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Abstract
In this paper, we study the boundary behavior of solution to the singular Dirichlet problem −div(|∇u|m−2∇u) = b(x)g(u) + λ|∇u(x)|q(m−1), x ∈ Ω,

u > 0, x ∈ Ω,
u|∂Ω = 0,

where Ω is a bounded domain with smooth boundary in RN , λ ∈ R,m > 1, 0 < q ≤ m/(m − 1),
lims→0+ g(s) = +∞, and b ∈ Cα(Ω), which is non-negative on Ω and may be vanishing on the
boundary, mainly, we investigate the exact asymptotic behavior of solution to the above problem.
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1 Introduction
In this paper, we plan to investigate the exact asymptotic behavior of solution to the following problem −div(|∇u|m−2∇u) = b(x)g(u) + λ|∇u(x)|q(m−1), x ∈ Ω,

u > 0, x ∈ Ω,
u|∂Ω = 0,

(1.1)

where Ω is a bounded domain with smooth boundary in RN (N ≥ 1), λ ∈ R,m > 1, 0 < q ≤
m/(m− 1), g satisfies

(g1) g ∈ C1((0,∞), (0,∞)), g′(s) < 0 for all s > 0, lims→0+ g(s) = +∞;
and b satisfies
(b1) b ∈ Cα(Ω) for some α ∈ (0, 1), is non-negative in Ω and positive near the boundary ∂Ω.
when m = 2, the problem (1.1) becomes

−∆u = b(x)g(u) + λ|∇u|q, u > 0, x ∈ Ω, u|∂Ω = 0, (1.2)

Problem (1.2) arises in the study of non-Newtonian fluids, boundary layer phenomena for viscous
fluids, chemical heterogeneous catalysts, as well as in the theory of heat condition in electrical
materials(see [1-3]).

when λ = 0, problem (1.2) becomes

−∆u = b(x)g(u), u > 0, x ∈ Ω, u|∂Ω = 0, (1.3)

problem was discussed in a number works (see[3-5]).
When u|∂Ω = 0 becomes u|∂Ω = +∞, problem (1.1) becomes boundary blow-up elliptic problems −div(|∇u|m−2∇u) = b(x)g(u) + λ|∇u(x)|q(m−1), x ∈ Ω,

u > 0, x ∈ Ω,
u|∂Ω = +∞,

(1.4)

When m = 2, the above problem becomes

−∆u = b(x)g(u) + λ|∇u(x)|q(m−1), x ∈ Ω, u > 0, x ∈ Ω, u|∂Ω = +∞, (1.5)

many authors discussed the above problems[7-18].
In this paper, we consider the quasilinear elliptic problem (1.1). We modify the method developed

by Zhang [6] and other authors’ work, which showed the exact asymptotic behavior of solutions
near the boundary to the quasilinear problem (1.1), extend and complement the results of [6] to a
quasilinear elliptic problem (1.1).

Our main results are as follows:
Theorem 1.1. Let λ ∈ R, 0 < q ≤ 1, 1 < m ≤ 2 (or q ≥ 1,m ≥ 2), b satisfies (b1) g satisfies (g1)

and g ∈ NRV Z−γ with γ > m− 1. Suppose that there exists a positive non-decreasing C1-function
k ∈ NRV Zσ/2 with σ ∈ [0, γ

m−1
− 1) and a positive constant b0 such that

(b2) limd(x)→0
b(x)

km(d(x))
= b0,

then the solution uλ ∈ C(Ω) ∩ C2(Ω) to problem (1.1) satisfies

lim
d(x)→0

uλ(x)

ϕ1(K(d(x)))
= ξ0.

where ξ−(γ+m−1)
0 = 2(γ−(σ+1)(m−1))

b0(2+σ)(γ−m+1)
and ϕ1 ∈ C[0, a] ∩ C2(0, a] satisfies∫ ϕ1(t)

0

ds
m
√
mG2(s)

= t, t ∈ [0, a] for small a > 0, (1.12)
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K(t) =

∫ t

0

k(s)ds, t ∈ [0, a]; G2(t) =

∫ b

t

g(s)ds, t ∈ (0, b], b > 0. (1.13)

Moreover, ϕ1 ∈ NRV Z2/(1+γ) and there exists y2 ∈ C(0, a] with lims→0+ y2(s) = 0 such that ϕ1(t) =

t2/(1+γ)e
∫ a
t
y2(s)
s

ds, t ∈ (0, a].

2 Preliminaries
In this section, we present some bases of the theory which come from Senta [19], Preliminaries in
Resnick [20], Introductions and the appendix in Maric [21].

Definition 2.1. A positive measurable function f defined on [a,+∞), for some a > 0, is called
regularly varying at infinity with index ρ, written as f ∈ RVρ, if for each ξ > 0 and some ρ ∈ R,

lim
s→∞

f(ξs)

f(s)
= ξρ. (2.1)

In particular, when ρ = 0, f is called slowly varying at infinity.
Definition 2.2. A positive measurable function f defined on [a,+∞), for some a > 0, is called

rapidly varying at infinity if for each p > 1

lim
s→∞

f(s)

sp
=∞. (2.2)

Clearly, if f ∈ RVρ, then L(s) := f(s)/sρ is slowly varying at infinity.
Proposition 2.1 (Uniform convergence theorem). If f ∈ RVρ ,then (2.1) holds uniformly for

ξ ∈ [c1, c2] with 0 < c1 < c2. Moreover, if ρ < 0, then uniform convergence holds on intervals of the
form (a1,∞) with a1 > 0; if ρ > 0, then uniform convergence holds on intervals (a1,∞] provided f is
bounded on (a1,∞] for all a1 > 0.

Proposition 2.2 (Representation theorem). A function L is slowly varying at infinity if and only if
it may be written in the form

L(s) = ϕ(s) exp(

∫ s

a1

y(τ)

τ
dτ), s ≥ a1, (2.3)

for some a1 > a, where the functions ϕ and y are measurable and for s → ∞, y(s) → 0, andϕ(s) →
c0,with c0 > 0.

We call that
L̂(s) = c0 exp(

∫ s

a1

y(τ)

τ
dτ), s ≥ a1, (2.4)

is normalized slowly varying at infinity and

f(s) = c0s
ρL̂(s), s ≥ a1, (2.5)

is normalized regularly varying at infinity with index ρ (and written as f ∈ NRVρ).
Similarly, g is called normalized regularly varying at zero with index ρ ,written as g ∈ NRV Zρ if

t→ g(1/t) belongs to NRVρ. A function f ∈ RVρ belongs to NRVρ if and only if

f ∈ C1[a1,∞), for some a1 > 0, and lim
s→∞

sf ′(s)

f(s)
= ρ. (2.6)

Proposition 2.3. If functions L,L1 are slowly varying at infinity, then
(i) Lσ for every σ ∈ R, c1L+ c2L1 (c1 ≥ 0, c2 ≥ 0withc1 + c2 > 0), L ◦ L1

(if L1(t)→ +∞ as t→ +∞), are also slowly varying at infinity;
(ii) for every θ > 0 and t→ +∞,tθL(t)→ +∞ and t−θL(t)→ 0;
(iii) for ρ ∈ R and t→ +∞, ln(L(t))

ln t
→ 0 and ln(tρL(t))

ln t
→ ρ.
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Proposition 2.4. (Asymptotic behavior). If a function H is slowly varying at zero, then for a > 0
and t→ 0+,

(i)
∫ t
a
sβH(s)ds ∼= (β + 1)−1t1+βH(t), for β > −1;

(ii)
∫∞
t
sβH(s)ds ∼= (−β − 1)−1t1+βH(t), for β < −1.

Corollary 2.1. If g satisfies (g1) and g ∈ NRV Z−γ with γ > 1,then:

(i) g(t) = t−γe
∫ a
t
y(s)
s
ds, 0 < t < a, y ∈ C(0, a], lims→0+ y(s) = 0;

(ii) limt→0+ g(t) = +∞ = limt→0+ G2(t); limt→0+
G2(t)
g(t)

= 0 = limt→0+

m
√
G2(t)

g(t)
;

(iii) limt→0+
G2(t)
tg(t)

= 1
γ+1

;limt→0+
tg′(t)
g(t)

= −γ.
Corollary 2.2. k in Theorem 1.1 has the following properties:

(i) k(t) = tσ/2e
∫ a
t
y1(s)
s

ds, 0 < t < a, y1 ∈ C(0, a], lims→0+ y1(s) = 0;
(ii) limt→0+

K(t)
k(t)

= 0; limt→0+
tk′(t)
k(t)

= σ/2; limt→0+
K(t)
tk(t)

= 2/(2 + σ);

(iii) limt→0+
k′(t)K(t)

k2(t)
= limt→0+

tk′(t)
k(t)

limt→0+
K(t)
tk(t)

= σ/(2 + σ);

3 Proofs of the Main Results
First we give some preliminary considerations.

Lemma 3.1. Under the assumption in Theorem 1.1:
(i) ϕ1 ∈ NRV Z2/(1+γ);
(ii) (g ◦ ϕ1 ◦K)q−1 ·Kq · kq−2 ∈ RV Zβ with β = (2−q)γ+q(σ+1)−σ

1+γ
.

Proof. (i) We see by (2.6), the following Lemma 3.2(i) and Proposition 2.2(i) that ϕ′1 ∈ NRV Z−(γ−1)/(1+γ)

and limt→0+
tϕ′1(t)

ϕ1(t)
= 2/(1 + γ), Thus ϕ1 ∈ RV Z2/(1+γ).

(ii) follows by (i) and Proposition 2.3.
Lemma 3.2. Let g, k and ϕ1 be as in Theorem 1.1, then:
(i) limt→0+

ϕ′1(t)

tϕ′′1 (t)
= m−1−γ

γ+1
;

(ii) limt→0+
(ϕ′1(t))(q−1)(m−1)+1

ϕ′′1 (t)
= 0, q ∈ (0,m/(m− 1)];

(iii) limt→0+
(kq(m−1)(t)ϕ′1(K(t)))(q−1)(m−1)+1

km(t)ϕ′′1 (K(t))
= 0, q ∈ (0,m/(m− 1)].

Proof. We see by (1.12) and a direct calculation that
ϕ′1(t) = m

√
mG2(ϕ1(t)), −(ϕ′1(t))m−2ϕ′′1 (t) = g(ϕ1(t)), 0 < t < a.

(i) It follows by Corollary 2.1 and l’Hospital’s rule that

limt→0+
ϕ′1(t)

tϕ′′1 (t)
= limt→0+

(mG2(ϕ1(t)))
1− 1

m

−tg(ϕ1(t))
= − limu→0+

(mG2(ϕ1(t)))
1− 1

m /g(u)∫ u
0

ds
m√mG2(s)

= − limu→0+

[
− (m− 1)− mg′(u)G2(u)

g2(u)

]
= (m− 1) +m limu→0+

ug′(u)
g(u)

limu→0+
G2(u)
ug(u)

= m−1−γ
γ+1

.

(ii) limt→0+
(ϕ′1(t))2

ϕ′′1 (t)
= limt→0+

(ϕ′1(t))2(ϕ′1(t))m−2

−g(ϕ1(t))
= limu→0+

mG2(u)
−g(u)

= 0.

Since limt→0+ ϕ′1(t) = +∞, we have

limt→0+
(ϕ′1(t))(q−1)(m−1)+1

ϕ′′1 (t)
= limt→0+

(ϕ′1(t))2

ϕ′′1 (t)
limt→0+(ϕ′1(t))(q−1)(m−1)+1

= 0, for 0 < q ≤ m/(m− 1).
(iii) We see by Lemma 3.1(ii) and Proposition 2.1(ii) that

lim
t→0+

(g(ϕ1(K(t))))q−1Kq(t)kq−2(t) = lim
t→0+

tβH(t) = 0,

where H is slowly varying at zero.
For 1 < m ≤ 2, 0 < q ≤ 1, it follows that
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limt→0+

kq(m−1)(t)

(
ϕ′1(K(t))

)(q−1)(m−1)+1

km(t)ϕ′′1 (K(t))

= limt→0+

(
ϕ′1(K(t))

K(t)ϕ′′1 (K(t))

)(q−1)(m−1)+1

limt→0+

[
(g(ϕ1(K(t))))q−1Kq(t)kq−2(t)

]m−1

limt→0+

(
k(t)
K(t)

)m−2([
ϕ′1(K(t))

](q−1)(m−1)
)−(m−2)

= 0.
For m ≥ 2, 1 < q ≤ m/(m− 1),

limt→0+
[ϕ′1(K(t))

]−(q−1)(m−1)

K(t)
k(t)

= limt→0+
−(m−1)(q−1)[ϕ′1(K(t))

]−(q−1)(m−1)−1

k2(t)−k′(t)K(t)

k2(t)

= limt→0+
−(m−1)(q−1)[ϕ′1(K(t))

]−(q−1)(m−1)−1

1− k
′(t)K(t)

k2(t)

= 0;
such that

limt→0+

(
k(t)
K(t)

)m−2([
ϕ′1(K(t))

](q−1)(m−1)
)−(m−2)

=

(
limt→0+

[ϕ′1(K(t))
]−(q−1)(m−1)

K(t)
k(t)

)m−2

= 0.
The proof is finished.
Proof of Theorem 1.1. Let ξ−(γ+m−1)

0 = τ0/b0, where

τ0 =
2[γ − (m− 1)(σ − 1)]

(2 + σ)(γ −m+ 1)
> 0, 1− τ0 =

σ(γ +m− 1)

(2 + σ)(γ −m+ 1)
> 0.

Fix ε ∈ (0, τ0/4) and let

ξ1ε =

(
b0

τ0 − 2ε

)1/(γ+m−1)

, ξ2ε =

(
b0

τ0 + 2ε

)1/(γ+m−1)

It follows that (
2b0
3τ0

)1/(γ+m−1)

= C1 < ξ2ε < ξ0 < ξ1ε < C2 =

(
2b0
τ0

)1/(γ+m−1)

.

Since ∂Ω ∈ C2, there exists a constant δ ∈ (0, δ0/2) which only depends on Ω such that
(i) d(x) ∈ C2(Ωδ) and |∇d| ≡ 1 on Ωδ = {x ∈ Ω : d(x < δ)}.
By (b1), (b2), corollary 2.2 and Lemma 3.2, we see that corresponding to ε, there is δε ∈ (0, δ)

sufficiently small that:
(ii) For i=1,2,∣∣∣∣ (m− 1)k′(d(x))K(d(x))

k2(d(x))

ϕ′1(s)

sϕ′′1 (s)
− (τ0 −m+ 1) +

K(d(x))

k(d(x))

ϕ′1(s)

sϕ′′1 (s)
∆d(x)

+
λξ

(q−1)(m−1)
iε kq(m−1)(d(x))

km(d(x))

(ϕ′1(K(d(x))))(q−1)(m−1)+1

ϕ′′1 (K(d(x)))

∣∣∣∣ < ε, ∀(x, s) ∈ Ωδε × (0, δε)

(iii) For x ∈ Ωδε ,

ξm−1
2ε km(d(x))g(ϕ1(K(d(x))))

g(ξ2εϕ1(K(d(x))))
(τ0 + ε) < b(x) <

ξm−1
1ε km(d(x))g(ϕ1(K(d(x))))

g(ξ1εϕ1(K(d(x))))
(τ0 − ε),
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Let ūε = ξ1εϕ1(K(d(x))), uε = ξ2εϕ1(K(d(x))), x ∈ Ωδε .
We see that for x ∈ Ωδε ,

div(|∇ūε|m−2∇ūε) + b(x)g(ūε(x)) + λ|ūε(x)|q(m−1)

= (m− 1)ξm−1
1ε

(
ϕ′1(K(d(x)))

)m−2

ϕ′′1 (K(d(x)))km(d(x)) + ξm−1
1ε

(
ϕ′1(K(d(x)))

)m−1

km−1(d(x))·

∆d(x) + (m− 1)ξm−1
1ε

(
ϕ′1(K(d(x)))

)m−1

km−2(d(x))k′(d(x)) + b(x)g(ξ1εϕ1(K(d(x))))

+λξ
q(m−1)
1ε

(
ϕ′1(K(d(x)))

)q(m−1)

kq(m−1)(d(x))

= ξm−1
1ε g(ϕ1(K(d(x))))km(d(x))

{
b(x)g(ξ1εϕ1(K(d(x))))

ξm−1
1ε km(d(x))g(ϕ1(K(d(x))))

− τ0

−
(

(m−1)k′(d(x))K(d(x))

k2(d(x))

ϕ′1(K(d(x)))

K(d(x))ϕ′′1 (K(d(x)))
− (τ0 −m+ 1)

)
−K(d(x))
k(d(x))

ϕ′1(K(d(x)))

K(d(x))ϕ′′1 (K(d(x)))
4d(x)− λξ

(q−1)(m−1)
iε kq(m−1)(d(x))

km(d(x))

(ϕ′1(K(d(x))))(q−1)(m−1)+1

ϕ′′1 (K(d(x)))

}
≤ 0;

i.e., ūε is a supersolution of problem (1.1) in Ωδε .
and

div(|∇uε|
m−2∇uε) + b(x)g(uε(x)) + λ|uε(x)|q(m−1)

= (m− 1)ξm−1
2ε

(
ϕ′1(K(d(x)))

)m−2

ϕ′′2 (K(d(x)))km(d(x)) + ξm−1
2ε

(
ϕ′1(K(d(x)))

)m−1

km−1(d(x))·

∆d(x) + (m− 1)ξm−1
2ε

(
ϕ′1(K(d(x)))

)m−1

km−2(d(x))k′(d(x)) + b(x)g(ξ2εϕ1(K(d(x))))

+λξ
q(m−1)
2ε

(
ϕ′1(K(d(x)))

)q(m−1)

kq(m−1)(d(x))

= ξm−1
2ε g(ϕ1(K(d(x))))km(d(x))

{
b(x)g(ξ2εϕ1(K(d(x))))

ξm−1
2ε km(d(x))g(ϕ1(K(d(x))))

− τ0

−
(

(m−1)k′(d(x))K(d(x))

k2(d(x))

ϕ′1(K(d(x)))

K(d(x))ϕ′′1 (K(d(x)))
− (τ0 −m+ 1)

)
−K(d(x))
k(d(x))

ϕ′1(K(d(x)))

K(d(x))ϕ′′1 (K(d(x)))
4d(x)− λξ

(q−1)(m−1)
2ε kq(m−1)(d(x))

km(d(x))

(ϕ′1(K(d(x))))(q−1)(m−1)+1

ϕ′′1 (K(d(x)))

}
≥ 0;

i.e., uε is a subsolution of of problem (1.1) in Ωδε .
Let uλ ∈ C(Ω) ∩ C2+α(Ω) be the solution to problem (1.1). We assert uε(x) ≤ uλ(x) ≤ ūε(x),

∀x ∈ Ωδε .
In fact, denote Ωδε = Ωδ+ ∪Ωδ− , where Ωδ+ = {x ∈ Ωδε : uε(x) ≤ uλ(x)} and Ωδ− = {x ∈ Ωδε :

uε(x) > uλ(x)}.
We need to show Ωδ− = ∅. Assume the contrary, we see that there exists x0 ∈ Ωδ− (note that

uε(x) = uλ(x), ∀x ∈ ∂Ωδ− ) such that

0 < uε(x0)− uλ(x0) = max
x∈Ωδ−

(uε(x)− uλ(x))

and
∇uε(x0) = ∇uλ(x0), 4(uε − uλ)(x0) ≤ 0.

On the other hand, we see by (b1) and (g1) that

−4(uε − uλ)(x0) = b(x0)(g(uε(x0))− g(uλ(x0))) < 0,

which is a contradiction. Hence Ωδ− = ∅, i.e.,uε(x) ≤ uλ(x), ∀x ∈ Ωδε . In the same way, we can see
that ūε(x) ≥ uλ(x), ∀x ∈ Ωδε .
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It follows that

ξ2ε ≤ lim
d(x)→0

inf
uλ(x)

ϕ1(K(d(x)))
≤ lim
d(x)→0

sup
uλ(x)

ϕ1(K(d(x)))
≤ ξ1ε.

Thus let ε→ 0, we see that

lim
d(x)→0

uλ(x)

ϕ1(K(d(x)))
= ξ0.

The last part of the proof follows from Lemma 3.1(i).

4 Conclusion
The boundary value quasilinear differential equation systems (1.1) are mathematical models occurring
in the studies of the p-Laplace equation, generalized reaction-diffusion theory, non-Newtonian fluid
theory, and the turbulent flow of a gas in porous medium. In the non-Newtonian fluid theory, the
quantity m is characteristic of the medium. Media with m > 2 are call dilatant fluids and those with
m < 2 are called pseudoplastics. If m = 2, they are Newtonain fluids. When m 6= 2, the problem
becomes more complicated since certain nice properties in herent to the case m = 2 seem to be
lost or at least difficult to verify. The main differences between m = 2 and m 6= 2 can be founded in
[14,22]. When m = 2, it is well known that all the positive solutions in C2(BR) of the problem{

4u+ f(u) = 0 in BR
u(x) = 0 on ∂BR

are radially symmetric solutions for very general f (see [23]). Unfortunately, this result does not apply
to the case m 6= 2. Kichenassary and Smoller showed that there exist many positive nonradial
solutions of the above problem for some f (see [24]). The major stumbling block in the case of m 6= 2
is that certain nice features inherent to the case m = 2 seem to be lost or at least difficult to verify.

In this paper, we have two main findings as follows:
The first one is the asymptotic behavior of solutions to the following singular quasilinear Dirichlet

problem  −div(|∇u|m−2∇u) = b(x)g(u) + λ|∇u(x)|q(m−1), x ∈ Ω,
u > 0, x ∈ Ω,
u|∂Ω = 0,

which is
lim

d(x)→0

uλ(x)

ϕ1(K(d(x)))
= ξ0.

The second one is the corresponding proof method of the asymptotic behavior, which is the
super-subersolutin method, the most critical point is the construction of the supersolution and subersolu-
tion.
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