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ABSTRACT
The intensive and explosive behavioral problems associated 
with Autism Spectrum Disorder (ASD) are treated as ‘meltdown 
or tantrum,’ and it may lead to hyperactivity, impulsivity, aggres
sion, self-injury, and irritability. The present work aims to pro
pose and implement a noninvasive real-time deep learning 
based Meltdown/Tantrum Detection System (MTDS) for ASD 
individuals. The noninvasive physiological signals (such that 
heart rate, skin temperature, and galvanic skin response) were 
synthetically recorded with a specially designed hardware pro
totype. The recorded physiological signals were transmitted to 
an internet connected server where deep learning algorithms 
such as CNN, LSTM, and CNN-LSTM based Meltdown/Tantrum 
Detection System (MTDS) were implemented. The trained deep 
learning model was capable of detecting abnormal states of 
meltdown or tantrum through real-time received physiological 
signals. The proposed MTDS system was trained and tested with 
deep learning algorithms such as CNN, LSTM and hybrid CNN- 
LSTM, and it was found that hybrid CNN-LSTM was outper
formed with an average training and testing accuracy of 96% 
with low MAE (0.10 for training and 0.04 for testing). 
Furthermore, 86% of the ASD caregivers favored the proposed 
MTDS system.
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Introduction

The facial and other emotional changes could be a very vital sign to 
reflect the emotional changes in typically developing, but individuals with 
ASD often experienced difficulty to articulate their own mental and 
emotional states (Happé 2018; Montaque, Dallos, and McKenzie 2018; 
Ryan 2010). An individual with ASD could exhibit minimum of one 
challenging behavior such as destruction of property, screaming, shout
ing, and kicking. This kind of challenging behavior could be disruptive 
and destructive to ASD individuals themselves or others (McGinnis et al. 
2019). The occurrence of predisposing, precipitating and perpetuating 
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events such as sensitivity to sensory stimulation, the frustration of 
needs, and criticism from parents could lead to meltdown or tantrum 
(Critchley 2002).

In ASD, the hyperactive state such as meltdown or tantrum was described as 
escalating episodes of conflicts & distress, in which intense and dangerous 
explosions of difficult behaviors could occur frequently. ASD meltdowns or 
tantrums could be one of the most challenging parts of autistic persons and 
their caregivers (Bessette Gorlin et al. 2016). In comparison to the general 
population, individuals with ASD had more risk of developing challenging 
behavior since meltdown or tantrum associated with negative outcome lead to 
a decreased quality of life (Anzalone et al. 2014; Fitzpatrick et al. 2016). It 
could be essential to frequently detect or monitor such kind of abnormal 
behavior accurately in ASD individuals.

Noninvasive physiological signals could be able to provide sensitive and 
convenient measure of assessing changes in sympathetic arousal associated 
with emotions, cognition and attention. Some noninvasive physiological 
changes such as body sweating, abnormal heart rate and rise in body tem
perature could be noticed during hyperactive, meltdown or tantrum related 
states (Sigman et al. 2003). Furthermore, an efficient system could be 
required to represent and extract all the information from varying noninva
sive physiological signals. It was very hard to fetch real-time physiological 
data using wired electronics due to the assorted nature of autistics. Wireless 
Internet-connected Things (IoT) architecture was utilized for healthcare 
monitoring by user-friendly clinical applications with fast access mobility 
and envisioned to the modern smart health care system to collect health 
related information (Baker et al. 2017; Hu et al. 2017; Luo et al. 2018; Yugha 
and Chithra 2020). Machine and Deep learning was proposed by several 
authors to overcome the limitations by considering in depth information 
from physiological datasets (Alzubi, Nayyar, and Kumar 2018; Cheng et al. 
2018; Lecun, Bengio, and Hinton 2015; Tahsien, Karimipour, and Spachos 
2020). An efficient internet connected monitoring system named 
“BioSenHealth 1.0” was implemented and identified with better accuracy at 
low cost (Nayyar, Puri, and Nguyen 2019).

Based on physiological signals, the noninvasive systems and efficient 
deep learning algorithms could be able to provide sufficient information 
about hyperactive emotion characteristic of meltdown or tantrum situa
tions in ASD individuals. The objective of this paper was focused to 
propose an efficient Meltdown or Tantrum Detection System (MTDS) 
framework for ASD individuals. The proposed MTDS system is able to 
fetch physiological signals such as Skin Temperature (ST), Heart Rate 
(HR) and Galvanic Skin Response (GSR) through the proposed data 
acquisition system. On basis of acquired signals, deep learning models 
were trained and tested to make future predictions for the classification of 
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the state of normal behavior or the state of meltdown/tantrum in ASD 
individuals. This paper was further organized with related literature stu
dies, design/implementation of MTDS, and results/discussions after imple
mentations with concluding remarks.

Related Studies

Earlier researchers were using different invasive tools or methods on the 
basis of samples of blood, saliva or urine to detect the behavioral 
changes, but these invasive tools/methods were not suitable to be used 
as a continuous real-time analyzer and in daily life too (Hufnagel et al. 
2017). Relevant information must be extracted from the physiological 
signal received from the sensors implanted or placed on the skin in 
order to support a specific healthcare application (Hirstein, Iversen, and 
Ramachandran 2001). Welch suggested that the changes in physiological 
signals could be measured by sensor based devices and these changes 
could be helpful in diagnosis of the subjects (Welch 2012).

Physiological parameters such as Skin Temprature (ST), Heart Rate 
(HR) and Galvanic Skin Response (GSR) considered as an invaluable data 
source, which could assist in the detection of disease, rehabilitation and 
treatment (Lydon, Healy, and Dwyer 2013). Goodwin et al. (Goodwin 
et al. 2006) observed that the physiology of a person affected with autism 
could be different in outside view than what was measured inside the 
body. The cardiac responses of the autistic subject were examined during 
crying and happy stimulus, and observed variations in cardiac rate 
with changed stimulus sources (Luo et al. 2018). The patterns of arrhyth
mic heart rate in ASD individuals were observed during the stressed 
environment (Acharya et al. 2018; Sasikumar, George Priya Doss, and 
Adalarasu 2015). In comparison to the typically developed subjects, GSR 
& HR in autistic subjects resulted in atypical and individualized char
acteristics (Panju et al. 2015; Sasikumar, George Priya Doss, and 
Adalarasu 2015).

The wearable devices could observe changes in physiological signals 
noninvasively, which could help in predicting the anxiety level & episodes 
of self-injury and increase the self-awareness of their internal emotional 
state to regulate their emotions. Ko et al. (Koo et al. 2018) suggested that 
72% parents of the ASD individuals were willing to monitor changes in 
physiological signals or behavioral parameters of their children to under
stand their meltdown/tantrum or other emotions. Some physiological 
sensor based wearable products available in the market were presented 
in Table 1. The physiological signals such as HR, GSR, and ST could be 
considered as ASD footprints during hyperactive, meltdown, tantrum, or 
other related states.

1710 V. KHULLAR ET AL.



The state of meltdown or tantrum could be hard to detect or understand in 
comparison to facial emotions or other behavior of ASD. Today’s advancement 
in technology could help improve the diagnosis process of ASD, but such 
diagnoses were not much effective to detect the meltdown/tantrum and pro
vide/arrange remedy to these dangerous states. The generated data was con
tinuously generating in incremental phase multivariate time series data, which 
could cover symptoms and scenarios, associated with ASDs. The implementa
tion of traditional detection systems failed to work with such kind of large and 
continuously varying datasets (Krupa et al. 2016; Litjens et al. 2017). The 
monitoring of physiological signals through noninvasive methods could play 
very crucial role to provide certain aid to ASD individuals for the detection or 
prediction of meltdown/tantrum related states (Cabibihan et al. 2018; Krupa 
et al. 2016). Without the detailed knowledge regarding meltdown or tantrum 
related events, it could be complicated to start any treatment or therapy of ASD 
individuals. An efficient system could be required, which could work with 
multivariate and diverse physiological data for the detection of meltdown or 
tantrum state in an ASD individual. Working on earlier computer-based designs 
for meltdown detection was a tedious task for parents and clinicians.

Design and Implementation of MTDs

Deep learning based meltdown or tantrum detection system (MTDS) for ASD 
was proposed, which was implemented on noninvasive multivariate physiolo
gical data related to Heart Rate (HR), Galvanic Skin Response (GSR) and Skin 
Temperature (ST). This proposed design was capable of updating the data 
continuously and could be able to issue an alert if meltdown or tantrum state 
occurred. An interactive graphical environment of the proposed system was 
designed, which made it easy to understand and access the meltdown or 
tantrum related behavior by clinicians as well as parents. The individualized 
physiological signals were remotely transferred to an MTDS implemented 
internet connected server. Current individualized monitoring and classifica
tion of physiological data was then reflected on the internet-connected gra
phical monitoring tool, which could be accessed remotely by clinicians and 

Table 1. Physiological parameters with wearable devices.
Name of Product/Reference Physiological Parameter(s)

Embrace Empatica (Empatica, 2019; Empatica Inc, 2019) HR, GSR, ST
Visi Mobile (ViSi Mobile, n.d.; Weenk et al. 2017) HR, BP, EEG, ST
QardioCore (Is QardioCore Clinically Validated, 2019; Qardio, 2019) HR, ST
Apple Watch Series 4 (Apple, 2019; Hernando et al. 2018) HR
Northrup et al. (Northrup et al. 2016) GSR
Simm et al. (Simm et al. 2016) HR, ST
MyFeel Wristband (Sentio Solutions, 2019) HR, GSR, ST
Reveal (Awake Labs, 2019) HR, GSR, ST

HR – Heart Rate, GSR- Galvanic Skin Response, BP – Blood Pressure, 
ST – Skin Temperature, EEG – Electroencephalogram.
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parents at any time & anywhere. The proposed design was capable of detecting 
a meltdown or tantrum state in ASD individuals that could be further used in 
the improvement of behavior related issues.

A deep learning based hardware wristband prototype was designed to 
acquire individualized physiological signals such as HR, ST and GSR, which 
could be able to transmit data to the internet connected server. The deep 
learning model was implemented on the acquired individualized physiological 
signals at the IoT server to detect the meltdown or tantrum state. The unique 
feature of the proposed design was a remotely accessible and user-friendly 
graphical interface to access the runtime detection by clinicians and parents. 
These features were facilitated to provide early remedy and to find the reason 
behind frequently occurring intense and dangerous events. The block diagram 
of the overall system was shown in Figure 1.

Figure 1. MTDS block diagram.

1712 V. KHULLAR ET AL.



Hardware Prototype

A specialized hardware prototype was designed in the form of comfor
table wearable wristband to detect ASD physiological signals. HR, ST and 
GSR could play a very crucial role in detecting the mental state of human 
beings. So, various sensors such as photoplethysmogram (PPG), LM35 
transistor and GSR were implanted on the proposed wristband for the 
measurement of HR, ST, and GSR. The recorded physiological signals 
were processed and controlled by a battery-operated Arduino Nano, 
which was further connected to the IoT server through a Wi-Fi module. 
Prototype design of the proposed wireless IoT connected hardware wrist
band is presented in Figure 2.

Data Acquisition and Preprocessing

The physiological signals such as HR, ST and GSR were recorded from 
the wristband to incorporate multimodal physiological signals, and these 
recorded signals were further transmitted to the internet connected 
server. For the proper recording of the data, the synthetic sessions were 
conducted in a total duration of 30 minutes. Null values were removed 
from the recorded data in the first phase of the preprocessing. After 
removal of null values, the MinMax scaling technique was applied to 
shrink raw data in an acceptable range of 0 to 1 without modifying the 
shape of original data. The MinMax scaling divided the minimum values 
of the feature and then divided by the difference between the original 
maximum and minimum values. The MinMax scalar formula was applied 
to scale each feature (xi) as 

MinMaxScaler xið Þ ¼
xi � minimum xð Þ

maximum xð Þ � minimum xð Þ
1 

The initial pre-classification system was implemented to identify the relevant 
classification labels with a low or high state of acquired data using the 
Isolation Forest outlier detection method. The sensitivity of the outlier 
system was pre-adjusted at 1% to acquire top 1% outlier from multivariate 
physiological data (HR, GSR and ST) as a threshold for tantrum or melt
down state.

Hybrid CNN-LSTM

A time series data was a sequence of digital signals that was taken 
sequentially in time steps to predict real time observations. In the present 
work, the hybrid combination of one-dimensional CNN and LSTM 
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algorithm was utilized for the analysis of acquired time series data and 
the performance of CNN-LSTM algorithm was also compared with CNN 
and LSTM. In the CNN-LSTM model, an initial convolutional layer 
received one-dimensional signal as the input. Each convolution layer 
was convoluted with their respective kernel (filter) size as 

xn ¼
XN� 1

K¼0
YkFn� k (2) 

Figure 2. (a) Specially designed hardware wristband prototype. (b) Specially designed hardware 
wristband connectivity diagram.
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where Y is signal, F wis filter, N is the number of signals and x are output 
vectors, respectively. Then, CNN-LSTM algorithm initially established 
a shallow CNN to extract the original features of the data. Furthermore, its 
output became a data pool of small amplitude. The Leaky ReLU function was 
presented as 

f xð Þ ¼ x; ifx > 0
0:01; oterwise

�

(3) 

The Softmax function was presented as 

pj ¼
exj

Pk
1 exk

forj ¼ 1; 2; 3 . . . :: (4) 

These extracted features were converted into a feature matrix and then input 
into the LSTM for feature fusion. In the CNN-LSTM hybrid model, local 
features were extracted from the convolutional layer and the LSTM layer then 
used the ordering of said features. The standard symbols and equations for 
LSTM were presented as 

ft ¼ σ Xt � Vf þ Ht� 1 � Wf
� �

(5) 

It ¼ σ Xt � Vi þ Ht� 1 � Wcð Þ (6) 

~Ct ¼ tanh Xt � Vi þ Ht� 1 � Wið Þ (7) 

Ot ¼ σ Xt � Vo þ Ht� 1 � Woð Þ (8) 

Ct ¼ ft � Ct� 1 þ I � ~Ct (9) 

ht ¼ Ot � tanhðCtÞ (10) 

where
Xt – input vector,
Ht-1 – previous (cell) output,
Ct-1 – previous (cell) memory,
Ht – present (cell) output,
Ct – present (cell) memory,
Ht+1 – next (cell) output,
Ct+1 – next (cell) memory,
W and V – weight vector,
σ – sigmoid function,
tanh – tangent function,
‘*’ represented the element wise multiplication function,
‘+’ represented the element wise addition function.
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The architecture of the utilized hybrid CNN-LSTM model, including 
details of layers, input elements, and extracted output, is shown in 
Figure 3.

Implementation Procedure

The work flow of the deep learning based proposed MTDS is shown in 
Figure 4. Training and testing flow of the proposed MTDS system was 
presented in Figure 4(a). The monitoring & validation flow was presented 
in Figure 4(b). Furthermore, the overall training-to-monitoring procedure 
was described through four implementation procedural parts such as 
‘procedure for data acquisition and pre-classification,’ ‘procedure for 
training and testing of deep learning models,’ ‘procedure for meltdown 
or tantrum detection,’ and ‘procedure for analysis of meltdown or tan
trum detection.’

Figure 3. CNN-LSTM architecture for the proposed system.
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Training Activated 

Monitoring Activated 

Start

Physiological Signal Acquisition with Proposed 
Wristband

Continuous Recording of Acquired Data at IoT Server

One Time Training Activated for each Individual

Outlier Pre-classification Conducted for Meltdown or 
Tantrum as High or Low

Initial Training of Deep Learning based MTDS model 
with 90% of Randomly Selected from Pre-Classified 

Initial Testing of Trained of Deep Learning based 
MTDS model with 10 % Rest of Pre-classified Data

Remove Redundant Entries at IoT Server, Apply 
Scaling, and Convert Recorded Data in Required 

Dimensions

System Module for 
Training / Monitoring

Deep Learning based Meltdown or Tantrum Detection 
System Activated

Trained and Tested of Deep Learning based MTDS 
model Ready for Proposed Monitoring System

Stop

B

A 

Figure 4. Proposed work flow diagram of the proposed MTDS. (a) Proposed work flow of CNN- 
LSTM training and testing. (b) Proposed Work flow of CNN-LSTM validation.

APPLIED ARTIFICIAL INTELLIGENCE 1717



Procedure for Data Acquisition and Preprocessing

The following steps were followed for data acquisition and pre-classification of 
the proposed system, as presented in Figure 5:

(1) Individualized physiological signals could be recorded from the wrist
band and transmitted to the internet-connected server.

(2) Redundant and null values were removed from the collected physiolo
gical data and then scaled between 0 and 1 using the MinMax scaling 
algorithm.

(3) Then, a pre-classification system performed the classification of initial 
data based on the 1% top outlier values of HR, GSR and ST. The 
recognition signal had reflected the present meltdown or tantrum 
state of autistic, such as high or low. Here, a high state was treated as 
‘1ʹ and a low state as ‘0ʹ.

(4) Before training of the deep learning based MTDS system at the server, 
the data acquisition module started removing redundant data entries for 
the training of the proposed system.

No

Yes 

Yes 

No 

A

If trained  
MTDS Model 

Available?

Meltdown/ Tantrum Monitoring System 
Activated

If Meltdown/ 
Tantrum Detected?

Generate Email Alert to Caregivers or 
Clinicians 

B 

Graphical 
Monitoring Unit 

Activated

Figure 4. Continued.
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Procedure for Training and Testing of Deep Learning Model

The following steps were followed for the identification of the best model between 
CNN, LSTM and hybrid CNN-LSTM algorithm, as presented in Figure 6:

(1) Acquired pre-classified and pre-processed data fed into the system for 
training and testing.

(2) Training and testing were conducted through pre-classified and pre- 
processed data entries, and furthermore, K-fold (K = 10) validation was 
also performed for the optimum deep learning model in this work.

(3) The best outcome of the proposed system with acquired physiological 
signals was identified by a applying deep learning model for 300 epochs 
(training iterations).

Procedure for Meltdown or Tantrum Detection and Alerting

The following steps were followed for meltdown or tantrum detection in ASD, 
as presented in Figure 7:

(1) The trained optimum deep learning model was deployed for meltdown 
or tantrum detection in ASD.

(2) Individualized physiological signals were recorded from the wristband 
and transmitted to an internet-connected server in the form of a stream.

(3) The proposed monitoring system was initialized for meltdown or tan
trum state detection.

Recorded Wristband 
Physiological Signals 

(HR, GSR, ST) 

Transmission to 
Internet Connected 

Server 

Meltdown/ Tantrum 
Pre-classification 

(High or Low)

Data Converted in 
Required 

Dimensions

Preprocessing 

Figure 5. Procedure for data acquisition and pre-classification.

Preprocessed Data 
Fed to Perform 

Training and Testing  

Training and Testing of 
deep learning algorithms 
using pre-classified and 

pre-processed data 

Optimum Deep 
Learning Model 
Identified & K-
fold Validation

Figure 6. Procedure for training and testing of the deep learning algorithm.
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(4) Data and monitoring outcomes were continuously stored at the server 
end. Caregiver or clinician could analyze the state of tantrum or melt
down by accessing the stored data. The system was capable of generat
ing an e-mail alert to the caregiver or clinician to highlight the state of 
tantrum or meltdown.

Procedure for Monitoring of Meltdown or Tantrum State

The following steps have been followed for the analysis of the proposed system 
using synthetically updated data, as presented in Figure 8.

(1) Recorded data along with the meltdown or tantrum state fed to the 
monitoring system.

(2) Caregiver or clinician could access recorded data remotely using the 
proposed graphical user interface.

Results and Discussion

The results of the proposed MTDS system were presented and discussed in this 
section. First, the comparative analysis of CNN, LSTM, and CNN-LSTM 
models in the MTDS system was performed and the best model was chosen; 

Trained and 
Tested deep 

learning model for 
Activating 

Detection System

Wristband Recorded 
and Transmitted 

Streamed Physiological 
Signals to Internet 
Connected Server

Generate Email Alert to 
Caregiver or Clinician if 

State of Meltdown or 
Tantrum detected as 

High 

Data and Results Get 
Stored on Server for 

Future Analyzing 

Figure 7. Procedure for meltdown or tantrum detection and alerting.

Recorded data along with 
meltdown or tantrum state fed 

to the monitoring system.

Caregiver or clinician could 
access recorded data remotely 
using proposed graphical user 

interface.

Figure 8. Procedure for monitoring of meltdown or tantrum state.
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further evaluation of the best chosen model was performed through training & 
testing analysis on the basis of parameters such as accuracy, MAE, precision, 
recall and F1-socre. The K-fold (K = 10) cross-validation strategy was 
employed to evaluate the robustness of the proposed model. Furthermore, 
the analysis of the proposed MTDS design was performed through the valida
tion of caregiver’s responses and statistical validation of caregiver’s responses.

Comparative Analysis of CNN, LSTM and Hybrid CNN-LSTM

The deep learning algorithms such as CNN, LSTM and hybrid CNN-LSTM 
were utilized to design an efficient MTDS system for tantrum/meltdown state 
in individuals with ASD. The performance of MTDS was evaluated for 300 
epochs, and comparative analysis was conducted within utilized deep learning 
related algorithms such as CNN, LSTM, and CNN-LSTM. Performance ana
lysis was conducted on the basis of training accuracy (as presented in Table 2 
and Figure 9) and testing accuracy (as presented in Table 3 & Figure 10) to 
identify a better algorithm for the proposed MTDS system. It was observed 
that the hybrid CNN-LSTM algorithm performed better than CNN and LSTM 
for detection of the meltdown and tantrum states through the MTDS system.

Training and Testing Analysis of CNN-LSTM Based MTDS

Training and testing performance of the CNN-LSTM based MTDS with 90% 
training data & 10% testing data was analyzed based on parameters, viz., 
accuracy & MAE, as presented in Figure 11 and Figure 12, respectively. 
Furthermore, more specific results of the MTDS for meltdown or tantrum 
detection in ASD with acquired 10% of the testing dataset was performed 
based on basic parameters, viz., precision, recall and F1-score, as presented in 
Figure 13–15.

Table 2. Training accuracy of CNN-LSTM vs. LSTM vs. CNN.

Number of Epochs

Training Accuracy

CNN-LSTM LSTM CNN

1 72 64 55
10 95 75 59
25 96 83 62
50 97 87 68
75 98 89 73
100 98 92 75
125 98 91 82
150 98 93 86
175 98 92 86
200 98 92 86
225 98 92 86
250 98 92 86
275 98 92 86
300 98 92 86

APPLIED ARTIFICIAL INTELLIGENCE 1721



K-Fold Cross-Validation of CNN-LSTM Based MTDS

The performance of the trained and tested CNN-LSTM based MTDS was 
validated with the K-fold (K = 10) method for cross validation. The average 
K-fold validation results for parameters such as accuracy, precision, recall and 
F1 score and the confusion matrix for predictive active & predictive non-active 
state were presented in Table 4 and Figure 16.

Validation Based on Caregiver’s Responses

The caregivers of both ASD and TD group individuals participated to analyze 
the proposed system with different levels of knowledge regarding autism, such 
as Highly Knowledgeable (HK), Average Knowledgeable (AK), and Low 
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Figure 9. Training accuracy of CNN-LSTM vs. LSTM vs. CNN.

Table 3. Testing accuracy of CNN-LSTM vs. LSTM vs. CNN.

Number of Epochs

Testing Accuracy

CNN-LSTM LSTM CNN

1 86 59 51
10 96 71 53
25 98 73 59
50 98 84 62
75 98 87 66
100 99 89 72
125 99 91 73
150 99 93 72
175 99 92 79
200 99 92 81
225 99 92 81
250 99 92 83
275 99 92 81
300 99 92 81

1722 V. KHULLAR ET AL.



Knowledgeable (LK). Here, the roles of caregivers are only to understand the 
proposed framework and give their verbal reviews on the proposed frame
work. There is no other involvement of human or animal in this work. Also, 
during this procedure, none of the caregiver or participant had received any 
psychoactive medication. The participant and caregiver had the right to with
draw from the study at any time. No name is disclosed throughout this study. 
The responses of different knowledge levels of caregivers about the proposed 
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Figure 10. Testing accuracy of CNN-LSTM vs. LSTM vs. CNN.

Figure 11. MTDS training and testing accuracy.
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system were evaluated to maintain the unbiased validation. The performance 
of the proposed system was analyzed on a scale of 0 to 10 for the four 
parameters, viz., user interface, monitoring system, detection system, and 
alerting system. Average ratings for defined parameters of the proposed 
system are presented in Table 5 and Figure 17.

Figure 12. MTDS training and testing MAE.

Figure 13. MTDS recall.
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Statistical Analysis of Caregiver’s Responses

The statistical analysis was conducted to identify the difference in caregiver’s 
responses for ASD and TD group. As presented in Table 6, the mean scores 
related to caregivers of the ASD group were found to be 6.55, which was 

Figure 14. MTDS precision.

Figure 15. MTDS F1-score.
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statistically similar to the mean score of the TD caregivers group where the 
mean score was found to be 6.25 with two-tailed unequal variance t-test 
statistics −0.85 at p < .05. Both groups of ASD and TD caregivers rated the 
overall system as statistically similar.

Table 4. Average of K-fold cross-validation of MTDS.
Confusion Matrix (in number) Analysis Parameters (in %age)

Meltdown/Tantrum State True Active TrueNon-Active Accuracy Precision Recall F1-Score

Predicted Active 1669 21 96.04 98.76 96.70 97.72
Predictive Non-Active 57 223
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Figure 16. Average of K-fold cross-validation of MTDS.

Table 5. Caregiver’s responses for the proposed system.
Caregiver Details Rating Parameters (Rating scale between 0–10)

No. Level Group
User 

Interface
Monitoring  

System
Detection 

System
Alerting 
System Overall

1 MK ASD 6 8 7 7 7
2 MK ASD 7 8 5 7 6.75
3 LK ASD 8 6 7 8 7.25
4 HK ASD 8 6 6 8 7
5 LK ASD 5 4 4 5 4.5
6 LK ASD 8 8 7 6 7.25
7 HK ASD 7 7 8 6 7
8 LK ASD 7 6 6 7 6.5
9 MK ASD 9 8 8 9 8.5
10 MK ASD 4 5 3 3 3.75
11 MK TD 7 8 6 8 7.25
12 HK TD 9 8 7 7 7.75
13 MK TD 7 6 4 7 6
14 MK TD 6 7 8 6 6.75
15 LK TD 8 8 7 6 7.25
Above Average (i.e. 5) Percentage of Satisfaction Level 86.6%

* HK – Highly Knowledgeable regarding ASD, MK – Average Knowledgeable regarding ASD, and LK – Less 
Knowledgeable regarding ASD
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Discussion

The training and testing analysis of the hybrid CNN-LSTM was outperformed 
with an average training and testing accuracy of 96% with low MAE (0.10 for 
training and 0.04 for testing). The precision, recall, and F1-score values for the 
proposed CNN-LSTM model resulted in 0.98, 0.95, and 0.97, respectively. The 
outcome accuracy of hybrid CNN-LSTM was quite high with least losses. 
Further analysis of caregiver responses of ASD and TD groups was conducted 
based on parameters such as user Interface, monitoring system, detection 
system and alerting system and resulted in 86% above-average (greater 
than 5) favored responses on the rating scale of 0–10. The conducted statistical 
analysis had identified no difference in the caregiver responses of both ASD 
and TD groups of individuals about the proposed MTDS. The proposed 
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Figure 17. Responses of related caregivers for defined parameters and their overall mean.

Table 6. Statistical analysis based on caregiver’s responses.

Domain
Caregiver  

Group N Mean SD t-Stat
Sig. 

(2- tailed)

Overall 
System

ASD 10 6.55 1.39 −0.85 0.411 
(p < .05)TD 5 7 0.66
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MTDS was also compared with the earlier available related systems based on 
the attained accuracy, as presented in Table 7. It was observed from the 
comparative analysis that the proposed CNN-LSTM based MTDS system 
resulted in higher accuracy in comparison to the available technologies.

Conclusion

The detection of meltdown or tantrum in ASD could be complicated due to the 
complex nature of neurological developmental disorders. Predetermined and 
expert knowledge was required to successfully detect the state of meltdown or 
tantrum, since facial emotions or behavior only were not able to identify the state 
of meltdown or tantrum in ASD. To overcome this problem, a CNN-LSTM 
based MTDS system was designed and tested for the collected physiological 
signals. The graphical interface tool was also designed for easy access of this 
design for clinicians and parents, which could easily reflect the real-time data of 
the physiological signals and the classification of the state of meltdown/tantrum 
as active or inactive. It was observed from the experimental results that the 
proposed deep learning based MTDS design achieved an 10-fold accuracy of 
98% with 0.1 MAE. The caregivers were also excited with the most important 
feature of the system that proposed that the system could perform equally 
irrespective of ASD and TD groups. It was concluded that the use of noninva
sive, real time and intelligent approach for meltdown or tantrum detection could 
help reduce the drastic behavior of ASD with safe and economic participation. In 
the clinical perspective, the effective real-time identification of meltdown or 
tantrum state could help in the improvement of related behavioral issues in 
autistic subjects.
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