

Proposition 2.2. Ck is an [n, k, d]−code of minimum Hamming distance d over A such that

d ≥ n+ 1− 2k.

Proof. Let x and y be distinct elements of Ak , and J = {i ∈ {1, . . . , n} : x+ Ii = y + Ii} .
Then

∏
i∈J

αi divides x− y. Thus ϕ(x− y) ≥ ϕ(
∏
i∈J

αi) ≥ |J |. We have x, y ∈ S. If x 6= −y,

then ϕ(x − y) ≤ ϕ(x) + ϕ(−y) = ϕ(x) + ϕ(y) < 2k. Thus |J | < 2k. Therefore d(ev(x), ev(y)) ≥
n−2k+1. If x = −y, a similar reasoning to that of the previous proposition shows that |J | ≤ ϕ(x) < k,
and in this
case we have d ≥ n+ 1− k ≥ n+ 1− 2k.

Example 2.3. Consider the Gaussian ring Z[i] which is mentioned in example 2.1 (3).
Recall the following result [10]:
A Gaussian integer z ∈ Z[i] is prime if and only if one of the three following cases holds:

(i) N(z) = 2 (in this case z is associate to 1 + i; that is , z ∈ {1 + i,−1− i,−1 + i, 1− i});
(ii) N(z) = p, where p is prime in Z and p ≡ 1( mod 4);

(iii) z is associate to q where q is prime in Z and q ≡ 3( mod 4).

We take n = 12 , k = 5 and α1 = 3;α2 = 7;α3 = 2 + 5i;α4 = 2− 5i;α5 = 1 + 6i;α6 = 1− 6i;
α7 = 2 + i;α8 = 1 + 2i;α9 = 2 + 3i;α10 = 3 + 2i;α11 = 1 + 4i;α12 = 1− 4i.
Let S = {0,±1,±2i}. We have Ak = {z ∈ Z[i] : ϕ(z) < 5} ∩ S = S.
The computations are simple but tedious, therefore we have used the computer algebra system

Maple to verify the calculations [11]. The procedure div euclidean determines representatives of
the classes modulo αm,m = 1, ..., 11, for each element of Ak. For more details on this division see
an appendix in [12]. Note that the function round of a real number returns the closest integer to this
real, and for a complex number z the returned value is round(Re(z)) + i ∗ round(Im(z)).

> div_euclidean:=proc(a::complex,b::complex):

a-b*round(a/b);

end:

>L:=[3,7,2+5*I,2-5*I,1+6*I,1-6*I,2+I,1+2*I,2+3*I,3+2*I,1+4*I,1-4*I]:

> ev:=z->[seq(div_euclidienne(z,k), k in L)]:

> C_k:=map(ev,{0,-1,1,-2*I,2*I});

C_k := {[-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1],[0,0,0,0,0,0,0,0,0,0,0,0],

[1,1,1,1,1,1,1,1,1,1,1,1],[-I,2I,2I,2I,2I,2I,1,-1,2I,2I,2I,2I],

[I,-2I,-2I,-2I,-2I,-2I,-1,1,-2I,-2I,-2I,-2I]}

> with(combinat,choose):

> # Procedure with parameters the code C and its length n

# which return the minimum distance of C:

dist_Min:=proc(C,n)

local P,d,j,l,pair,x,y,d_H,L1,L2;

P:=choose(C,2); d:=n;

for j from 1 to nops(P) do;

pair:=op(j,P);x:=op(1,pair);y:=op(2,pair);d_H:=0;

for l from 1 to n do;

L1:=op(l,x);L2:=op(l,y);
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if L1<>L2 then d_H:=d_H+1 fi;

od;

if d_H<d then d:=d_H fi;

od;

return d;

end:

> dist_Min(C_k,12);

11

The minimum distance of the code Ck is d = 11 and verifies d ≥ n− 2k + 1 = 3.

Using the same idea of the proof of the above proposition, we obtain the following proposition:

Proposition 2.3. Suppose that ϕ verifies the property 2 and that k ≤ n. Then Ck is an [n, k, d]−code
of minimum Hamming distance d over A such that d ≥ n+ 1− k.

Example 2.4 (Reed-Solomon Codes). Let k be a nonnegative integer, and A = Fq[X] with q = ps

is a prime power. Set Ak = {f ∈ Fq[X] : deg(f) < k}. Let x1, ..., xn be distinct elements of Fq, and
Ii = 〈X − xi〉. We have ϕ = deg. The ring (A,ϕ) verifies property 2. The encoding map

ev : Ak −→ Πn
i=1A/Ii

f 7−→ (f mod 〈X − x1〉, ..., f mod 〈X − xn〉)

Ck = ev(Ak) is the Reed-Solomon code of length n, dimension k and the minimum distance d verifies
d ≥ n + 1 − k. As we work in the case of linear codes over finite fields, by applying the Singleton
bound, we find again that Ck is a MDS code.

3 Codes over Quaternion Integers
In this section, we treat the similar notions to section 2, by defining codes over quaternions. There
are two basic classical versions of quaternion integers, those of Lipschitz denoted by L and those
of Hurwitz. We will illustrate the construction for Lipschitz quaternions (for nice introductions, see
[10, 13, 14]). Note that similar results will hold for the Hurwitz quaternions formed by adjoining
1
2
(1 + i+ j + k) to L resulting in an integral domain in which every one-sided ideal is principal .

We denote by L = {A = x0+x1i+x2j+x3k : the xi in Z} the noncommutative ring of quaternion
integers of Lipschitz, where 1 is the multiplicative unit and i2 = j2 = k2 = −1, ij = −ji = k, jk =
−kj = i, ki = −ik = j. The integers xi, i = 0, 1, 2, 3 are called the components of A. The conjugate
of a quaternion A is A = x0−x1i−x2j−x3k, and its norm is N(A) = AA =

∑3
i=0 x

2
i . For A,B ∈ L,

we have N(AB) = N(A)N(B). A quaternion is said primitive if the greatest common divisor of its
components is 1. We note that for all A ∈ L, we may write A = gcd(A) ·A′ where A′ is primitive and
gcd(A) = gcd(x0, x1, x2, x3) ∈ Z. We denote by LP the set of primitive quaternions.

The unit group of L is U = {±1,±i,±j,±k}. The multiplication by an element of U does not
change the norm.

We recall that a quaternion is prime if and only if its norm is a prime in Z. We must note that a
prime in Z is always a product of a prime and its conjugate in L (another formulation of Lagrange’s
theorem : every prime integer in Z is a sum of four squares).

Definition 3.1. A subset S ⊂ LP is said to be N -stable if :

∀A 6= A′ ∈ S,

{
−A ∈ S
N(A+A′) ≤ N(A) +N(A′)
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We note that L admits a left Euclidean division as shown by the following theorem

Theorem 3.1 ([14, 10]).
For all α, β ∈ L with β an odd quaternion , there exist δ, γ ∈ L such that

α = γβ + δ with N(δ) < N(β).

Proof. We set m = N(β) = ββ an odd integer and σ = αβ = s0 + s1i + s2j + s3k. Since m is an
odd nonnegative integer, there exists a (unique) ri ∈ Z such that

|si − rim| <
m

2
i.e. | si

m
− ri| <

1

2
for i = 0, ..., 3 (ri is the closest integer to

si
m

)

We let γ = r0 + r1i+ r2j + r3k. Hence, N(σ − γm) =
∑

i(si − rim)2 < m2. Then we have

N(σ − γm) = N(αβ − γββ) = N(α− γβ)N(β) < m2 = N(β)N(β).

The remainder is δ = α− γβ and we have N(δ) < N(β).

Remark 3.1. This algorithmic proof gives the calculation of δ which we denote by α mod β. It is this
remainder that is used in the construction of codes over L.

Example 3.2. By using the package Quaternions of Maple, we write a procedure which returns a
remainder of the left Euclidean division of q1 by q2 with q2 odd.

> with(Quaternions):

> # First we define a procedure that returns the norm

of a quaternion

> N:=proc(A):

return A*conjugate(A);

end:

> # Then, we define a procedure that returns

a remainder of the left Euclidean division of two quaternions

> div_Quaternions:= proc(Q1,Q2):: Quaternions;

round(Q1*conjugate(Q2)/N(Q2)):

return Q1-%*Q2;

end:

We apply the procedure div Quaternions to the quaternions

q1 = 1− 3i+ 7j + 4k and q2 = 1− 2i+ j + 5k

> q1 := Quaternions( 1, -3, 7, 4 ); q2 := Quaternion( 1, -2, 1, 5 );

q1 := 1 - 3 I + 7 J + 4 K

q2 := 1 - 2 I + J + 5 K

> N(q2);

31

> div_Quaternions(q1,q2);

2 + J

> N(%);

5
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Now, we proceed to the construction of codes over L similarly to Section 2.
Let n and k be in N such that n ≥ 2. Let α1, ..., αn be prime quaternions of L of distinct norms

strictly greater than 2 such that

∀J ⊂ {1, ..., n}, N(
∏
i∈J

αi) ≥ |J |. (3.1)

Consider an N−stable subset S of LP and put Ak = {A ∈ LP : N(A) < k}, and let Sk = S ∩ Ak be
the primitive quaternions to be encoded by

ev : Sk −→ Πn
i=1L/〈αi〉

A 7−→ (A mod α1, ..., A mod αn)
(3.2)

In the construction (3.2), we use the algorithm mentioned in the remark (3.1).

Theorem 3.3 ([15]). LetA ∈ LP be a primitive quaternion, with the normN(A) = p1...pn decomposed
into a product of primes. Then there exist prime quaternions P1, ..., Pn such that A = P1 · · · Pn and
N(Pi) = pi for i = 1, ..., n.

Proposition 3.1. If 2k ≤ n, then ev is injective. Thus we obtain a code denoted by Ck.

Proof. Suppose that 2k ≤ n, and for distinct A,A′ in Sk we have ev(A) = ev(A′). Then αi divides

A−A′, and N(αi) = pi divides N(A−A′) for i = 1, ..., n. We deduce that
n∏

i=1

pi divides N(A−A′).

We set N(A − A′) =

n∏
i=1

pi

m∏
j=1

qj , with the qj primes in Z. By the theorem (3.3), there exist prime

quaternions P1, ..., Pn, Q1, ..., Qm such that A−A′ =

n∏
i=1

Pi

m∏
j=1

Qj , with N(Pi) = pi and N(Qj) = qj .

Then N(A− A′) = N(

n∏
i=1

Pi)N(

m∏
j=1

Qj). As N(
∏n

i=1 Pi) = N(
∏n

i=1 αi) ≥ n (by (3.1)), we have that

N(A − A′) ≥ n. If A 6= −A′, then n ≤ N(A − A′) = N(A + (−A′)) ≤ N(A) + N(A′) < 2k. A
contradiction.
If A = −A′, then N(A − A′) = N(2A) = 4N(A), and since the integers N(αi) are odd primes and
divide 4N(A), we see that N(αi) divides N(A). A similar reasoning shows that N(A) ≥ n. We get a
contradiction with the fact that N(A) < k.

Proposition 3.2. If 2k ≤ n, then Ck is an [n, k, d]-code of minimum Hamming distance d such that
d ≥ n+ 1− 2k.

Proof. Let A and A′ be distinct in Sk.
We consider J = {i ∈ {1, ..., n} : A mod αi = A′ mod αi}. Then αi divides A − A′ for i ∈ J, and
so N(αi) = pi divides N(A − A′) for i ∈ J. Thus

∏
i∈J

pi = N(
∏
i∈J

αi) divides N(A − A′). By using

hypothesis (3.1), |J | ≤ N(A − A′). If A 6= −A′, then N(A − A′) ≤ N(A) + N(A′) < 2k, and
we obtain the result. If A = A′, a similar reasoning to that of the previous proposition shows that
|J | ≤ N(A) < k, and in this case we have d ≥ n+ 1− k ≥ n+ 1− 2k.

Example 3.4. We take n = 8, k = 3, and we consider the following prime quaternions :
α1 = 1 + i+ j;α2 = 1 + 2i;α3 = 1 + i+ j + 2k;α4 = 1 + 3i+ j;α5 = 2i− 3k;α6 = 2 + 2j + 3k;
α7 = 1 + i+ 4j + k;α8 = 1 + 2i+ 3j + 3k.
Let S = {0,±(1 + i),±(j + k)} be an N -stable set and Sk = Ak ∩ S = S.
By using the package Quaternions, we determine the code words of Ck.
The procedures div Quaternions and dist Min defined above are used also.
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>L:=[Quaternion(1,1,1,0),Quaternion(1,2,0,0),Quaternion(1,1,1,2),Quaternion(1,3,1,0),

Quaternion(0,2,0,-3),Quaternion(2,0,2,3),Quaternion(1,1,4,1),Quaternion(1,2,3,3)]:

S_k:={Quaternion(0,0,0,0,Quaternion(1,1,0,0,Quaternion(-1,-1,0,0),Quaternion(0,0,1,1),

Quaternion(0,0,-1,-1)}:

> ev:=z->[seq(div_Quaternions(z,k), k in L)]:

> C_k:=map(ev,S_k);

C_k := {[0,0,0,0,0,0,0,0],[I,-J,J+K,J+K,J+K,J+K,J+K,J+K],

[J,I,-1-I,-1-I,-1-I,-1-I,-1-I,-1-I],[-I,J,-J-K,-J-K,-J-K,-J-K,-J-K,-J-K],

[-J,-I,1+I,1+I,1+I,1+I,1+I,1+I]}

> dist_Min(C_k,8);

8

The minimum distance of the code Ck is d = 8 verifying d ≥ n− 2k + 1.

Remark 3.2. It was shown by Martı́nez et all. [16] that for any non zero A ∈ L the cardinality of L/LA
(viewed as a group) is N(A)2, and we can deduce from corollary 22 in [16] that image of the encoding
ev is included in the additive group

∏n
i=1(Z/N(αi)Z× Z/N(αi)Z) since the αi are supposed primes

in (3.2). See also [13] for related concepts.

4 Conclusion
This note mainly uses Euclidean algorithm to construct codes with typical examples : Gaussian
integers and Quaternion integers. Some questions and further investigations are as follows.

1. What could be said about orders (see [5]) as message spaces, not necessarily maximal orders
which are rings of integers, concerning constructions from algebraic number field ?

2. Other metrics which are studied in [12, 16] may be used in the context of the present work.

3. The decoding question may be approached, for example, by using the framework sketched by
Sudan in [3] or by the concept of key equation used in [17].
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