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Abstract

In this paper, we study the boundary behavior of solution to the singular Dirichlet problem
—div(|Vu|™ 2Vu) = b(z)g(u) + A|Vu(z)|1m =, z€Q,
u >0, z €,
ulag =0,

where Q is a bounded domain with smooth boundary in RY, A € R,m > 1,0 < ¢ < m/(m — 1),
lim,_,q+ g(s) = 400, and b € C*(Q), which is non-negative on Q and may be vanishing on the
boundary, mainly, we investigate the exact asymptotic behavior of solution to the above problem.
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1 Introduction

In this paper, we plan to investigate the exact asymptotic behavior of solution to the following problem

—div(|Vu|™2Vu) = b(z)g(u) + A|Vu(z)]1m), x € Q,
u >0, T € Q, (1.1)
ulaq =0,

where Q is a bounded domain with smooth boundary in R¥N(N > 1), A € R.m > 1,0 < ¢ <
m/(m — 1), g satisfies

(1) g € C*((0,00), (0,00)), ¢'(s) < 0forall s > 0, lim,_, o+ g(s) = +00;

and b satisfies

(b1) b e C*(2) for some a € (0, 1), is non-negative in © and positive near the boundary 9.
when m = 2, the problem (1.1) becomes

—Au = b(z)g(u) + A|Vul?, ©v>0, z€Q, ulagg =0, (1.2)

Problem (1.2) arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous
fluids, chemical heterogeneous catalysts, as well as in the theory of heat condition in electrical
materials(see [1-3]).

when \ = 0, problem (1.2) becomes

—Au=b(z)g(u), u>0, z€Q, ulsga =0, (1.3)

problem was discussed in a number works (see[3-5]).
When u|sq = 0 becomes u|sn = 400, problem (1.1) becomes boundary blow-up elliptic problems

u >0, x € Q, (1.4)

{ —div(| V| Vu) = b()g(u) + AVu(@)|"" D, zeq,
u|an = +00,

When m = 2, the above problem becomes
—Au = b(z)g(u) + A|Vu(z)|"" ™V, 2 €Q, u>0, z€Q, ulsg = +o0, (1.5)

many authors discussed the above problems[7-18].

In this paper, we consider the quasilinear elliptic problem (1.1). We modify the method developed
by Zhang [6] and other authors’ work, which showed the exact asymptotic behavior of solutions
near the boundary to the quasilinear problem (1.1), extend and complement the results of [6] to a
quasilinear elliptic problem (1.1).

Our main results are as follows:

Theorem 1.1. Let A\ € R,0< ¢ < 1,1 <m <2 (orq>1,m > 2), b satisfies (b1) g satisfies (g1)
and g € NRV Z_., with v > m — 1. Suppose that there exists a positive non-decreasing C"-function
k€ NRVZ, 5 witho € [0, 1 1) and a positive constant b such that

m—1

(b2) limg(z)—0 % = bo,
then the solution uy € C(Q) N C%(Q) to problem (1.1) satisfies

: ur(z)
a0 o (K(d(n) ~ &

where ¢, 7" = 202(o2 D) and o, € C[0,a] N C?(0, o] satisfies

»1(t) ds
————==1t, t€[0,a] forsmall a >0, (1.12)

0 r/mGa(s)
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K(t)= /Ot k(s)ds, te0,a]; Ga(t)= /tb g(s)ds, te€(0,b], b>0. (1.13)

Moreover, o1 € NRV Z5,(14+) and there exists y2 € C(0, a] with lim,_, 5+ y2(s) = 0 such that ¢: (t) =
12/ () o 222 % te(0,al.

2 Preliminaries

In this section, we present some bases of the theory which come from Senta [19], Preliminaries in
Resnick [20], Introductions and the appendix in Maric [21].

Definition 2.1. A positive measurable function f defined on [a, +oc0), for some a > 0, is called
regularly varying at infinity with index p, written as f € RV, if for each £ > 0 and some p € R,

. f(&s)
lim
5—00 f(S)
In particular, when p = 0, f is called slowly varying at infinity.

Definition 2.2. A positive measurable function f defined on [a, +oc0), for some a > 0, is called
rapidly varying at infinity if foreachp > 1

=", (2.1)

lim f) = oo. (2.2)
s—oo SP
Clearly, if f € RV,, then L(s) := f(s)/s” is slowly varying at infinity.
Proposition 2.1 (Uniform convergence theorem). If f € RV, ,then (2.1) holds uniformly for
& € [e1, c2] With 0 < ¢1 < c2. Moreover, if p < 0, then uniform convergence holds on intervals of the
form (a1, 00) with a1 > 0; if p > 0, then uniform convergence holds on intervals (a1, co] provided f is
bounded on (a;, co] for all a; > 0.
Proposition 2.2 (Representation theorem). A function L is slowly varying at infinity if and only if
it may be written in the form

L) = e enl [ Man), s> a, (2.3)
ai
for some a; > a, where the functions ¢ and y are measurable and for s — oo, y(s) — 0, andy(s) —
C(),With co > 0.
We call that

L(s) =co exp(/S @dr}, s> ai, (2.4)

is normalized slowly varying at infinity and
f(s) = cos’L(s), s> a, (2.5)

is normalized regularly varying at infinity with index p (and written as f € NRV,).
Similarly, g is called normalized regularly varying at zero with index p ,written as g € NRV Z, if
t — g(1/t) belongs to NRV,. A function f € RV, belongs to NRV, if and only if

f € C'fas, 00), forsome a; >0, and lim SJ{(S) = (2.6)

Proposition 2.3. If functions L, L, are slowly varying at infinity, then

(i) L forevery o € R, c1L + c2L1 (¢1 > 0,c2 > Owithes +¢2 > 0), Lo Ly
(if L1(t) — +o0 as t — +o0), are also slowly varying at infinity;

(ii) for every 6 > 0 and t — +o0,t’ L(t) — 400 and t~°L(t) — 0;

(iii) for p € Rand t — oo, 2EE) g ang LMY _, )
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Proposition 2.4. (Asymptotic behavior). If a function H is slowly varying at zero, then for a > 0
andt — 07,

() [LsPH(s)ds 2= (B + 1)~ PH(), for > —1;

(i) [ sPH(s)ds = (- — 1) "' P H(¢t), for 8 < —1.

Corollary 2.1. If g satisfies (¢1) and g € NRV Z_., with v > 1,then:

. a y(s) .
(i) g(t) =t 7 4 0 <t < a, y € C0,a], lim, o+ y(s) = 0;

i 1 s . . m G

(“) hmt—>0+ g(t) = +00 = hmt—>0+ Go (t), hmt—>0+ ng(g) =0= hmt—>0+ @1
AT G a0 ’

(i) lim, o G2 = yilimgor e = —.

Corollary 2.2. k in Theorem 1.1 has the following properties:
(i) k(t) = t7/2e)8 5245 0 < ¢ < a, gy € C(0,a], lim, o+ yi(s) = 0;

(i) lim,_, o+ k(@) =0; hmtﬁw ké? =0/2;lim, o+ ﬁ(i; =2/(2+40);
(iii) lim, _, o+ ktz,)g)(t) =lim,_, o+ tk lim, o+ % =0/(2+40);

3 Proofs of the Main Results

First we give some preliminary considerations.
Lemma 3.1. Under the assumption in Theorem 1.1:
(i) 1 € NRV Zy)(154);
(i) (gop1 0 K)I™ 1. K9. k972 € RV Zg with 8 = %.
Proof. (i) We see by (2.6), the following Lemma 3.2(i) and Proposition 2.2(i) that 3 € NRV Z_(,_1)/(14+)

and lim, o+ 218 = 2/(14 7), Thus @1 € RV Za)(14).
(ii) follows by (i) and Proposition 2.3.

Lemma 3.2. Let g,k and o1 be as in Theorem 1.1, then:

Y1) _ m—1—vy.
() hrﬂtaoJr t<P”(t) 1 ’Y;
(g—1)(m—1)+1

(i) im, g+ (L — 0, g € (0,m/(m — 1))

N £9(m=1) (1Yo (K (1)) (a—1) (m—1)+1
(iii) lim,_, g+ ¢ L =0, g€ (0,m/(m—1)].

Proof. We see by (1.12) and a direct calculation that
e1(t) = R/mGa(p1(1), —(p1(1)" 21 (t) = g(p1 (), 0<t<a.
(i) It follows by Corollary 2.1 and I'Hospital’s rule that

1
. A RNT (mGa(er(MN' "m _ . (mGa (o1 (MN' "™ /g(u)
hmt—>0+ m = hmt—>0+ W = - hmu—>0+ J 'rr?éz(s)

. mg’ (u)Ga(u
= —lim,_,o+ [f (m—1)— 2 =2 ;Qzuf( )]
. / . G

= (ml— 1) +mlim, o+ %s;) lim,,_, o+ ug((:j;
m—1—v

;/+1 . 2 2
PR G . 1t Len™- . mGa(u
(ii) lim, o+ (f;,l,(@)) =lim, o+ % = lim,, o+ 22 = .
Since lim,_, o+ ¢} (t) = +oo, we have

- (pipla-Dim=DH . (21 (1) s /
lim_, o+ ] ¢ B — lim_, o+ AUON lim, o+ (£1(2))

=0,for0 <¢g<m/(m—1).

(iii) We see by Lemma 3.1(ii) and Proposition 2.1(ii) that

(g—1)(m—-1)+1

lim (g(1(K(8)))" K ()k"(t) = lim t"H(t) = 0,

t—0+ t—0+

where H is slowly varying at zero.
For1 <m <2, 0<q<1,itfollows that
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(g—1)(m—1)+1
ka(m=1) (1) (w'l (K (t))

lim,_, o+ k™ (t) o (K (t))
(g—1)(m—1)+1 m
) lim,_, o+ {(g(npl(K(t))))q—qu(t)kq—2(t)

—(m—-2)

_ PAGIO))
= lim; o+ (K(t)w (K(D)

fim, o+ (g(;))m 2 ([@i(K(t))] Wfl)(mfl))

Form>2 1<q¢<m/(m-1),

o) (re(eyy] VY
140
A
—(m—1)(a—D)[e} (K(®))]
k2(t)—k' () K (t)
k2 (1)
—(m—1)(a—D)[} (K(®))]
YOO
k2 (%)

hrnt—>()Jr

—(g—1)(m—1)—1

= hInt—>O+

—(g—1)(m—1)—1

= liInt—>O+
such that )
. —1)(m—1

s (45) ([ee@) )

m— m—2
e o (] Y
= | lim,_,o+ KD

®(t)
=0.

The proof is finished.
Proof of Theorem 1.1. Let ¢, @™~ = 7, /by, where

_ 2= (m—1)(g 1) L
T et om0 T

Fix e € (0,70/4) and let

bo 1/(v+m—1) bo 1/(v+m—1)
b1e = (7‘0—25> , b= (7‘0—1—25)

2 1/(y+m—1) %, 1/(v+m—1)
(70> :Cl<525<€o<f15<02:(70) .

37’0 T0

—(m-2)

oy +m=1)
2+o0)(y—m+1)

> 0.

It follows that

Since 99 € C?, there exists a constant ¢ € (0, do/2) which only depends on © such that

(i) d(z) € C*(Qs) and |Vd| = 1on Qs = {z € Q : d(z < §)}.

By (b1), (b2), corollary 2.2 and Lemma 3.2, we see that corresponding to ¢, there is 6. € (0,9)
sufficiently small that:

(ii) For i=1,2,
(m — DR @E)K@E@) A K@) G
RaE) sei 0T @) sepo 2
gD VR (d(w) (4 (K (d()) DOm0 .
M TE) ARy | ) 00

(iii) For = € Q. ,

&2 K™ (d())g(pr (K (d(x))))
9(aep1 (K (d(2))))

2 R (d(x)g (1 (K (d(2))))
9(&1ep1 (K (d())))

(to+¢) <bz) < (10 — ),
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Let 4. = &1 (K (d())), u, = &ep1(K(d(z))), € Q..
We see that for z € Q5_,

div(|Va.|™*Vi.) +b(x)g(ﬂ5($)) N (z)|2m =1

)
= (m - 1) ( (K ((x»)) (K (d(x))k <(>>+£$*1(¢3<K<d<x>>>) K (d(2))-

m—1
Ad(z) + (m o (K (d(z) ))) K2 (d(2))K (d(2)) + ba)g(Ereior (K (d(2))))
q(m—1)
g ”( | (K(d x))) KD (d(2)
_ ¢em—1 m b(z)g(€1ep1 (K (d(x))))
— K _
€2 gler (K™ () { grtigaibemtion o,
(m— 1)k (d(l))K(d(I)> P (K (d(x))) . .
( 2(d()) K@) (k@) — (o —m+1)
_KU@) K@) A gy Ml DRI d(e) (o] () DOm0
k(d(z)) K(d(z))e) (K(d(z))) k™ (d(x)) o (K(d(x)))

<0

i.e., U is a supersolution of problem (1.1) in s, .
and

div(|Vau, | ?Vau,) + b(z)g(u (m)) +>\| u, (2)|70mD N

=(m—1) ;z—l(goﬁ(K(d(m)))) o (K (d(x))k™ (d(x)) +£;'g*1<<p’1(K(d(z)))) k1 (d())-

1

Ad(z) + (m — 1) ;*(%(K(dm)))m K2 (d(@)K (d(2)) + b(a)g(Eaeion (K (d())))

q(m—1)
g (mmd(m)))) K" (d(z))

_mot m b(@)g(€2cp1 (K (d(2))))
= K(d(x))k™(d =
€52 gler (K™ () { grtipaimstion
(W (o) K(dln) __eh @)
( P K@)y RaEy ~ (0o~ m+ 1)
_ K(d(z)) Wl(K( (2))) Ad(l‘) _ /\fégil)(m?nkqonfl)(d(ac)) ((pll(K(d(z))))(q_l)(m_1)+1
K@) K@) (K@) R PR

2> 0;

i.e., u_ is a subsolution of of problem (1.1) in s, .
Let ux € C(Q) N C*T*(Q) be the solution to problem (1.1). We assert u_(z) < ux(z) < (),
Vo € 955 .
In fact, denote Qs. = Qs, UQs_, Wwhere Q5 = {x € Qs 1 u (x) <ua(z)}and Qs = {z € Qs, :
u () > ux(2)}.
We need to show Qs_ = (. Assume the contrary, we see that there exists zo € Qs_ (note that
u_(z) = ux(z), Vo € 0Qs_) such that
0 < u,(x0) — ux(z0) = max (u,(x) — ux(z))
T€s_
and
Vu,(z0) = Vua(zo), A(u. —ua)(@o) < 0.

On the other hand, we see by (b1) and (g¢1) that
—A(u, — ux) (o) = b(x0)(g(u. (x0)) — g(ur(z0))) <0,

which is a contradiction. Hence 5 = 0, i.e.,u_(z) < ux(z), Vz € Qs.. In the same way, we can see
that @.(x) > ux(x), Vz € Qs_.
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It follows that
&2 < lim inf
d(z)—0

Thus let e — 0, we see that
lim G (z) =
d(z)—0 p1(K(d(2)))

The last part of the proof follows from Lemma 3.1(i).

4 Conclusion

The boundary value quasilinear differential equation systems (1.1) are mathematical models occurring
in the studies of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid
theory, and the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the
quantity m is characteristic of the medium. Media with m > 2 are call dilatant fluids and those with
m < 2 are called pseudoplastics. If m = 2, they are Newtonain fluids. When m # 2, the problem
becomes more complicated since certain nice properties in herent to the case m = 2 seem to be
lost or at least difficult to verify. The main differences between m = 2 and m # 2 can be founded in
[14,22]. When m = 2, it is well known that all the positive solutions in C*(Bgr) of the problem

Au+ f(u) =0 in Bgr
u(z) =0 on OBgr

are radially symmetric solutions for very general f(see [23]). Unfortunately, this result does not apply
to the case m # 2. Kichenassary and Smoller showed that there exist many positive nonradial
solutions of the above problem for some f (see [24]). The major stumbling block in the case of m # 2
is that certain nice features inherent to the case m = 2 seem to be lost or at least difficult to verify.

In this paper, we have two main findings as follows:

The first one is the asymptotic behavior of solutions to the following singular quasilinear Dirichlet
problem

—div(|Vu|™2Vu) = b(x)g(u) + N\ Vu(z)]1m=Y), x € Q,
u >0, x € Q,
ulag = 0,

which is (@)
. UN\T
lim ————— = .
d(z)—0 o1 (K (d(z))) b
The second one is the corresponding proof method of the asymptotic behavior, which is the
super-subersolutin method, the most critical point is the construction of the supersolution and subersolu-
tion.
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