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Optimal Channel-set and Feature-set Assessment for Foot 
Movement Based EMG Pattern Recognition
Neha Hoodaa,b and Neelesh Kumara,b

aBiomedical Instrumentation Unit, CSIR-Central Scientific Instruments Organisation, Chandigarh, India; 
bAcSIR- Academy of Scientific and Innovative Research, Ghaziabad, India

ABSTRACT
Electromyography (EMG) -based control is the most convenient 
and robust way to classify body movements for controlling 
prosthetic as well as orthotic devices. Its translation from lab- 
based approach to assistive devices demands a problem-centric 
and cost-effective solution. This paper demonstrates its utility 
for the classification of four foot movements, viz Plantar flexion, 
Dorsi flexion, Eversion and Inversion. For the experimental 
study, four superficial muscles (viz. Tibialis Anterior, Extensor 
Hallucis Longus, Gastrocnemius Medial and Fibularis Longus) 
were identified as electrode positioning locations for the EMG 
data acquisition. This work is aimed to minimize the number of 
electrode locations without significantly affecting the classifica-
tion performance. Channel-set CH2,4 corresponding to the com-
bination of Hallucis Longus and Fibularis Longus muscles is 
found to be the most optimal. The maximum classification 
accuracy obtained for the given set with the selected feature- 
set has been (91.85 ± 3.57)%. The classification performance has 
been assessed on the basis of parameters such as the type of 
classifier, window length, data sampling and also the body mass 
index of the participants. The developed technique can be 
applied for control of ankle exoskeletons for healthy as well as 
person with certain disabilities.
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Introduction

Electromyography (EMG) represents the recording of neuromuscular activity 
generated by the muscles to exhibit movement. EMG signals have been widely 
used for active control of man-machine interfaces. The electrical signals generated 
through the muscle activation have been used for variety of applications including 
medical, sports as well as industries. This electrical potential is collectively generated 
by muscle fibers through its contraction (Konrad 2005). Considering this, there are 
three types of muscle activations: Isotonic, Isometric and Isokinetic contractions.
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Isotonic activations produce movement as the result of change in length of 
the muscle fibers. Based upon the change in muscle length, contraction and 
elongation, it has further been divided into Concentric and Eccentric contrac-
tion, respectively (Behrens et al. 2016). Contrary to this, Isometric activations 
occur without any change in muscle length. Isotonic activations produce force 
to generate actual limb movements whereas Isometric activations produce 
force in resistance to the force applied externally (Rogers and MacIsaac 
2013). Isokinetic activations however produce constant speed movements 
with change in muscle length. EMG analysis for Isotonic and Isokinetic 
contractions include strength and fatigue estimation (Rogers and MacIsaac 
2013; Subasi 2013), meanwhile EMG during isometric contractions proved 
better for therapeutical rehabilitation (Rechy-Ramirez and Huosheng 2015; 
Tsai et al. 2014). Using one or more of these, several researchers have 
employed the EMG-based control for rehabilitation or assistance of upper 
limbs. Plenty of research include control of powered orthotic or exoskeleton 
(Lo and Xie 2012) and prosthetic devices (Resnik et al. 2012), robotics based 
on pattern classification for several upper limb movements (Maciejasz et al. 
2014). However, assistive strategies for the lower limbs dominantly used 
passive controllers (Yan et al. 2015). Although lower limb exoskeletons are 
comparatively simpler to design than its upper limb counterparts, but it 
demands stringent cognitive and physical adjustments (Aoi et al. 2012). 
Hence more scope of research is available in the area.

Nevertheless, the accurate identification and classification of lower limbs’ 
movements will employ similar processing steps as for upper limbs. These steps 
include: data pre-processing, feature extraction and selection, movement classi-
fication. The pre-processed EMG signal is used to extract the useful informa-
tion, in form of features. Feature extraction and selection is the most important 
step as it defines the classification accuracy calculated in the last step. Although 
a vast number of features are available for the task, but these need to be chosen 
appropriately. The addition of more features increases computational complex-
ity and classification time as well. Some features are highly sensitive to noise and 
hence may reduce the classification accuracy under some conditions (Boostani 
and Moradi 2003; Phinyomark, Limsakul, and Phukpattaranont 2009b). In 
addition appropriate features will directly achieve significant accuracy (Oskoei 
and Huosheng 2008). Although researchers have examined and provided some 
appropriate feature sets for particular actions (Naik, Kumar, and Palaniswami 
2014; Oskoei and Huosheng 2008; Phinyomark, Limsakul, and Phukpattaranont 
2009b), similar cannot be generalized for use in other movement classifications 
(Arjunan, Kumar, and Naik 2014; Xi et al. 2017). Additionally, the use of 
redundant (Farfán, Politti, and Felice 2010; Kim et al. 2011; Yi-Chun et al. 
2010) and complex features (Khushaba, Al-Ani, and Al-Jumaily 2010; Li et al. 
2011; Lorrain, Jiang, and Farina 2011) increases computational complexity with 
classification results comparable to simple approaches only. Along with this, 
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many researches have tried to optimize the redundant information available 
from the recording sites, i.e. EMG channels to enhance the system’s perfor-
mance. This majorly includes the application of dimensionality reduction 
techniques after feature calculation employed for upper (Andrews, Morin, and 
Linda 2009; Mesa et al. 2014; Wang et al. 2016) and lower limbs’ (Liu et al. 2014) 
movements. Al-Ani et al. (Al-Ani et al. 2016) described the novel method of 
dynamic channel selection that identifies optimal set of channels corresponding 
to each time segment of the signal but after the required feature extraction. The 
disadvantage of such methods is huge data calculation that will ultimately be 
rejected before classification. To overcome this problem, techniques have been 
developed for EMG channel selection during preprocessing and before feature 
extraction (Bai, Chen, and Yang 2019; Geng et al. 2014; Naik, Ali, and Nguyen 
2016). Tenore et al. (Tenore et al. 2008) have shown that different number of 
electrodes used for healthy and transradial amputee does not significantly affect 
the classification of individual finger movements. Further methods have been 
developed for dexterous hand and finger movement recognition with only two 
surface EMG electrodes (Khushaba et al. 2012; Naik and Nguyen 2015; Wang, 
Lao, and Zhang 2017). Such elaborative research in the area of upper limb signal 
classification motivated the authors to assess the optimal channel as well as 
feature combinations for lower limbs. Recent work also highlighted the signifi-
cance of channel selection for lower limb movements (Joshi, Nakamura, and 
Hahn 2015; Toledo-Pérez et al. 2019).

Hence, the objective of the current study is to select the optimal electrode 
locations, pertaining to a set of non-redundant features, for classification of 
four basic foot movements. The rest of the paper is organized as follows: 
Section 2 presents a collection of non-redundant and simple time and fre-
quency domain features and then provides experimental results in Sections 3 
and 4, for the identification of optimal channel set based upon acquired EMG 
signals. Features have further been scrutinized employing a trade-off between 
classification accuracy and computational cost of the design. Finally, Section 5 
presents the concluding remarks.

Materials and methods

EMG Features

Features used for analysis of EMG signals mostly include time domain (TD) 
and frequency domain (FD) characteristics. However there also exists a third 
category, i.e. Time-Frequency Domain (TFD). But TFD features require signal 
transformation and dimensionality reduction before classification (Hariharan 
et al. 2012; Phinyomark, Phukpattaranont, and Limsakul 2012). This increases 
complexity at not much added accuracy (Englehart, Hudgin, and Parker 2001; 
Phinyomark et al. 2013).

APPLIED ARTIFICIAL INTELLIGENCE 1687



As raw EMG data is time dependent, TD features are simplest to implement 
for feature extraction. The mathematical definitions are simple and can be directly 
applied to raw data without the need of any transformation. Although results in 
this group may change due to non-stationarity of EMG signals, improvement can 
be achieved by the addition of more training samples (Oskoei and Huosheng 
2007). Further, as TD features depend upon the amplitude of input signal, 
contamination from noise signals is highly likely (Phinyomark, Limsakul, and 
Phukpattaranont 2009a). Additionally, electrode location shift significantly 
reduces classification accuracy even more than varying level of effort and fatigue 
(Tkach, Huang, and Kuiken 2010). Special care should be taken during recording 
to acquire noise-free data, as this ensures good classification accuracy. Further, 
FD features mostly define the fatigue of the muscles (Al-Mulla, Sepulveda, and 
Colley 2011; Phinyomark, Phukpattaranont, and Limsakul 2012). These include 
parameter estimation through periodogram of the signal. These are insensitive to 
noise but highly complex and computationally expensive. This paper only uses 
one of FD features along with TD features, as it improves the classification 
performance significantly. For the given EMG sampled signal si of length N, 
features identified as the most stable in reference to above discussed problems, are 
presented in the Table 1 along with its mathematical formulations (Detailed 
description is given in the supplementary file).

Subject Recruitment

A total of twenty healthy subjects (13 Male, 7 Female), ranging from 21 to 
32 years of age and average Body Mass Index (BMI) of 21.77, were recruited for 
data acquisition in this study. The participants had no known neurological 

Table 1. Selected features with mathematical formulations and associated references.
S. No. Name Mathematical formulation References

a) Root Mean 
Square 
(RMS)

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

PN

i¼1
s2

i

s
(Al-Timemy et al. 2016)

b) Mean Absolute 
Value (MAV) MAV ¼ 1

N

PN

i¼1
sij j

(Kim et al. 2011, Hudgins, Parker, 
and Scott 1993)

c) Variance (Var)
Var ¼ 1

N� 1

PN

i¼1
s2

i

(Reaz, Ibne, and Hussain 2006)

d) Waveform 
Length (WL) WL ¼

PN� 1

i¼1
siþ1 � sij j

(Hudgins, Parker, and Scott 1993, 
Phinyomark et al. 2013)

e) Power Spectral 
Ratio (PSR)

PSR ¼ Pmax
Ptot

(Qingju and Zhizeng 2006)

f) Autoregressive 
Coefficient 
(ARC)

si ¼
POrder

p¼1
apsi� p þ ei[Order = 1]

(Phinyomark, Limsakul, and 
Phukpattaranont 2009b, Tkach, 
Huang, and Kuiken 2010, 
Phinyomark, Phukpattaranont, 
and Limsakul 2012)

g) Willison 
Amplitude 
(WA)

WA ¼
PN� 1

i¼1
f siþ1 � sij jð Þwheref xð Þ ¼

1; ifx � θ
0; otherwise

�
(Phinyomark, Phukpattaranont, 

and Limsakul 2012, Scheme and 
Englehart 2014)
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impairment with either no or minor injuries to their limbs in the past. In 
addition, five patients with incomplete spinal cord injury were also included for 
post-assessment. For patients, approval was obtained from the ethical commit-
tee of Indian spinal injury center, New Delhi. The demographic data of the 
patients is provided in Table 2 (a detailed version is given in the supplementary 
file). Each subject was given a brief overview of the data acquisition procedure 
and the foot movements they were required to perform. An informed verbal 
consent has been received from each subject before the trials. [Trial dataset 
uploaded in PhysioNet repository and available on request under url: https:// 
physionet.org/projects/peYmXsG9knoSj1xRF2uG/overview/]

Experimental Setup

Disposable pre-gelled electrodes were stick to the muscles of the participants 
from where shielded clamp electrodes would acquire the EMG signals. The 
skin was cleaned with an antiseptic before electrode placement over each 
muscle. For bipolar placement, two electrodes were placed in close proximity 
(20 to 30 mm) over the belly of each muscle. The signals were then fed to the 
Biopac MP 150 system through EMG 100C amplifiers set at a gain and 
sampling rate of 2000 and 1000 samples/second, respectively. The acquired 
EMG signals were filtered at 10–500 Hz frequency with a notch set at 50 Hz. 
The developed wireless foot sensor module (WFSM) was strapped to the 
midfoot using a velcro strap (Das, Hooda, and Kumar 2019). WFSM is 
a compact and low-power inertial sensing system that allows the measurement 
of 3-axis rotational angles (roll, pitch and yaw) around any joint along with tri- 
axial acceleration and angular velocity. The device is powered with a 3.7 V, 
500mAh Li-ion battery and can be recharged with a micro-USB connector 
from a USB charging port. The variations of foot angle were recorded wire-
lessly at a sampling rate of 20 Hz, using an application developed in LabVIEW. 
Its applications for measurement of foot angle and subsequently using the 
measured foot inclination variation for detecting gait events viz. heel strike, toe 
off along with estimation of stride length has been reported in other works as 
well (Das and Kumar 2021; Hooda, Das, and Kumar 2020). The EMG data 
acquisition and angle measurement (WFSM) units had been synchronized 
using an external manual trigger.

Table 2. Demographic information of the patients.

Subject
Age 

(years) Gender
Affected 
Section

Dominant 
Limb Etiology

ASIA Grade(Kirshblum et al. 
2011)

p1 36 Male C5 Left Accident C
p2 27 Female L2 Right Fall from the 4th 

floor
D

p3 40 Male C4-D4 Right Tumor C
p4 34 Female L3 Right Accident C
p5 26 Male C4-C6 Right Accident D
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Data Acquisition

EMG signals have been recorded in a temperature-controlled laboratory, from 
the lower limb dominant (19 right and 1 left) leg of the healthy participants. 
For patients, the leg with better voluntary control is referred as the dominant 
limb for the present work. Four basic foot movements that are necessary for 
gait and postural balance were selected for this study. This involved: Plantar 
flexion (PF), Dorsi flexion (DF), Eversion (EN) and Inversion (IN). EMG 
acquisition electrodes were placed at four superficial muscles: Tibialis anterior 
(TA), Gastrocnemius medial (GC-M), Fibularis Longus (FL) and Extensor 
Hallucis Longus (HL). The foot actions and electrode locations has been 
depicted in Figure 1.

Each healthy participant was instructed to perform ten isometric maximum 
voluntary contractions for a period of 10 seconds corresponding to each 
movement. The WFSM (not shown in figure) was used to ensure no/minimal 
angle (not more than 4º) variations during contractions. A visual feedback was 
provided to the participants to familiarize with the resultant signal amplitudes 
and angle values for the specified actions. For each participant, data was 
recorded at four separate sessions (~1 hour per session) to avoid noise and 
other bias. The time gap between two sessions varied from minimum one to 
maximum seven days depending upon the availability of the participant. In 
total, 160 datasets or a total duration of 1600 seconds of movement were 
collected from each participant.

For patients, the data was acquired in a single session (~1.5 hour) with six 
trials corresponding to each movement. The patients were instructed to per-
form the isometric contraction per movement for only 5 seconds pertaining to 
their weak muscular structure. Cumulatively, 30 trials with 150 seconds of 
movement data have been recorded from patient population for the present 
study.

Feature Extraction and Classification

Features described in Section 2.1 have been applied over the pre-processed 
EMG dataset for qualitative analysis, after random division in two equal sets 
comprising training and testing dataset. The training model generated from 
the training dataset was used for prediction over the testing dataset. Three 
classifiers were employed in this work, namely Quadratic Discriminant 
Analysis (QDA), Support Vector Machine (SVM) and k-Nearest neighbor 
(kNN). The approach of hyper-parameter tuning with bayesian optimization 
has been used to structure the model(s) while training.

The optimal parameter identification has been divided into two steps: 1) 
Channel-set selection 2) Feature-set selection. For step 1, features extracted 
from all four recorded channels were used for classification to identify the 
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optimal electrode/ channel locations that can successfully recognize the 
intended action(s). Six channel-set combinations were used for comparative 
analysis: TA & HL (CH1,2), TA & GC-M (CH1,3), TA & FL (CH1,4), HL & 
GC-M (CH2,3), HL & FL (CH2,4) and GC-M & FL (CH3,4). This is based on 
the theory of digital encoding where not more than ‘n’ bits are required for the 
representation/ classification of ‘2n’ patterns. Five most used window lengths, 
viz. 250, 200 150, 100 and 50 ms without overlap were used to determine any 
window length dependent variations. Quality check for any possible fatigue 
introduced due to long duration (10 seconds) of the trials and its effect over 
individual and combined feature set has also been assessed over healthy 
population. Further, step 2 involves the formation of optimal feature set for 
the selected channel-set. The performance has been assessed for dataset 
sampled according to the constraints of prediction performance and between 
session variations.

The patients’ dataset has been used to perform some post-assessment tests 
in order to ensure its reliability for clinical settings. Hence, the prediction 
performance in terms of accuracy has been calculated for the aforementioned 
channel-set and feature-set combinations with all of the above mentioned 
window length conditions.

Performance Measure and Statistical Analysis

The performance of the recognition system is quantified in terms of prediction 
accuracy (PA). PA is calculated as the ratio of correct classification of the 
intended class to the total number of classifications in the test set, as described 
below: 

PA ¼
No:ofcorrectclassifications
Totalno:ofclassifications

� 100 (I) 

The quality of the channel-sets and features has been evaluated in terms of PA 
calculated with different classifiers employed for classifier-independent per-
formance analysis. Also it has been used as a performance measure for varia-
tion of other parameters i.e. window length, data samples and feature-sets as 
well. Following this, average PA (Avg.PA) and coefficient of variation (CoV) 
has been calculated to determine inter-session assessment (Section 3.2). Avg. 
PA is defined as mean of PA achieved per session corresponding to each 
feature and selected channel-set, as given below: 

Avg:PA ¼
PAs1 þ PAs2 þ PAs3 þ PAs4

4
(II) 

CoV is used to determine how much PA varies with session-wise sampling. 
For the given channel-set and feature, it is calculated as the ratio of standard 
deviation (SD) of PA per session to its mean, as given below 
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CoV ¼
SDPAðS1� S4Þ

Avg:PA
� 100 (III) 

For all conditions, repeated measures analysis of variance (ANOVA) was used 
to analyze the statistical significant variation across the subject group with 
‘channel sets,’ ‘classifiers’ or ‘window length’ as a factor. Post hoc Bonferroni’s 
test has been used to correct for multiple comparisons whenever Mauchly’s 
sphericity test response is significant (p < .01 and ε < 0.75). Also, paired sample 
t-test and coefficient of determination (r2) analysis over PA of CH2,4 is 
executed to assess variation with muscular fatigue.

Results

The results for both the steps are presented along with descriptions:

Optimal Channel-set Selection

Table 3 describes the achieved PA for six channel-set combinations for 
window length of 250 ms. As evident from Table 3, CH2,4 exhibited the 
highest accuracy followed closely by CH3,4 with PA of 92% and 91.88%, 
respectively for the SVM classifier. The SD for CH2,4 and CH3,4 were 3.63% 
and 7.77%, respectively. Similarly, for the QDA classifier, CH2,4 performed 
best with PA of 89.60% followed by CH3,4 with PA of 86.45%. The SD for 
CH2,4 and CH3,4 was 4.44% and 10.88%, respectively. For the kNN classifier, 
PA achieved for CH3,4 was highest followed by CH2,4 at 89.47% and 88.31%, 
respectively. The SD for CH2,4 and CH3,4 was 4.67% and 7.74%, respectively. 
The channel set CH1,2 was observed to be performing worst with PA of 
75.96%, 82.34% and 74.08% for QDA, SVM and kNN classifier, respectively. 
As observed, all three classifiers followed similar trend and hence the perfor-
mance is not dependent upon the type of classifier. The SVM performed better 
in terms of classification accuracy when compared to other classifiers, for 
condition of each channel-set and was therefore used for the rest of the 
analysis. Statistical significant differences (p < .01) have been found for all 
classifiers conditions while only some channel-set yielded significant differ-
ence during post-hoc comparison against CH2,4.

Table 3. Average PA± SD of selected Channel-sets using three different classifiers for 
250 ms window length.

S. No. Channel-set QDA SVM kNN

1. CH1,2 75.96 ± 8.55 82.34 ± 6.84 74.08 ± 7.62
2. CH1,3 83.16 ± 7.77 89.20 ± 5.47 83.79 ± 7.00
3. CH1,4 86.86 ± 5.86 90.70 ± 4.90 84.81 ± 5.91
4. CH2,3 84.25 ± 8.61 90.12 ± 6.73 84.62 ± 6.59
5. CH2,4 89.60 ± 4.44 92.00 ± 3.63 88.31 ± 4.67
6. CH3,4 86.45 ± 10.88 91.88 ± 7.77 89.47 ± 7.74
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Table 4 represents the PA calculated for each channel-set, corresponding to 
remaining window length conditions, using SVM classifier. As observed from 
Table 4, PA for CH3,4 exhibited the best performance with maximum PA of 
91.63% and 91.10% for analysis window length of 200 ms and 150 ms, 
respectively. On the other hand, CH2,4 performed better with maximum PA 
of 90.08% and 87.91% for the analysis window length of 100 ms and 50 ms, 
respectively. Also, no significant differences (p ≈ 0.95) exist between the two 
channel sets irrespective of window size. Still, the authors recommend the use 
of CH2,4 channel-set and selected the same for further analyses. The reason 
for the same has been detailed in Section 4. Furthermore, a relative reduction 
in PA was observed with the reduction of window size for each channel-set 
condition. Hence the performance was independent of the analysis window 
length. Statistical significant differences were found (p < .01) among other 
channel-set conditions for different analysis window length. The best perfor-
mance for each channel-set was observed for the window length of 250 ms 
using SVM classifier (p < .01, F = 6.63).

Further, the assessment of muscular fatigue resulting due to isometric 
contractions has been performed. For this, the data has been sampled as to 
include the last two seconds of each trial (muscular fatigue due to continuous 
isometric contractions) as testing and the first eight seconds as training 
dataset, with window length of 250 ms. The PA achieved has been as repre-
sented in Figure 2. The PA corresponding to different channel sets for each 
individual feature and all combined features (ALL) did not show any signifi-
cant difference (p > .01). Also the paired t-test for PA corresponding to CH2,4, 
with the results of original testing dataset, does not show any significant 
variation (p > .01, t = 2.98). The two have been found to be highly correlated 
with r2 of 0.99. As observed previously, channel-set CH2,4 reported best 
results with PA of (95.16 ± 6.59)%. The increase in PA here was assumed to 
be because of the larger training dataset compared to the testing (80–20), 
whereas originally it was distributed equally (50–50) for both datasets. Hence 
the performance of CH2,4 remains stable even with the possible existence of 
fatigue in the tested EMG signal.

Table 4. Average PA± SD of selected Channel-sets using SVM classifier for different window 
lengths.

S. No. Channel-set

Window length (ms)

200 150 100 50

1. CH1,2 81.06 ± 7.44 80.39 ± 7.13 78.79 ± 7.47 75.01 ± 7.25
2. CH1,3 88.87 ± 5.58 88.19 ± 5.65 86.83 ± 5.86 83.85 ± 6.28
3. CH1,4 90.29 ± 4.79 89.45 ± 4.79 88.20 ± 4.99 85.72 ± 4.98
4. CH2,3 89.84 ± 6.73 89.09 ± 6.89 88.06 ± 6.63 85.38 ± 6.58
5. CH2,4 91.44 ± 4.02 90.88 ± 4.14 90.08 ± 4.05 87.91 ± 4.10
6. CH3,4 91.63 ± 7.84 91.10 ± 7.91 89.64 ± 8.12 87.70 ± 8.69
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Optimal Feature-set Selection

The performance of each feature with respect to available channel-set has been 
performed with an analyses window length of 250 ms. The fatigue check 
assessment for each individual feature, as represented in Figure 2, reported 
PA corresponding to channel-set CH2,4 with deviation of 8.46%, 8.14%, 
8.26%, 8.70%, 9.46%, 10.79% and 10% for RMS, MAV, Var, WL, PSR, ARC 
and WA, respectively. This shows that the representative features do not vary 
abruptly with non-linearity caused due to existing fatigue, if any.

Additionally, the variation in PA with trials performed in different sessions 
(sampling for S1 to S4) have been analyzed to assess variations of EMG signal 
with electrode positions, muscle contraction effort, skin abrasion, perspiration 
etcetera. The observed parameters, i.e. average PA (Avg.PA) and the coeffi-
cient of variation (CoV) between sessions have been as represented in 
Figures 3 and 4, respectively (the legend symbols used in Figure 3 hold similar 
meaning for Figure 4 as well). Evidently, channel-set CH2,4 resulted in highest 
Avg.PA and least CoV for most of the features. The CoV for channel-set 
CH1,4 have been observed to be the least (0.87%, 0.87% and 1.22%) for RMS, 
MAV and Var followed closely by CH2,4 (1.59%, 1.60% and 1.70%). However, 
Avg.PA for CH2,4 have been reported to be the highest for each case of RMS, 
MAV and Var (89.79%, 90.26% and 89.20%) compared with CH1,4 (85.74%, 
86.60% and 85.14%). The rest of the features (WL, PSR, ARC and WA) have 
also reported least CoV (2.42%, 1.62%, 1.12% and 0.85%) with optimal Avg.PA 
(90.44%, 47.50%, 64.73% and 83.70%). Only channel-set CH2,3 achieved 
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average accuracy higher than CH2,4 for PSR and ARC (48.57% and 66.91%) 
with nowhere as optimal CoV (3.44% and 4.79%). Hence CH2,4 proves to be 
the optimal choice for all existing constraints. Notably, CoV obtained for all 
TD features except WL has been below 2%, hence WL has been excluded from 
further assessments. Also, features RMS, MAV and Var have been observed to 
follow similar trends with equivalent rise and deviations. Hence the one with 
least Avg.PA (Var) and maximum time consumption have also been excluded 
in order to remove redundancy. Thus the optimal feature-set comprising 
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a combination of RMS, MAV, PSR, ARC and WA features has been proposed 
for the task of foot movement pattern recognition. The selected feature-set also 
resulted in PA of (94.69 ± 6.34)% during fatigue check assessment.

Furthermore, Table 5 comprises the results achieved from individual 
features and the proposed feature-set with the original testing dataset. The 
proposed feature-set resulted in average PA of 91.85% along with deviation 
of 3.57% using SVM classifier with 250 ms. Also it is worth noting that even 
though PSR had very low average PA of 47.45%, its use with other TD 
features significantly improved the accuracy. Cepstral coefficients can also 
be used instead of ARC (Tkach, Huang, and Kuiken 2010), but as it was 
derived from ARC complexity and computational time increases 
considerably.

Comparative Analysis

Finally, the proposed optimal feature-set; RMS, MAV, PSR, ARC and WA, 
provided a resultant PA of 91.85% along with SD of 3.57% with sample 
window length of 250 ms. The obtained results were compared with other 
available traditional feature sets of Hudgins’(Hudgins, Parker, and Scott 1993), 
Oskoei and Hu’s (Oskoei and Huosheng 2008) and Quraishi (AL-Quraishi 
et al. 2017). Five TD features were given by Hudgins; MAV, MAV slope, zero 
crossing, slope sign change and WL(Hudgins, Parker, and Scott 1993). 
Alternatively Oskoei and Hu presented a feature set consisting of TD’s RMS 
and FD’s second order ARC (Oskoei and Huosheng 2008). Further Quraishi 
suggested the log of TD features; logMAV, logRMS, logWL and logSD (AL- 
Quraishi et al. 2017). The PA was calculated for referred sets using CH2,4 with 
250 ms window length.

The results have been reported in Table 5. Further, Figure 5 represents the 
average PA results obtained from the proposed and three traditional feature 
sets with window length of 250 ms, 200 ms, 150 ms, 100 ms and 50 ms. Even 
though all the feature sets followed the trend of decreasing accuracy with 

Table 5. Average PA± SD for different Feature set(s) using SVM with 250 ms 
window length.

S. No. Feature (s) PA (in percent)

1. RMS 89.93 ± 5.08
2. MAV 90.23 ± 4.89
3. Var 88.79 ± 6.28
4. WL 89.70 ± 5.46
5. PSR 47.45 ± 5.87
6. ARC 67.52 ± 8.61
7. WA 84.66 ± 8.63
8. Proposed 91.85 ± 3.57
9. Hudgins (Hudgins, Parker, and Scott 1993) 91.34 ± 4.04
10. Hu (Oskoei and Huosheng 2008) 91.68 ± 3.98
11. Quraishi(AL-Quraishi et al. 2017) 91.42 ± 4.10
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decrease of window length, the decay in proposed feature-set is lesser com-
pared to others. As evident from p-value (>.01), the proposed feature set 
performed slightly better than the traditional feature sets.

Relation between PA and Body Mass Index (BMI)

As BMI is known to effect the classification performance (Atzori et al. 2014; 
Farina, Cescon, and Merletti 2002), PA as a function of BMI (ratio of body 
mass to square of height) of the participants has been calculated with window 
length of 250 ms, 200 ms, 150 ms, 100 ms and 50 ms for an analytical 
assessment. It was categorized into three main parts low (<18.5), normal 
(18.5–24.9) and high (>24.9) BMI as shown in Figure 6. It was observed that 
participants with low BMI had higher PA than participants with normal or 
higher (>24.9) BMI, as previously reported in (Atzori et al. 2014). However, for 
all three cases of BMI similar trend of decrease in PA with the decrease of 
window length is observed. The proposed set resulted in maximum PA of 
(94.74 ± 4.71)% for participants with BMI<18.5 and sample window length of 
250 ms. Consecutively, minimum PA of (86.18 ± 4.12)% is achieved for 
participants with BMI>24.9 and sample window length of 50 ms.

Assessment over Patient Population

The performance of formulated channel-sets has been assessed over patients’ 
data to observe possible variation from that of healthy individuals. It was 
observed that similar to healthy population, SVM outperformed the other two 
classifier functions for patients as well and hence used while calculating PA. 
Table 6 represents the PA obtained for all channel-set combinations with five 
selected window lengths. Similar to the healthy population, CH2,4 
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outperformed the other channel-sets with PA of 83.25%, 85% and 82.3% for 
respective window length of 250 ms, 200 ms and 100 ms followed closely by 
CH1,4 (p > .3, t = 2.306). While CH1,4 outperformed CH2,4 for window 
length of 150 ms and 50 ms with respective PA of 84.45% and 81.75%, there 
was no significant difference between the two (p > .8). Channel-set CH3,4 
followed the two in terms of performance with PA of 81.75%, 81%, 81.21%, 
79% and 75.90% for respective window length of 250 m, 200 ms, 150 ms, 
100 ms and 50 ms and no significant variation (p > .7). The remaining channel 
sets showed significant variation (p < .01) when compared to CH2,4.

Also, the average PA obtained, using channel-set CH2,4, from the 
proposed and three traditional feature sets with window length of 
250 ms, 200 ms, 150 ms, 100 ms and 50 ms is shown in Figure 7. Even 
though the proposed method performed slightly better, no significant 
difference between the proposed and traditional feature sets was found 
(p > .01). The maximum PA of (84.2 ± 16.94)% was observed for 200 ms 
window length with the proposed feature-set, followed by 250 ms condi-
tion with PA of (82.75 ± 16.61)%.
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Figure 6. Variation in PA with respect to window length for different levels of BMI.

Table 6. Average PA± SD of selected Channel-sets for patients’ population using SVM classifier and 
different window lengths.

S. No. Channel-set

Window length (ms)

250 200 150 100 50

1. CH1,2 72.75 ± 16.19 78.40 ± 14.43 76.21 ± 16.36 74.90 ± 14.35 71.55 ± 14.78
2. CH1,3 72.50 ± 7.37 76.20 ± 11.03 75.00 ± 7.86 73.90 ± 8.09 72.30 ± 8.62
3. CH1,4 81.25 ± 20.05 84.40 ± 16.74 84.45 ± 15.79 82.20 ± 15.65 81.75 ± 15.04
4. CH2,3 78.25 ± 15.94 80.40 ± 13.95 80.30 ± 10.76 77.30 ± 12.32 73.45 ± 10.89
5. CH2,4 83.25 ± 14.61 85.00 ± 14.20 84.39 ± 14.13 82.30 ± 14.71 79.50 ± 14.99
6. CH3,4 81.75 ± 17.69 81.00 ± 15.58 81.21 ± 15.34 79.00 ± 14.72 75.90 ± 13.90
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Discussion

According to the results described in previous section, channel-set CH2,4 
outperformed others with a maximum PA and SD of 92% and 3.63% respec-
tively, for the analysis window of 250 ms length using SVM classifier. 
However, the results obtained for channel-set CH3,4 were at par with channel- 
set CH2,4 with no significant difference for different analysis window lengths 
or classifier type. There were three main reasons behind the selection of CH2,4 
as the optimal channel-set. Firstly, it incorporates two different muscles 
responsible for two dominant actions of the foot (HL for dorsiflexion and 
FL for plantar flexion). Second and more important is that these two muscles 
are far apart from each other and hence chances of crosstalk are rare. Third, as 
evident from Tables 3 and table 4, was that the PA of CH2,4 exhibited least 
fluctuation as can be observed from SD values for each channel-set and 
window length conditions. The obtained results show not more than 10% 
variation for PA using CH2,4, when compared with PA calculated for each 
subject using all four channels (CH1,2,3,4) simultaneously. In addition, cross- 
correlation coefficient, as defined in (Bansal et al. 2011), calculated for chan-
nel-set CH2,4 was not more than 0.08 (mostly lesser than zero) for all the 
subjects and corresponding movement trials. This further ascertains the fact 
that the patterns of the two selected channels are linearly independent of each 
other for all four actions studied and hence presents maximum information 
for classification. The PA for CH2,4 when compared with CH1,2,3,4 shows 
a significant deviation (p < .01) where it varies from 97.87% to 98.38% for 
window length of 50 ms to 250 ms, respectively. The confusion matrix plot for 
all four movement actions has been shown in Figure 8. As clear, DF and IN 
actions were classified with almost hundred percent accuracy. However, PA 
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reduces drastically for PF and EN. In fact, the two classes got misclassified into 
each other only. This is due to the physiology of human body under which the 
FL muscle contributes for both, PF and EN, the movements of ankle joint. The 
resultant sensitivity of 91.85% has been obtained along with specificity, F1- 
score and kappa (κ) of 97.29%, 91.82% and 0.7831, respectively.

The results obtained from the present work are very encouraging. The 
proposed feature-set can be used as a generic set for feature extraction and 
classification of EMG patterns in the presence of varying noise signals, muscle 
contraction forces and fatigue levels. The ten seconds long isometric contrac-
tions of the present dataset have been an excellent example of that as such 
lengthy durations may introduce muscle fatigue and noises within the 
acquired data involuntarily. Further comparison with other available tradi-
tional feature sets justified the improved performance. Also, the segment 
length of 250 ms without overlap is sufficient to produce real time results 
without any delay in the controller device (Joshi, Nakamura, and Hahn 2015; 
Smith et al. 2011). Moreover, overlapping techniques can be employed in the 
post processing stage using the technique of majority vote to reduce the effect 
of overlapping over generated movements or transitions within the move-
ments. The recognition system along with proprioceptive feedback is known 
to improve myoelectric control (Pistohl et al. 2015).

Phinyomark et al. (Phinyomark, Limsakul, and Phukpattaranont 2009b) 
suggested a novel robust feature, namely modified mean frequency 
(MMNF), with white Gaussian noise point of view. But it was also noted 
that it has limited ability to discriminate between classes. Existing features 
can further be modified to include first or higher order derivatives as 
suggested by (Phinyomark et al. 2014). But a comparison of presented 
features with its first and second order derivatives produced only compar-
able or even decline in the PA. Moreover, only the traditional features used 
by (Phinyomark et al. 2014) showed significant improvement, some of 
which (WL and WA) were also used in this paper. The novel features 
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defined are rarely used by researchers for EMG pattern classifications. Other 
higher order derivatives were not used as with more differentiation the 
signal to noise ratio (SNR) degrades proportionally. Additionally, it was 
observed that applying log to some of the original features (PSR, ARC) also 
decreases the PA. This may be due to the fact that EMG signal recorded 
from lower limbs has very low amplitude (varying from 0.5 mV to 1.0 mV) 
due to which the feature value is not significant enough to induce better 
classification rates.

The present technique can be applied for control of ankle exoskeletons for 
healthy as well as person with certain disabilities. For healthy, it can be used to 
augment weight bearing in long duration standing and walking tasks (De 
Looze et al. 2016), for example in military or industrial settings. Under clinical 
applications, the targeted population will include patients with problem of foot 
drop or ankle injury (weak muscles) particularly elders. In the trials conducted 
over limited patient population for foot movement classification, similar 
trends were observed as for healthy population in all the subjects except ‘p2ʹ. 
In fact, mostly the anomalies observed during PA estimation for different 
window length conditions were in data acquired from subject ‘p2ʹ only. This 
may be due to an ankle fracture that occurred post injury to the patient. 
Further subject ‘p4ʹ had over all very low PA even with all four muscle inputs 
(maximum 64%). This reduced the average PA of the population even though 
PA for some subjects (‘p1ʹ and ‘p3ʹ) reached 100% also. The variation in 
classification results amongst healthy population and patients can also be 
due to change in muscular tone of patients after accident. As for healthy 
population each muscle is in natural shape and worked well while there may 
be some inherent changes that can occur post an injury. Further as patients are 
supposed to perform less locomotion post-injury, so their muscles become 
weak. As TA is the strongest muscle among all the selected muscles, it might 
seem to perform better compared to others (as was also observed for some 
healthy individuals who were lesser active physically). However there is pos-
sibility of it all being assumption and no significant deduction can be made 
based on available data and results.

Although the included patients' population is too limited to analyze PA- 
BMI dependence, initial results has drawn the same conclusion as was 
observed for healthy individuals. The patients with normal BMI showed 
significant performance (p < .01) varying from 100% to 97.38% with decrease 
in window length from 250 ms to 50 ms. For patients with high BMI, PA 
varied from 71.25% to 66.17% with decrease in window length from 250 ms to 
50 ms while no patient fell under the category of low BMI. This suggests that 
existence of an injury does not significantly alter the movement patterns in 
patients. Hence the presented approach can be used for reliable classification 
of given foot movements. Rehabilitation treatment can include active control 
of the therapeutic device attached to the affected/non-dominant limb by using 
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the signals from the unaffected (in case of hemiparesis) or dominant limb (as 
observed in incomplete SCI patients). The proposed strategy is expected to 
enhance muscle strength with minimal intrusion and lower computational 
cost.

Conclusion

This study presented a method to select non-redundant and optimal features 
along with the selection of an optimal channel-set for EMG signal classification. 
Six combinations with two channels each were tested using six TD and one FD 
features. This was repeated for the condition of five different window lengths and 
three different classifiers. Channel-set CH2,4 provided optimal results. From the 
results, it was concluded that the proposed combination of channel-set and 
feature-set can be used for successful classification of foot movement signals 
recorded at varying noise conditions, muscle contraction forces or fatigue levels. 
The highest PA of (91.85 ± 3.57)% was achieved using SVM classifier with 
analysis window length of 250 ms. Also similar performance trends have been 
observed from post-assessment tests conducted on a small incomplete SCI patient 
population. The movement signals classified from the unaffected/ dominant limb 
can provide an assist-as-needed therapy to the affected side of the patients.

It was also observed that a person’s BMI has an indirect relationship with 
accuracy i.e. PA decreases with increase in BMI that followed for all the cases 
of window length. The proposed set can classify the four foot movements with 
minimal intrusion and lower computational cost. Hence, this work can help 
the future researchers decide how necessary it is to increase the resources for 
the classification process to obtain the required accuracy.
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