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Abstract
Least-cost allocation of redundancy within subsystems of a series-parallel system to meet a
requirement for system reliability may be modelled as a nonlinear integer program in which
the number of variables is equal to the number of subsystems. The data are the system
requirement, the reliabilities of the identical components within each subsystem and the costs of
these components. The model has a linear cost function as its objective and a single non-linear
constraint that enforces the requirement for system reliability. The continuous counterpart of the
discrete problem can be solved by solving a polynomial equation. The main result of this paper is
a bound on the effort required to obtain from the solution of the continuous relaxation the optimal
numbers of redundant components for the subsystems.

Keywords: Discrete optimization, nonlinear integer programming, reliability optimization, computational
complexity, redundancy allocation, optimization model.
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1 Introduction
The literature on system reliability study is satiated with various definitions of system reliability.

The common theme in all the definitions is that the reliability of a system is essentially the probability
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that the system will successfully perform its intended function within a specified interval of time. The
reliability of a system is an inherent attribute, just as the system’s capacity or power rating.

The design process of any system has two major objectives. The first objective is that the system
must be designed to meet its functional goals, and the second objective is that the system must be
designed to successfully perform its intended function in a specified, and often severe, environment
[1]. Undoubtedly, the immeasurable inconveniences that any failure of a necessary system would
cause a society underscore the importance of reliability study. The latter of the two major goals of
the design process requires designing reliability into the system. Usually the failure characteristics of
some systems are used to determine the economic feasibility of the system.
Reliability allocation is the process by which designers translate requirements for system reliability
into reliability goals for subsystems and components [2]. Such goals may be constrained by limitations
on space, weight, power consumption or cost. Early in the design process, a complex system may be
conceived as a series ofm independent subsystems, with reliability goalsR1, R2, · · · , Rm. To achieve
a required value, Rr, for the reliability of the entire system, the subsystem goals are linked by the

constraint
m∏
i=1

Ri ≥ Rr [3]. To realize a subsystem goal, designers consider various arrangements

of components. When resilience in response to random failures is an important consideration,
as in many electronic subsystems, redundancy among components is a frequently used design
strategy. Specifically, active redundancy of components in the ith subsystem is achieved with
xi components that operate simultaneously, fail at the same rate and are not repaired [4]. The
subsystem works as long as at least one of the components works. Given ri, the common reliability
value of the components, the designer considers values, xi, for the number of components so
that 1− (1− ri)xi ≥ Ri. However, redundancy enhances reliability only with additional demands
for capital, power, space, weight and maintenance [5]. As a result, designers evaluate trade-offs
among redundancy and other constrained resources. Some of these trade-offs maybe modelled as
an integer program of the form

(1.1)



Min
m∑
i=1

ci xi

Subject to
m∏
i=1

(1− ρxii ) ≥ Rr

xi ≥ 1 for i = 1, 2, 3, · · · ,m
xi integral for i = 1, 2, 3, · · · ,m.

Here, the values ri (i = 1, 2, ..m) are replaced by their complements ρi = 1− ri, component unrelia-
bility for the ith stage; Rr is the minimum required system reliability, 0 < Rr < 1. Each of the objective
coefficients ci is assumed to be strictly positive. These coefficients model a trade-off between
reliability and another scare resource in the design process.

Feasible solutions of this nonlinear integer programming problem are readily available. For
instance, one can allocate the system reliability goal equally among the subsystems and then set

xi =

⌈
ln(1− m

√
Rr )

ln(ρi)

⌉
, for 1 ≤ i ≤ m.

Since all objective coefficients are positive, candidates for an optimal integral solution are limited to
the finite set of feasible solutions with objective values that do not exceed the cost of this feasible
solution. As a result, the nonlinear integer programming problem has at least one optimal solution.

The integrality constraints of (1.1) can be relaxed by requiring only x ∈ Rm
+ . Nmah [6] showed

that this “continuous” nonlinear programming problem has a unique optimal solution. Denote by x∗
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the optimal, probably nonintegral, solution of the “continuous” nonlinear programming problem. We
can obtain a lower bound, β0, on the objective value of the integer programming problem by defining

β0 =

⌈
m∑
i=1

cix
∗
i

⌉
.

We can also obtain a feasible solution of the integer programming problem by taking the upper ceiling
of each coordinate of x∗ to get an integral vector x(∗I). If x is any optimal integral solution of (1.1),
then x must be in an intersection

Km(β) := {x ∈ Nm |
m∑
i=1

cixi = β, x ≥ 1},

of a hyperplane and the positive cone, where β is an integer between

m∑
i=1

cix
∗
i and

m∑
i=1

cix
(∗I)
i .

The purpose of this paper is to bound the worst-case effort to locate all optimal solutions of the
integer program (1.1) on the hyperplanes Km(β).

2 Related Work
Optimization models provide two complementary perspectives on the trade-off between require-
ments for system reliability and demands on scarce resources. These perspectives have sustained
a long history, documented in [7], [8] and [9], of work on various criteria for reliability, on models of
complex systems, and on several implementations of redundancy. Solutions of these models have
also demonstrated many exact and heuristic methods for discrete and nonlinear optimization. From
one perspective, the trade-off is addressed by determining the highest level of reliability to be achieved
with fixed levels of resources. In this setting, the optimization model has a reliability criterion as the
objective, while the resources are modeled as one or more constraints. From another perspective, a
reliability requirement is fixed and the optimization model has a cost criterion as the objective. The
model proposed in (1.1) is formulated from this perspective, with a specific focus on redundancy as
the design strategy by which reliability within subsystems is achieved.

Majety, Dawande and Rajgopal [10] consider a variant of (1.1) that models component cost-
reliability relationships that do not fit a particular functional form. Yalaoui, Chàtelet and Chu [11] model
series-parallel systems in which a single subsystem may be designed with components of different
types and reliabilities. Although the reliability constraint in (1.1) can be transformed by logarithms into
a constraint in which the original decision variables appear in separate terms, it cannot be readily
re-written as a constraint linear in the original decision variables [10]. Djerdjour and Rekab [12]
rewrite a separable version of the constraint as a piece-wise linear function of the original variables.
With upper and lower bounds on the original variables, they reformulate the model as a linear program
with a larger number of binary variables and then solve the model with a branch-and-bound algorithm.
With upper and lower bounds on each decision variable, Sun, Ruan and Li [13] use the primal-dual
relationships of nonlinear programming to study both types (system reliability as the objective and
system reliability as a constraint) of redundancy allocation problems.

When the integrality constraints of (1.1) are relaxed to allow decision variables that are real-
valued and positive, Nmah [14] showed that the continuous relaxation has a unique optimal solution,
x*, for which the reliability constraint is satisfied as an equation and gave an algorithm based on a
Lagrange multiplier to produce this solution. The objective value of x* provides a lower bound for
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the optimal value of the integer program (1.1). An upper bound is the objective value of the feasible
solution obtained rounding up each of the values of the decision variables of the optimal solution of
the continuous problem. A search of a finite number of finite sets of the form Km(β) for β between
the upper and lower bounds produces all of the optimal solution of the integer program.

Liu [15] considers a model in which both the levels of redundancy and the component reliabilities
are decision variables. The constraint on system reliability is augmented by resource constraints for
the individual subsystems, as well as by upper and lower bounds on the reliability of the individual
subsystems. Falk, Singpurwalla and Vladimirsky [16] formulate and solve, with the use of Lagrange
multipliers, a reliability allocation model in which the decision variables are continuous variables,
corresponding to the reliabilities of the subsystems. Their model proposes goals, rather than designs,
for systems in which the configuration of subsystems may be more complex than the series of
independent subsystems considered here. Ebeling [17] proposed a reliability allocation model in
which continuous decision variables represent improvements over the reliabilities of independent
components or subsystems in an initial design. When the objective is a quadratic function of these
improvements, some cases of the model can be solved by an iterative procedure that updates a
Lagrange multiplier.

3 Description of the Algorithm

Let the nonlinear integer programming problem be as in (1.1) and denote
m∏
i=1

(1− ρxii ) by Rs(x).

For the relaxed problem, where x ∈ Rm
+ , consider the Lagrangian:

L (x , λ ) =

m∑
i=1

cixi + λ g(x)

with g(x) = Rr −Rs(x).

Nmah [14] showed that the equations

∇L(x , λ) =

[
∇xL (x , λ )
∇λL (x , λ )

]
=

[
0
0

]
can be solved explicitly to produce the optimal solution. In fact, the equation ∇λL (x∗ , λ∗ ) = 0 can
be written as

m∏
i=1

(−λ ln(ρi)Rr) = Rr

m∏
i=1

(ci − λ ln(ρi)Rr) .

This equation is a polynomial of degree m in λ. Its unique positive root determines the optimal value
of the Lagrange multiplier. Then the equations

∇xL (x∗ , λ∗ ) = 0

determine the optimal values of the decision variables as

x∗i =
ln
(

ci
ci−λ∗ ln(ρi)Rr

)
ln(ρi)

.

Thus the method for solving the nonlinear integer program consists of searching hyperplanes in
order of increasing values of β, beginning with any lower bound (such as β0) for the optimal objective
value of the integer program. Two things are worth noting here. First, a hyperplane is searched to
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find integral vectors, and secondly, once such an integral vector is found, it is tested to determine
whether or not it satisfies the reliability requirement. If it does, it is an optimal solution of the integer
program, and the algorithm stops. If one continues to search the rest of this hyperplane, one can find
all of the optimal solutions of a problem with multiple solutions. No additional hyperplane needs to be
searched. On the other hand, if it does not satisfy the reliability requirement, one looks for another
integral vector on the hyperplane and tests it to determine whether or not it satisfies the reliability
requirement. Given this observation, there is a need to bound the number of hyperplanes that must
be searched.

Proposition 3.1. The number of hyperplanes that may be searched to find optimal integral solutions
is bounded.

Proof. Suppose that β∗ is the optimal objective value of the “continuous” nonlinear programming

problem. Then the value of x(∗I) is no greater than β∗ +

m∑
i=1

ci. Since β0 ≥ β∗, the number of

hyperplanes to be searched is no greater than
m∑
i=1

ci.

4 Worst-Case Computational Complexity of the Algorithm

We now show that the worst-case computational complexity of the algorithm is bounded. For a

hyperplane defined by
m∑
i=1

cixi = β, a worst-case search is one that produces no integral solution

of the reliability constraint. Nmah [6] explained how to produce integral vectors on the hyperplane.
However, our goal in this paper is only to investigate the worse-case computational complexity of the
algorithm, and not its implementation. Specifically, the phrase, worst-case computational complexity,
is used to describe the largest number of feasible solutions of a problem of the form

(4.1)


m∑
i=1

cixi = β

s.t. x ≥ 1 and β ∈ N

that must be listed when no integral feasible solution of Rs(x) ≥ Rr is found.

Furthermore, the largest number of solutions for this type of problem occurs when all the cost
coefficients are identically equal to 1. This observation is justified by noting that the equation
m∑
i=1

cixi = β where the ci, (i = 1, 2, 3, . . . ,m) and β are positive integers has solutions over the

integers iff gcd(c)|β. Therefore, we can assume without loss of generality that gcd(c) = 1 since
factoring out the gcd(c) gives another problem with identical solutions [6]. Moreover, if x̃ solves
m∑
i=1

cixi = β, then ỹ, given by ỹi = cix̃i (i = 1, 2, 3, . . . ,m) also solves
m∑
i=1

yi = β. Therefore, all

solutions of
m∑
i=1

cixi = β are included in those of
m∑
i=1

xi = β. Thus, setting ci = 1 for every i,

(i = 1, 2, 3, . . . ,m), (4.1) reduces to

(4.2)

{
1Tx = β, where 1 ∈ Rm

s.t. x ≥ 1 and β ∈ N
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and the number of solutions of (4.2) corresponds to the number of ways of choosing β items from a
set with m elements, so that xi items of type i are chosen, (i = 1, 2, 3, . . . ,m). This number is equal
to the number of β combinations with repetition allowed from a set with m elements, and is given by

Cβ−1
β−m where Cβ−1

β−m =

(
β − 1

β −m

)
.

Proposition 4.1. The worst-case computational complexity of the algorithm is

(
m∑
i=1

ci

)
× m

β
×

(
β

m

)
.

Proof. Noting the foregoing, the proof has been established. The number of hyperplanes to be

searched is at most
m∑
i=1

ci; on a single hyperplane, the number of vectors to be tested is at most

C(-1, m-1). On the hyperplanes to be searched, the integer will not exceed the best upper bound

for (1.1) available at the start of the search. Since (β! = β × (β − 1)!) =⇒
(
(β − 1)! =

β!

β

)
, and

similarly for (m− 1)!, we have,(
m∑
i=1

ci

)
×

(
β − 1

β −m

)
=

(
m∑
i=1

ci

)
× m

β
×

(
β

m

)
.

Thus, we have shown that the worst-case computational complexity of the algorithm is

O

((
m∑
i=1

ci

)
× m

β
×

(
β

m

))
.

5 Conclusions
The redundancy allocation model (1.1) can be solved in two phases. First, the constraints can be
relaxed so that the decision variables are real and strictly positive. For strictly positive objective
coefficients, the reliability constraint is satisfied as an equation at any optimal solution. The only
candidates for optimal solutions of the continuous problems are solutions of the Lagrangian equation
L (x , λ ) = 0. In fact, for data ci, ρi : 1 ≤ i ≤ m and Rr, this equation has a unique solution (x∗, λ∗)
in which the values of the decision variables are determined by the data and the optimal multiplier
λ∗. The value of the optimal multiplier is the value of the unique positive root of an mth degree
polynomial, and the root can be obtained with Newtons method. At the end of this phase, a lower
bound, β0, for the optimal cost of the integer programming model is obtained as the integral ceiling of
the optimal value of the continuous problem. For the application to redundancy allocation, completion
of this phase may provide useful information about the feasibility of the project being modelled. For
example, early in a design project, the model can be used to assess the cost to complete the project.
If the bound β0 is deemed too high, then the project, the reliability requirement or the expectations
for resources can immediately be re-evaluated [4].

In the second phase, an upper bound on the optimal objective value, which differs from β0 by

at most
m∑
i=1

ci, can be computed by rounding up each decision variable. Integral vectors in finite

sets of the form Km(β), beginning with β0 and ending with the first successful outcome, are tested
for conformance with the reliability requirement. A complete search of the set that yields the first

23



Benedict K. Nmah; BJMCS, 7(1), 18-25, 2015; Article no.BJMCS.2015.099

success will produce all optimal integral solutions when the model has multiple optimal solutions. In
this paper, we have bounded the worst-effort needed to complete this phase.
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