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Engineering Department, University of Jeddah, Saudi Arabia

ABSTRACT
Improving Offensive and Hate Speech (OHS) classifiers’ perfor-
mances requires a large, confidently labeled textual training 
dataset. Our study devises a semi-supervised classification 
approach with self-training to leverage the abundant social 
media content and develop a robust OHS classifier. The classifier 
is self-trained iteratively using the most confidently predicted 
labels obtained from an unlabeled Twitter corpus of 5 million 
tweets. Hence, we produce the largest supervised Arabic OHS 
dataset. To this end, we first select the best classifier to conduct 
the semi-supervised learning by assessing multiple heteroge-
neous pairs of text vectorization algorithms (such as N-Grams, 
World2Vec Skip-Gram, AraBert and DistilBert) and machine 
learning algorithms (such as SVM, CNN and BiLSTM). Then, 
based on the best text classifier, we perform six groups of 
experiments to demonstrate our approach’s feasibility and effi-
cacy based on several self-training iterations.
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Introduction

Research Scope

Monitoring and detecting Offensive and Hateful Speech (OHS) on social media 
are of crucial importance. Good progress was made for OHS detection for the 
English language (Ousidhoum et al. 2019; Zampieri et al. , 2019) and Arabic as 
well (Albadi, Kurdi, and Mishra 2018; Alsafari, Sadaoui, and Mouhoub 2020c; 
Mubarak and Darwish 2017; Mubarak et al. 2020; Mulki et al. 2019). Across all 
the inspected languages, past studies on OHS classification explored supervised 
machine learning, relying on the availability of annotated corpora. Particularly, 
in the Arabic setting, the training datasets, which are few in number and small- 
sized, are insufficient to build efficient OHS classifiers. The goal of our research 
is to take advantage of the abundant amount of content on social media, like 
Arabic Twitter, to develop a robust OHS classification model. Nevertheless, 
hand annotating the large volume of texts is a tedious task that necessitates 
experts in the spoken language, as demonstrated in the previous research on the 
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supervised classification for the Arabic language (Alsafari, Sadaoui, and 
Mouhoub 2020a,). For leveraging the many available textual data, we investigate 
Semi-Supervised Self-Training (named SSST), starting with a small labeled 
dataset (supervised learning) and a massive unlabeled dataset (unsupervised 
learning). We select SSST due to its efficacy (Li and Liang 2019; Li et al. 2020) 
because it may achieve superior performance than supervised learning and 
requires much fewer data to be annotated, hence saving much human effort, 
time and cost (Zhu and Goldberg 2009).

Moreover, some studies showed that semi-supervised classifiers’ perfor-
mance might decrease in specific applications, and one possible cause is 
that labeled and unlabeled data have different distributions (a mismatch 
between classes) (van Engelen and Hoos 2019), which is common in image 
classification. However, this is not the case in text classification because no 
new classes will appear in the unlabeled data as we are dealing with only 
two possible classes, “Clean” and “Offensive/Hate.” Lastly, semi-supervised 
learning must be safe in the sense that it should not significantly lower the 
predictive performance after using the unlabeled data, which means that 
the generalization accuracy is not statistically significantly worse (Li and 
Liang 2019). In the OHS detection field, only one research (Rosenthal et al. 
2020) built a large-scale English OHS corpus where the most confident 
pseudo-labeled data were chosen based on the predictions returned from 
four models (like LSTM and BERT), but without any re-training iterations.

Contributions

Our primary objective is to induce an efficient Arabic OHS classifier by 
enhancing its learning quality through the SSST iterations. The success of self- 
training lies in choosing only trusted data from the unlabeled dataset (van 
Engelen and Hoos 2019; Zhu and Goldberg 2009). At each iteration, the SSST 
approach must employ only highly confident predictions for all the classes to 
avoid learning from unreliable and noisy data (van Engelen and Hoos 2019; 
Zhu and Goldberg 2009). Our study is the first time the SSST process is carried 
out for many iterations and also presents in each iteration detailed results 
about the data (unlabeled, pseudo-labeled, and training) and predictive per-
formances. Our contributions to the OHS classification field are the following:

(1) Devise an SSST process based on a large-scale unlabeled corpus of 
5 million Arabic tweets. The OHS classifier gradually teaches itself by 
considering human-annotated data (called SEED) and confident 
pseudo-labeled data obtained from unlabeled data. We construct the 
SEED dataset by fusing two recent labeled and evaluated OHS Arabic 
datasets, called here OHS1 (Alsafari, Sadaoui, and Mouhoub 2020c) and 
OHS2 (Mubarak et al. 2020).
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(2) Build a new supervised Arabic OHS dataset with pseudo labels, 
obtained after many SSST iterations. This dataset is the largest one for 
Arabic OHS detection. Since past Arabic datasets are of small sizes, we 
intend to make this new corpus available for researchers to validate new 
learning algorithms and word-embedding models.

(3) Perform six groups of experiments to validate our SSST approach. To 
fairly evaluate all the produced classifiers, we utilize the same testing 
dataset to report on the predictive performances:

● The first experiment trains and compares several combinations of 
Machine Learning Algorithms (MLAs) and Text Vectorization 
Algorithms (TVAs) to choose the best baseline classifier for the SSST 
process. As MLAs, we choose SVM, CNN and BiLTSM. TVAs are of 
different types, including (a) a combination of character and word 
N-Grams and (b) three pre-trained word-embeddings: the recent con-
textualized AraBert and the non-contextualized W2V Skip-gram and 
DistilBert. We note that we pre-trained the Skip-gram network on 
a large textual corpus (19.4 million data) that we collected from several 
data sources.

● The second experiment demonstrates the feasibility of the iterative self- 
training approach for text classification. The goal is to improve the 
selected classifier’s performance progressively through many SSST itera-
tions (a total of 15).

● The third experiment assesses the quality of the new supervised OHS 
dataset using several heterogeneous text classifiers that we train only on 
the confidently pseudo-labeled data obtained from the sizable unlabeled 
dataset.

● The fourth experiment examines the impact of imbalanced data on the 
SSST accuracy. For this purpose, we gradually reduce the class distribu-
tion ratio of the supervised dataset over the learning iterations until the 
two classes become equally distributed.

● The fifth experiment explores the SSST efficiency in the context of low- 
resource labeled data by varying the proportions of the SEED dataset.

● The sixth experiment investigates ensemble-based self-training, using 
Maximum Voting and Average Voting strategies and two text classi-
fiers, to select confident pseudo-labeled data at each re-training 
iteration.

We structure the paper as follows. Section 2 reviews representative studies on 
self-training approaches. Section 3 builds the SEED training and testing 
datasets as well as the large-scale unlabeled dataset scraped from Twitter. 
This section also compares the distributions of labeled and unlabeled datasets. 
Section 4 describes in detail our SSST framework. Sections 5, 6, 7, 8 and 9 
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conduct diverse experiments to demonstrate the effectiveness of our self- 
training approach. Section 10 summarizes our findings and highlights some 
research directions.

Related Work

Lately, researchers have become interested in exploring self-labeled methods 
to address the scarcity problem of labeled data, such as self-training 
approaches. This section reviews such approaches that employed single 
classifiers to conduct self-training.

Based on standard MLAs, such as SVM, KNN and CART, the work 
(Wu et al. 2018) developed an SSST method that utilizes a clustering 
method called “density peaks” to determine the distribution structure of 
the training dataset. For increasing the classifiers’ performance, the 
authors incorporated the identified structure into the SSST process that 
has only two iterations. They evaluated the SSST framework, which is of 
the cluster assumption type, using two synthetics and two actual datasets. 
Overall, the proposed framework surpasses two semi-supervised learning 
methods: (1) semi-supervised tri-training based on co-training and (2) 
semi-supervised FCM based on self-training, for three out of the four 
tested datasets. However, as noted by the authors, the framework is less 
suitable for overlapping datasets, where it is more challenging to learn the 
structure of data space.

The study (Li et al. 2020) defined an SSST approach using on the “local 
cores” concept to tackle the adequacy and scarcity of labeled data, well-known 
problems in machine learning. The authors solved the problem of the insuffi-
cient initial labeled dataset by looking for the local cores in the unlabeled 
dataset. The authors utilized local cores to show the data distribution of both 
spherical and non-spherical data, and their labels are predicted via co-training 
or active labeling. Then, the local cores are utilized to augment the labeled 
dataset. Next, two base classifiers of SVM and KNN are trained on the 
augmented labeled dataset over one learning iteration. Using several UCI 
datasets, the experiments showed that the proposed method is superior to 
several other self-labeled methods.

In the context of speech recognition, the research (Kahn, Lee, and 
Hannun 2020) devised an SSST approach based on the encoder-decoder 
with attention model. It comprises several phases: 1) training a robust 
acoustic model using a small paired dataset, 2) fitting a language model 
with a large-scale text dataset to produce the pseudo-labels, 3) adopting 
two filtering techniques to remove noisy pseudo-labels, and 4) training an 
ensemble of acoustic models to augment pseudo-label diversity. Based on 
a paired and unpaired speech recognition corpus with clean and noisy 
settings, the experiments with single and ensembles models showed that 
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the SSST approach performance is much improved than a baseline model 
trained on only the paired dataset, over three iterations. In this work, 
ensembles of five and four models outperformed the single model with 
a clean and noisy setting, respectively. Later on, another work (Xu et al. 
2020) explored the fusion of the SSST defined in (Kahn, Lee, and Hannun 
2020) with unsupervised pre-training to take advantage of unlabeled audio 
data. The authors experimented with the combined approach using two 
benchmark datasets and attained a high performance. They concluded that 
the two approaches complement each other for speech recognition.

For image classification, the study (Nartey et al. 2020) proposed to use an 
“easy-to-hard” self-training approach based on CNN to leverage unlabeled 
data by pseudo labeling them and then adding the most confident examples to 
the labeled dataset. The image classifier was then trained using the expanded 
dataset. The most confident pseudo-labeled samples were selected based on 
a confidence threshold, and the authors experimented with three threshold 
settings, top 5%, top 10%, and top 20%. The proposed SSST method obtained 
higher accuracy than fine-tuning over two standard and three coarse image 
datasets. It also outperformed three supervised approaches on five out of the 
six datasets. According to the experiments, the best confidence threshold for 
pseudo-labeled selection is 10%.

In another study (Xie et al. 2020), the authors utilized self-training for image 
classification based on the teacher-student paradigm. The authors trained 
a teacher model using EfficientNets as the baseline classifier and the 
imageNet as the training dataset. They used the model to produce the pseudo- 
labeled data for 300 million unlabeled images. Both labeled and pseudo- 
labeled images noised via dropout and data augmentation are then employed 
to train the student model, which will be used as a teacher model in the next 
iteration. After three iterations, the model reached an accuracy of 88.4% with 
an improvement of 2.0% over the state-of-the-art.

For object detection and segmentation, (Zoph et al. 2020) examined the 
effect of self-training in comparison with pre-training. For self-training, 
the authors employed the teacher-student model called EfficientNet-B7 
and for pre-training, the RetinaObject detection model. The authors 
found that, unlike pre-training that can lower the performance when 
combined with stronger augmentation or high data regime, self-training 
improves the accuracy across dataset sizes and augmentation regimes. The 
experimentation was done with one training round. Furthermore, they 
highlighted that self-training was better than pre-training in terms of 
flexibility and scalability.

The research (He et al. 2020) examined the effectiveness of noisy SSST 
specifically for neural sequence generation tasks under low and high resource 
settings. Using the “Base Transformer Architecture.” The authors observed 
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that self-training with noisy inputs generated via perturbation and dropout for 
both machine translation and text summarization tasks is more effective than 
regular self-training.

Lastly, in the domain of OHS detection, to benefit from the vast 
content of posts on Twitter, the study (Rosenthal et al. 2020) developed 
a large-scale supervised English dataset using an ensemble of four single 
classifiers. The authors trained the four classifiers, Bert, PMI, LSTM and 
FastText, based on a small labeled dataset: Then, the most confidently 
classified positive examples of the unlabeled dataset are retained. The 
confident data are the aggregation of the confidences obtained by the 
four models. The new labeled dataset increased the predictive perfor-
mance compared to the original dataset. The authors also thoroughly 
examined easy and challenging examples.

Training and Testing Offensive/Hate Speech Datasets

Recently, the work (Alsafari, Sadaoui, and Mouhoub 2020c) constructed 
a robust OHS corpus written in the top two Arabic languages: (1) Modern 
Standard Arabic, which is understandable by all Arabic speakers, and (2) the 
Gulf Arabic dialect, which is spoken by the countries of the Arabian Peninsula. 
For collecting the data, the authors queried the Twitter platform using four 
searching strategies: keyword-based, hashtag-based, profile-based, and defen-
sive-based. After cleaning the scraped data, they obtained 5340 tweets that 
were annotated using a rigorous labeling process (Alsafari, Sadaoui, and 
Mouhoub 2020c):

● Clean: tweets that do not contain any offensive and hateful language, such 
as profanity, insults, threats, and swear words.

● Offensive/Hateful: tweets that attack or threaten individuals or groups 
based on their protected characteristics, including religion, race, gender, 
ethnicity, and nationality.

Furthermore, the three studies (Alsafari, Sadaoui, and Mouhoub 2020c, 
2020a, 2020b) employed successfully this Arabic corpus (called here 
OHS1) to evaluate and compare the performances of several OHS classi-
fication models based on supervised and ensemble learning. One issue of 
deteriorating the SSST accuracy is an insufficient initial training dataset 
(Li et al. 2020). Hence, the first training dataset should be sufficiently 
large to build a strong learning hypothesis from the beginning. 
Consequently, in addition to OHS1, we utilize another high-quality anno-
tated OHS Arabic dataset (called here OHS2) developed recently by 
(Mubarak et al. 2020) so that our target classifier possesses sufficient 
and adequate data to train on initially. OHS2 contains 8,000 tweets 
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labeled as Clean or Offensive. The annotation is compatible with the 
guidelines of the competition OffensEval2019, and around 19% of posts 
were considered offensive/hate. This corpus was employed as a benchmark 
Arabic dataset by the competition OffensEval-2020 for the multilingual 
offensive language classification (Zampieri et al., 2020). We preprocess 
both OHS1 and OHS2 as follows: (1) normalize English and Arabic 
numbers by replacing them with “@number,” (2) normalize elongated 
words by eliminating repetition of three or more characters, (3) normalize 
hashtags by deleting underscores and the symbol #, (4) normalize the 
three Arabic letters, Alef, Alef Maqsoura and Ta Marbouta, and lastly (5) 
remove non-Arabic characters, diacritics, punctuation, emojis, users’ men-
tions, and stop words.

As exposed in Table 1, we divide both OHS1 and OHS2 datasets into 
70% training and 30% testing data using the stratified splitting method. 
After that, we combine OHS1 and OHS2 training data to produce the 
SEED dataset that we utilize to develop the initial classifier. The SEED 
dataset has a class distribution ratio of Clean to Offensive/Hate (O/H) 
equals 3:1, which is acceptable. So, no need to re-balance the SEED 
dataset. Moreover, we build the testing dataset by merging OHS1 and 
OHS2 test data. In each SSST iteration, we use this new dataset to assess 

Table 1. Training and testing OHS datasets.
Dataset Size Training Data Testing Data

OHS1 5340 3738 1602
OHS2 8000 5600 2400
Combined 13140 9338 (SEED) 4002

Figure 1. Data distribution of labeled SEED dataset.
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fairly the re-trained OHS classifiers’ performance. The distribution of the 
SEED dataset based on character and word counts is illustrated in 
Figure 1. As we can see the majority of the tweets are short texts with 
less than 60 words and 300 characters.

Large-scale Unlabeled Corpus

Our objective is to gather representative social media posts. For this purpose, 
we employ Arabic Twitter as the main platform to collect our textual corpus. 
To scrape diverse, realistic, and unbiased data, we use generic keywords. In 
particular, we use 12 Arabic prepositional keywords, given below:

From: :In يف يف ; On: ىلع ; To: ىلا ; But: نكل ; All:: لك ; And: و .
Our approach motivation is to avoid potential dialectical or search bias in 

the crawled data, which is common in most available hate speech datasets 
(Ousidhoum, Song, and Yeung 2020). Our approach should provide an 
unbiased dataset that will allow us to train a robust Arabic OHS detector 
with a good generalization capability. Using the previously mentioned key-
words, we extract a tally of 8 million public tweets randomly through the 
Twitter API. Subsequently, we preprocess the entire corpus and remove 
duplicated, short (less than three words), and non-Arabic tweets. 
Furthermore, to increase dataset lexical divergent and to mitigate redundan-
cies, using the Jaccard similarity metric, we delete similar tweets that exceed 
a similarity threshold of 80%. After cleaning the corpus, we ended up with 
5 million reliable tweets. We normalize the whole corpus as done previously 

Figure 2. Data distribution of unlabeled dataset (5 million tweets).
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for the SEED dataset. As depicted in Figure 2, most of the tweets in this 
unlabeled corpus are short texts and have a similar distribution to the tweets in 
the SEED dataset, with less than 60 words and 300 characters.

Semi-Supervised Self-Training for OHS Detection

There are two primary types of semi-supervised classification (van Engelen 
and Hoos 2019; Zhu and Goldberg 2009): (1) transductive learning that only 
predicts the classes for an unlabeled sub-dataset using the labeled data, and (2) 
inductive learning (known as the true semi-supervised classification) that uses 
pseudo-labeled data to build a classifier to be used for future predictions. Our 
approach is of the inductive type that adopts self-training so that the classifier 
teaches itself from its own predictions. One benefit of self-training is that it is 
a wrapper method since we can employ any MLA, standard or advanced, to 
conduct the SSST process over several iterations (Zhu and Goldberg 2009).

Figure 3 illustrates the SSST framework to construct a robust text classifica-
tion model, based on three reliable datasets

Figure 3. Semi-supervised self-training for OHS classification.
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● The SEED training corpus of 9338 instances,
● The large-scale unlabeled corpus of 5 million instances,
● The testing corpus of 4002 instances.

After several self-training iterations, the SSST approach returns:

● A large-scale supervised Arabic dataset, which other researchers can 
utilize since in the Arabic setting, the very few datasets are of small sizes.

● An improved OHS classifier as it is trained on much more data. The 
classifier improves its predictive performance over the training iterations.

Algorithm 1: Semi-Supervised Self-Training for OHS Detection
Inputs: seedDataset, unlabeledDataset, testDataset, MLAs, TVAs, 

confidenceLevel, nc (number of classifiers)
Outputs: base classifier (improved), supervisedDataset (enlarged)
begin
//Select Optimal Baseline Classifier
1: candidateClassifiers = ;
2: for c = 1 to nc do
2.1: classifierc = train(TVA+MLA, seedDataset)
2.2: candidateClassifiers = addClassifier(candidateClassifiers, classifierc)
3: evaluatePerformances(candidateClassifiers, testDataset)
4: baseClassifier = selectBestClassifier(candidateClassifiers)
//Conduct SSST Iterations
5: supervisedDataset = seedDataset
6: do
6.1: pseudoLabeledDataset = predictLabels(baseClassifier, unlabeledDataset)
//Build confident pseudo-label sub-dataset
6.2: confSubset = selectTrustedData(pseudoLabeledDataset, confidenceLevel)
6.3: supervisedDataset = addData(supervisedDataset, confSubset)
6.4: shuffle(supervisedDataset)
6.5: baseClassifier = train(baseClassifier, supervisedDataset)
6.6: evaluatePerformance(baseClassifier, testDataset)
//Remove high confident predicted data
6.7: unlabeledDataset = removeTrustedData(unlabeledDataset, confSubset)
while (predictionProbabilities > = confidenceLevel) and (unlabeledDataset �;);

In Algorithm 1, we present the general SSST framework that comprises 
three main phases described below. In the experiments, we first select trusted 
pseudo-labeled data based on a confidence threshold of the probability scores 
of both classes. Next, based on this threshold, we choose trusted data by 
addressing the imbalanced class distribution and adopting ensemble learning 
in each iteration.
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A. Select best baseline classifier for the SSST process: for selecting the best 
classifier for the self-training process, we train and assess multiple heteroge-
neous OHS classifiers based on standard and deep learning algorithms (called 
MLAs). Before training any MLA, we first transform the textual data into 
numerical vectors using Text Vectorization Algorithms (called TVAs), such as 
word embeddings. Word embedding is a mechanism that maps a word into 
a fixed and real-valued vector to capture the semantic and syntactic informa-
tion of the word. It converts each word into an m*n matrix where m is the 
sequence length of the text and n is the embedding dimension. The text 
classifiers take advantage of word embeddings to extract discriminative and 
effective features. Word embedding initializes the weights of the input layer of 
the deep neural networks, and its quality significantly impacts the learners’ 
performance.

In the first experiment, we train several pairs of TVAs (such as N-Grams, 
Word2Vec Skip-Gram, AraBert and DistilBert) and MLAs (such as SVM, 
CNN and BiLTSM) using the SEED training dataset. We then evaluate the 
performances of the obtained classifiers using the same testing dataset. The 
configurations of the chosen MLAs and TVAs are explained in detail in 
Section 6. Finally, we choose the pair that optimally learns the OHS detection 
rules as the baseline classifier for conducting the SSST iterations.

B. Build confidently labeled sub-dataset at each iteration: we employ the 
optimal classifier (TVA+MLA) to label the unlabeled dataset artificially at each 
iteration. Subsequently, we retain only the highly confident predictions of both 
classes, Clean and Offensive/Hate, for the next learning step. We keep the 
prediction probabilities that are more than the threshold of 0.999 to reflect 
a high trust in the data. This data selection will help make the SSST safer (Li 
and Liang 2019) because wrongly predicted classes may mislead the SSST 
process. Lastly, we retain the least confident instances in the unlabeled dataset 
to be re-classified in the next iteration with less misclassification error.

C. Fine-tune baseline classifier at each iteration using the new supervised 
dataset: we re-train the inductive classifier on the expanded training dataset: 
the confident pseudo-labeled sub-dataset together with the previous training 
dataset. We shuffle the new supervised dataset before re-training. For a fair 
performance comparison, we assess each newly trained model using the same 
testing dataset. We keep iterating the two phases B and C until no prediction 
probabilities of 0.999 are found for both classes or the unlabeled dataset has 
been entirely processed.

Experiment#1: Baseline Classifier Selection

For choosing the appropriate baseline classifier for the entire SSST process, we 
first develop multiple heterogeneous OHS models: a standard classifier based 
on N-Grams and two deep neural-network classifiers based on three word 
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embeddings. We pre-train the non-contextualized word embedding 
Word2Vec SkipGram (W2VSG) and utilize two recent pre-trained contextua-
lized word embeddings: AraBert and DistilBert. Using the SEED training 
dataset, we train seven OHS classifiers: SVM with Word/Character 
N-Grams, CNN and BiLSTM with W2VSG, CNN and BiLSTM with 
AraBert, CNN and BiLSTM with DistilBert. In the following, we describe the 
configurations of the machine learning algorithms and text vectorization 
techniques.

Text Vectorization Configurations

Word/Character N-Grams (WCNG)
We combine word-ngrams with character-ngrams. This combination returns 
more representative features by using the power of word-ngrams with the 
morphological insight of the lower-range char-ngrams. We experimentally 
analyzed several ranges of char-ngrams and word-ngrams. The combination 
of (1–5) char-ngrams and (1–3) word-ngrams yielded the best results.

Our Pre-trained Non-contextualized Word Embedding
We locally trained W2VSG network with an ensemble of Wikipedia dump of 
three million Arabic sentences: a tweet dataset of 6.5 million Arabic tweets, 
and an united nation dataset of 9.9 million Arabic sentences. Actually, we 
extracted the tweets specifically to build a corpus that is closely related to the 
hate speech domain. The resulting dataset comprises 19.4 million sentences 
with 0.5 billion tokens. We trained the word embedding with this vast unla-
beled textual corpus, based on the hyper-parameter values proved efficient in 
several studies (Mikolov et al. 2013): 300 for the dimension size of the word 
vector and 5 for the size of the window context. We assign 5 to the minimum 
word count, which leads to a vocabulary with a size of 1.1 million words.

Existing Pre-trained Contextualized Word Embedding
As a contextualized word embedding, we employ AraBert and (Antoun, Baly, 
and Hajj 2020) DistilBert(Sanh et al. 2019). AraBert is a new pre-trained 
Arabic language embedding based on the bidirectional transformer architec-
ture devlin2019bert. It was trained on a sizable Arabic dataset containing 
70 million sentences, a vocabulary size of 64 K tokens, and an embedding 
dimension of 768. AraBert was reported to achieve high accuracy in three NLP 
tasks using eight datasets (Antoun, Baly, and Hajj 2020).

The multilingual DistilBert is a smaller and faster version of Bert. In (Sanh 
et al. 2019) was trained on a collection of Wikipedia consisting of 104 different 
languages. DistilBert was reported to retain 97% of the capabilities of language 
understanding, and was 60% faster and 40% smaller than Bert.
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Classifier Configurations

We train three classifiers, SVM, CNN, and BiLSTM, and tune their hyper- 
parameters using the random search. For SVM, we tune both the penalty 
parameter C and the kernel parameter σ. For deep neural networks, we first 
fix the random seed and random search over the number of layers, units, batches 
and epochs, dropout rate, and learning rate. The early stopping criterion is based 
on the validation loss. However, the instability of deep neural models as 
a function of the random initialization, mini-batch ordering, and non- 
determinism in the computation platform can result in a significant variation 
in the performances (Bhojanapalli et al. 2021; Madhyastha and Jain 2019; Xia 
et al. 2020). To reduce the effect of randomness in deep learning models, using 
the selected hyper-parameters, we train each of the classifiers 150 times using 
different random seed and choose the most performing model based on the 
validation set. We train the text classifiers with the Adam optimizer using the 
P100 Cloud GPU. The architectures of the three classifiers are described below.

Support Vector Machine (SVM)
SVM, a traditional classification method, was adopted successfully in numer-
ous text classification tasks (Borrajo, Romero, and Iglesias 2015; Liu, Bi, and 
Fan 2017). Based on the margin maximization, with linear or nonlinear kernel 
functions, SVM finds a hyper-plane that separates the target classes’ contents. 
For this study, we employ the Radial Basis Function (RBF) kernel and L1 
regularization.

Convolutional Neural Network (CNN)
This deep network was successfully adopted for object and text recognition 
(Georgakopoulos et al. 2018; Hughes et al. 2017; Wang et al. 2016). The 
standard CNN consists of convolutional, pooling and fully-connected layers. 
For text classification, the convolutional layer acts as N-gram feature extractor. 
First, the input sequence is converted to a 2-D matrix using an embedding 
layer. Second, the convolutional layer followed by dropout and max pooling 
layers will transom the embedding matrix into one-dimensional vector. The 
final layer outputs the probability distributions over the target classes. In our 
work, we adopt a CNN with 250 filters, a kernel size of 2, a stride of 1, and 
a dropout rate of 0.2. All the hidden layers use ReLU activation function, while 
the dense layer uses Sigmoid function along with the binary cross-entropy loss.

Recurrent Neural Network (Bilstm)
This network type is best suited for sequential data such as speech and 
language (Graves, Mohamed, and Hinton 2013; Lee and Dernoncourt 2016). 
It is constituted by stacking layers sequentially. The first step is to convert the 
input sequence to its vector representation using an embedding layer. The 
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first-word vector is fed to a hidden layer that produces a hidden vector to 
the second layer. The latter processes this vector with the second word’s vector 
representation to output the second hidden vector. This process repeats until 
the end of the sequence is reached. We use BiLSTM, a variation of recurrent 
neural network, with one hundred hidden units, equal to the maximum 
sequence length. BiLSTM consists of a forward pass to process the sequence 
from left to right and a backward pass for the opposite direction processing. 
A fully connected layer processes the output of both forward and backward 
passes using the Sigmoid function and cross-entropy loss. The hidden layer 
uses Relu function with a dropout rate of 0.2.

Heterogeneous Classifier Evaluation

In our SSST experiment, for each iteration, we retrain the base classifier with 
the newly built supervised dataset and then use it to predict the labels of the 
vast unlabeled text corpus. For selecting a model for self-training, the predic-
tion accuracy is one of the essential aspects to consider. Other aspects are the 
model size and inference speed for one instance (mini-seconds). We assess 
each of the seven classifiers with the three model aspects: Accuracy, Size and 
Inference speed. For the accuracy evaluation, we adopt the F-macro, Precision 
and Recall, which are more suitable for unbalanced datasets.

As observed, CNN with W2VSG yields the best outcome across the three 
accuracy metrics. In terms of size and inference speed, SVM+WCNG is the best 
model. However, this model is the least performing across the classification 
metrics. When comparing deep classifiers, we can see that CNN+W2VSG is 
more efficient in terms of inference speed and size. The time gap between SVM 
+WCNG and CNN+W2VSG is only 16.8 ms. Thus, considering the three model 
aspects, CNN+W2VSG is the best overall model and consequently we select it 
for our SSST experiments. This model is the best in terms of accuracy, which is 
a crucial factor for the success of the self-training process. We also note that 
contextualized word embeddings, AraBert and DistilBert, are slow and generate 
large size models, which are not suitable for the semi-supervised learning 
context because of the many iterations and the large size of the training datasets.

Experiment#2: SSST Process Evaluation

This section thoroughly evaluates our SSST process using the SEED dataset and 
the vast unlabeled dataset. First, we train the CNN+W2VSG classifier using the 
SEED dataset and then use the learned model to classify the whole unlabeled 
dataset. Only highly confident pseudo-labeled examples with a probability 
greater or equal to 0.999 will be added to the training dataset to produce the 
next classifier. At each SSST iteration, Table 3 presents the unlabeled dataset, 
confidently self-labeled sub-dataset, new training dataset, and count of Clean (C) 
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to Offensive/Hate (OH) instances. We conduct a large number of SSST itera-
tions compared to previous studies, even though we are dealing with complex 
classification models. As shown in the related work section, most studies tried 
only one iteration, with a maximum of three iterations, which are not enough to 
properly assess the iterative self-training process.

Since the prediction probabilities’ confidence level is very high for both 
classes (0.999), the training dataset size increases slowly but safely. In addi-
tion to the initial phase, we conduct 15 self-training iterations to produce 
a new OHS corpus of 52,777 labeled instances, the largest supervised dataset 
known in the Arabic context. We stop at 15 iterations because it takes 
a considerable amount of time training the classifier 150 times for one single 
iteration to solve the randomness issue. Since our unlabeled corpus is still 
large, we can keep iterating if we want to build a more extensive training 
dataset.

We can observe that the ratio of offensive/hate to clean is increasing across the 
iterations. A manual analysis of the confident labeled data suggests that this 
imbalanced class ratio can be due to the dominance of a single offensive hashtag 
that was trending during the unlabeled corpus collection. After few iterations, 
the classifier was confident to label instances with this specific hashtag as 
offensive/hate. In most iterations, the imbalanced class ratio is acceptable, and 
the accuracy is very satisfactory. Also, the size of the selected confident labeled 

Table 2. Selecting optimal baseline classifier for SSST.
Model Precision Recall F1-Score Model Size (MB) Inference Speed (ms)

SVM+WCNG 80.89 87.17 83.32 29 21.5
CNN+W2VSG 87.69 89.60 88.59 55 38.3
BiLSTM+W2VSG 86.68 89.49 87.95 58 91.2
CNN+AraBert 86.57 88.51 87.47 544 68.7
BiLSTM+AraBert 87.14 87.87 87.50 544 71.8
CNN+DistilBert 76.40 71.07 71.76 541 68.5
BiLSTM+DistilBert 85.74 87.16 86.41 542 70.1

Table 3. Augmenting training dataset at each SSST iteration.
Iteration Unlabeled Data Confident Labeled Data Training Data

Initial NA NA 9338
1 5000000 4457 13795
2 4995543 1227 15022
3 4994316 557 15579
4 4993759 498 16077
5 4993261 1569 17646
6 4991692 949 18595
7 4990743 852 19447
8 4989891 4672 24119
9 4985219 437 24556

10 4984782 1570 26126
11 4983212 13804 39930
12 4969408 3971 43901
13 4965437 3137 47061
14 4962277 4562 51623
15 4957715 1154 52777
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dataset fluctuates across the iterations due to changes in training data. Moreover, 
adding correctly pseudo labeled data to the training dataset increases the 
classifier labeling confidence, increases the size of the confident labeled data, 
and adds noisy predicted labels to the data. Therefore, the classifier labeling 
confidence and the size of the confident labeled data are reduced.

Table 4 exposes the size of each extended training dataset and the predictive 
performance at each iteration, Precision, Recall and F1-score.

The accuracy is high from the initial phase, with an F-score of 88.59% and 
the best F1-Score of 89.60%. Overall, Precision and F1-score are increasing 
gradually using the self-labeled examples, with 1.01% improvement in F1- 
score and 1.51% in Precision over the baseline performance. However, the 
Recall values fluctuate slightly over the iterations due to the noisiness in the 
pseudo-labeled examples. The best recall of 90.73% is obtained in iteration 
#13, with an improvement of 1.13% over the initial Recall.

Experiment#3: Pseudo-labeled Data Quality Evaluation

To check the SSST approach efficacy, we train and compare the five classifiers 
on the SEED dataset (human-annotated) and the self-labeled dataset (machine- 
annotated). The latter is obtained by discarding the SEED data from the 
training dataset obtained in Table 4 at the last iteration, consisting of 43439 
(52777–9338) instances. We then assess all the classifiers’ performance using 
the same test dataset, as presented in Table 5. The self-labeled dataset is of high 
quality as the F1-score ranges from 87.81% to 81.77%. The highest accuracy is 
returned with the classifier CNN+W2VSG, and the lowest outcome by BiLSTM 
+AraBert. We can also conclude that the pseudo-labeled dataset has a similar 
quality to the human-annotated dataset. For example, the gap between SEED- 
based CNN+W2CSG and self-labeled based CNN+W2VSG is only 0.78%.

Table 4. Predictive performance at each iteration.
Iteration Training Data Precision Recall F1-Score FNR

Initial 9338 87.69 89.60 88.59 13.94
1 13795 88.29 90.03 89.11 13.42
2 15022 88.50 90.17 89.28 13.28
3 15579 88.15 90.32 89.15 12.69
4 16077 88.34 90.17 89.20 13.16
5 17646 88.49 89.94 89.18 13.78
6 18595 88.15 90.20 89.10 12.95
7 19447 88.73 90.05 89.36 13.71
8 24119 88.77 90.26 89.48 13.29
9 24556 88.67 90.10 89.35 13.57
10 26126 89.17 89.44 89.31 15.42
11 39930 89.11 89.69 89.39 14.82
12 43901 88.73 90.58 89.60 12.53
13 47061 88.46 90.73 89.51 12.00
14 51623 88.57 90.05 89.28 13.59
15 52777 89.20 89.53 89.37 15.26
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Experiment#4: Class Distribution Ratio Minimization

The fourth experiment assesses the class distribution ratio of the supervised 
dataset on the SSST performance. Each iteration self-trains the model CNN 
+W2CSG on the supervised dataset by gradually reducing the class distribution 
ratio of Clean to Offensive/Hate (OH) until the classes are equally distributed. 
The ratio begins with 3:1 for the SEED dataset, and then after four iterations, it 
reaches 1:1 where the classes are equally distributed. In each iteration, to attain 
the desired ratio, we compute the size of the OH samples to be selected as follows: 

OH ¼
Nc � Noh � Rnew

Rnew
(1) 

Where Nc is the number of clean instances, Noh the number of OH instances, 
and Rnew the target class distribution ratio.

Table 6 exposes the results for each SSST iteration, consisting of two main 
parts: (1) classifier training based on unlabeled data, retained confident OH data 
(OH) and training data, and (2) predictive performance on the testing dataset, 
using Precision (P), Recall (R) and F1-score (F1). Based on the above formula 
(1), we select the positive examples from the pseudo-label dataset to attain the 
selected ratio in each iteration. For instance, to attain the ratio of 2.5 to 1 in the 
first iteration, we keep the top 356 confidently predicted OH examples. Those 
selected examples have a high confidence range of [0.999796, 0.999821]. We 
show the confidence range to make sure we are keeping only high prediction 
probabilities. After four iterations, the supervised dataset increased of 4510 
samples using only positive examples with very high confidence.

After a thorough examination of the pseudo-labeled exampled selected at 
each iteration, we find out that most of the highly confident OH examples come 
from one particular offensive and obscene hashtag. Although, those tweets are 
offensive, the classifier is not leaning much from seeing similar OH examples 

Table 5. Performance comparison using SEED vs. self-labeled data.
Training Data SEED Data Only Pseudo-Labeled Data Only

Model Precision Recall F1-Score Precision Recall F1-Score

SVM+WCNG 80.89 87.17 83.32 81.00 85.26 82.77
CNN+W2VSG 87.69 89.60 88.59 86.63 89.22 87.81
BiLSTM+W2VSG 86.68 89.49 87.95 86.52 87.87 87.16
CNN+AraBert 86.57 88.51 87.47 83.56 82.55 83.03
BiLSTM+AraBert 87.14 87.87 87.50 79.58 85.20 81.77

Table 6. Lowering class imbalance ratio at each SSST iteration.
I# UnlabData OH Data ConfiRange TrainData Ratio P R F1

In. NA NA NA 9338 3:1 87.69 89.60 88.58
1 5000000 356 0.999796–0.999821 9694 2.5:1 87.89 90.28 88.99
2 4999644 692 0.999457–0.999908 10386 2:1 87.48 90.50 88.84
3 4998952 1154 0.999643–0.999570 11540 1.5:1 87.81 90.16 88.89
4 4997798 2308 0.998828–0.999827 13848 1:1 87.53 90.65 88.93
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coming from the same hashtag in each iteration. Thus, we repeat our experi-
ment by ignoring any tweets from this hashtag. The results of this experiment 
are presented in Table 7. As we can see, the accuracy improved to 89.19% as 
a result of removing those tweets.

Figure 4 shows the classifier performance as we lower the class distribution 
ratio with and without the obscene hashtag. As we can see, balancing the data 
resulted in an improvement of the overall performance. Furthermore, we can 
see that removing the tweets from the obscene hashtag yielded the best F1- 
score and Precision.

Table 7. Lowering class imbalance ratio after removing hashtag examples.
I# UnlabData OH Data ConfiRange TrainData Ratio P R F1

In. NA NA NA 9338 3:1 87.69 89.60 88.58
1 4948874 356 0.999860–0.999943 9694 2.5:1 87.56 90.62 88.94
2 4948518 692 0.999605–0.999643 10386 2:1 88.35 89.15 88.74
3 4947826 1154 0.999649–0.999661 11540 1.5:1 87.30 91.33?? 89.06
4 4946672 2308 0.998446–0.998663 13848 1:1 88.31 90.20 89.19

Figure 4. CNN+W2VSG performance by lowering class distribution ratio.
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Experiment#5: Low-resource SEED Dataset Impact

To assess our self-learning approach in the setting of low-resource training 
data, we experiment with three different proportions of the SEED dataset, 
10% (934 data), 25% (2334 data) and 50% (4669 data). For each proportion, 
we conduct the initial training of the CNN+W2VSG model and then five 
SSST iterations. Table 8 reports the accuracy for each proportion. As 
observed, our approach works best with small-sized datasets. When starting 
with less than 1000 labeled examples, the baseline classifier has an F1-score 
of only 0.77%. Extending the dataset with self-labeled examples resulted in 
a significant performance gain with an improvement of 7.9% in the F1- 
score after five iterations. Overall, the improvement persisted but dimin-
ished as we increase the initial labeled dataset proportion. For the 25% 
proportion, we achieved an improvement of 4.2% in the F1-score. For the 
50% proportion, we gained the largest improvement at the end of iteration 
#4, with a gain of 0.68% in the F1-score.

Figure 5 shows the classifier performance with 10%, 25%, and 50% of the 
SEED dataset over five iterations. As we can see, our SSST approach works well 
with smaller datasets. This finding is consistent with previous studies on semi- 
supervised classification, such as (Elshaar and Sadaoui 2020; Viegas, Cepeda, 
and Vieira 2018).

Table 8. Classifier performance with 10%, 25% and 50% of SEED dataset.
Iteration Training Dataset Precision Recall F1-Score

10% SEED Data
Initial 934 76.99 78.67 77.76
1 2664 81.89 83.41 82.60
2 4138 81.91 86.18 83.70
3 9500 83.67 86.21 84.81
4 22770 84.20 87.47 85.64
5 84096 84.57 86.97 85.66

25% SEED Data
Initial 2334 83.16 86.21 84.50
1 5084 84.44 87.35 85.74
2 6466 85.03 86.73 85.83
3 8974 84.98 87.43 86.10
4 17276 85.22 88.32 86.60
5 57236 87.12 88.41 87.74

50% SEED Data
Initial 4669 85.90 89.33 87.41
1 10591 86.64 89.15 87.79
2 36697 87.21 88.25 87.71
3 52479 86.50 89.32 87.77
4 62439 87.43 88.82 88.09
5 113531 86.30 89.81 87.85
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Experiment#5: Ensemble-based Self-training

In this section, we incorporate ensemble learning within the self-training 
process. We experiment with two ensemble strategies for the data selection 
part using two text classifiers. For ensemble learning, we utilize the Maximum 
Voting and Average Voting based on the confidence threshold. We choose the 
top two performing classifiers from Table 2, which are CNN+W2VSG and 
BiLSTM+W2VSG. With Maximum Voting, we first select the instances with 
the maximum probability scores. We then retain only the scores above the 
confidence threshold. Using the second strategy, we first compute the average 
of the two probability scores for each instance and then select all the instances 
with the average value above the confidence threshold.

Tables 9 and Tables 10 expose the augmented training dataset and the 
performance results for each iteration. The best CNN model is obtained with 
the averaged pseudo-labeled data, and improves the baseline classifier by 0.92% 
after one iteration. The retrained BilSTM model with the Average Voting is the 
most performing and improves the initial classifier by 1.44% after two iterations. 

Figure 5. Classifier performance by varying size of SEED dataset.
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Our results show that the ensemble-based selection of confident pseudo labeled 
data achieves comparable results to classical self-training but very early in the 
process.

Discussion

Our self-training approach leverages the unlabeled data to improve the perfor-
mance of the hate speech detection model. We showed that the self-training 
method produced good quality pseudo-labeled data; the latter is much larger 
than the initial labeled dataset. This new supervised dataset is publicly available 
for the research community to advance Arabic hate speech detection systems 
further. We also demonstrated that our framework returned promising results 
in different experimental scenarios, with the most promising being the low 
resource setting where only a few manually annotated instances are available. 
We showed that an improvement of up to 7% was obtained from using 
additional pseudo- labeled data. Additionally, our self-training framework 
could be used as a tool to augment the dataset for any text classification tasks.

Although the experimental results of self-training are encouraging, we 
addressed some challenging issues, including (i) the imbalanced class ratio 
of the selected confident pseudo-labeled data, and (ii) the under- 
representation of hard examples in the selected highly confident data as the 
proposed selection strategy only selects non-confusing examples for retrain-
ing. However, focusing the attention on the hard examples may be more 
beneficial in boosting the classifier’s performance.

Furthermore, we manually examined the misclassified posts, which revealed 
some dominant patterns that are still challenging for the classifier even when 
trained on a larger dataset. For example, many of the hate/offensive posts 

Table 9. Performance with averaged probability scores.
Iteration Training Dataset Precision Recall F1-Score

CNN+W2VSG initial 9338 87.69 89.60 88.59
1 16418 87.99 91.40 89.51
2 45569 88.58 90.28 89.39

BiLSTM+W2VSG initial 9338 86.68 89.49 87.95
1 16418 87.57 89.93 88.66
2 45569 87.82 91.37 89.39

Table 10. Performance with maximum probability scores.
Iteration Training Dataset Precision Recall F1-Score

CNN+W2VSG initial 9338 87.69 89.60 88.59
1 38433 88.44 90.57 89.43
2 106423 87.63 90.95 89.11

BiLSTM+W2VSG initial 9338 86.68 89.49 87.95
1 38433 86.95 90.92 88.66
2 106423 88.89 89.83 89.35
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incorrectly labeled as clean include implicit hate, such as the tweet: “The 
kitchen awaits you. you are sitting among men without work – خبطملا

لغشالبلاجرلاطسوةسلاجكرظتني ”
This tweet has no offensive or slur words making it difficult for the text 

classifier to make a correct decision. Another prevalent patterns incorrectly 
labeled as clean are the tweets with dialectal offensive or hateful terms that are 
underrepresented in the training corpus, like the tweet: “Exterminate the 
nomads exterminate the nomads exterminate the nomads. – ودبلاوديبا

 is a rare ” وديبا :where the word “exterminate ” ودبلاوديباودبلاوديبا
term found only in some Arabic dialects.

On the other hand, clean tweets incorrectly labeled as hate/offensive tend to 
counter and negate hate speech, such as the tweet: “Not all **** are barbaric or 
all **** are barbaric or we do not judge people by one person” - عيمجسيل

صخشنمبعشيلعمكحنالجمه*****عيمجواجمه***** “
Another dominating pattern in false positives instances are the tweets that 

contain slur or abusive words but are neither hate nor offensive, such as the 
post: “lonely session to mourn my life and my sh*** exam

- لايزيللايرابتخأويظحىلعمطلأناشعةينادحوةسلج *“

Conclusion and Future Work

In this paper, we harnessed a large amount of social media posts to enable 
more robust learning of offensive and hateful speech for the Arabic 
language. We successfully exploited the iterative semi-supervised self- 
training approach to develop a robust text classifier, a deep neural net-
work combined with a pre-trained word embedding, using a small labeled 
dataset and a rich unlabeled dataset. Moreover, we built a reliable super-
vised Arabic corpus that researchers can utilize to assess new learning 
algorithms and word embedding mechanisms. It is worth mentioning that 
this is the first time semi-supervised learning is conducted with so many 
iterations, even though deep neural networks re-training is very time- 
consuming and the running time increases with the size of the textual 
corpus. We conducted six groups of experiments and showed that SSST is 
a competent approach to developing robust OHS classifiers with much 
less human effort and time.

There are several research directions for OHS classification, given below:

● Incorporate active learning within the SSST process. Generally speaking, 
active learning selects training data based on their estimated informative-
ness. The idea here is to utilize active learning in each iteration to choose 
the best samples from the unlabeled dataset to be labeled by the OHS 
classifier.
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● Combine SSST with incremental learning. Instead of re-training from 
scratch, the OHS classifier is updated incrementally with the new labeled 
data in each iteration by retaining past learned knowledge. Incremental 
learning has been shown to improve predictive accuracy and time effi-
ciency compared to static learning.

● Consider the socio-cultural context for hate speech detection. We will 
investigate demographic information together with social graphing to 
build multi-view text classification models. The objective here is to 
improve the classifier’s interpretability and predictions.
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