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Abstract 

Strong fields generated by big electric currents are examined within the framework of the Yang-Mills nonli-
near generalization of the Maxwell electrodynamics proposed in our earlier papers. First we consider the 
case of stationary currents and find a new exact solution to the Yang-Mills equations. Then we study a 
Yang-Mills field inside a thin circular cylinder with nonstationary plasma and find expressions for field 
strengths in it. Obtained results are applied to interpret several puzzling natural phenomena. 
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1. Introduction 
 
As is well known, the Yang-Mills field theory proposed 
in 1954 is one of the greatest achievements of the XX 
century, which plays a leading role in modern quantum 
physics [1-3]. At the same time, the whole area of its 
applications can concern not only quantum physics but 
also classical physics [4-7]. To explain this point of view, 
let us examine powerful fields generated by sources with 
very big electric charges and currents. Then the follow-
ing question should be raised. Are the classical Maxwell 
equations always applicable to such fields? 

It is beyond doubt that the Maxwell equations ade-
quately describe a great diversity of electromagnetic 
fields for which photons are their carriers. At the same 
time, powerful sources with very big charges and cur-

rents may generate not only photons but also 0Z and  

W  bosons. In such cases, the Maxwell equations may 
be incorrect since they are applicable to fields for which 
only photons are the carriers. On the other hand, there 
are the well-known Yang-Mills equations with SU(2) 
symmetry which are a nonlinear generalization of the 
linear Maxwell equations playing a leading role in vari-
ous models of electroweak interactions caused by pho-

tons and 0  and  Z W   bosons. For this reason, in [4-7] 
the classical Yang-Mills equations with SU(2) symmetry 
are applied in the case of powerful field sources with 

very big electric charges and currents when 0Z Wand    
bosons may be generated, along with photons. These 

equations can be represented in the form [1-3] 
, , , ,(4 / )k k l m k

klmD F F g F A c j      
    ,   (1) 

, , , , ,k k k l m
klmF A A g A A           ,      (2) 

where , ,, 0,  1,  2,  3;   , , 1,  2,  3,    and  k kk l m A F      

are potentials and strengths of a Yang-Mills field, re-

spectively, ,kj   are three 4-vectors of source current 

densities, klm  is the antisymmetric tensor, 123 1  , 

D  is the Yang-Mills covariant derivative, g  is the 

constant of electroweak interaction, and / x    
 , 

where x  are orthogonal space-time coordinates of the 
Minkowski geometry. 

It is worth noting that Equations (1-2) have the fol-
lowing well-known consequences [1-3]: 

, 0kD D F 
   ,                (3) 

, , , 0k k l m
klmD j j g j A  

       .       (4) 

Further we will consider the field sources ,kj  of 

the form 
1, 2, 3,,     0j j j j      ,          (5) 

where j  is a classical 4-vector of current densities. 

Then when the potentials 2, 3, 0A A   , the Yang- 
Mills Equations (1-2) become coinciding with the Max-

well equations for the potentials 1,A  . Moreover, from (4) 
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with k 1  and from (5) we obtain the differential 
charge conservation equation 

1, 0j 
 .               (6) 

That is why Equations (1-2) with field sources of 
Formula (5) can be regarded as a reasonable nonlinear 
generalization of the classical Maxwell equations. This 
nonlinear generalization was studied in [4-7], where new 
classes of spherically symmetric and wave solutions to 
the considered Yang-Mills equations were obtained. 
These solutions were applied to interpret puzzling prop-
erties of atmospheric electricity, the phenomenon of ball 
lightning, and some other natural phenomena unex-
plained within the framework of the linear Maxwell 
theory [4-7].  

It should be noted that from (1)-(6) we come to the 
identity 

, ,[ (4 / ) ] 0   for  1k kD D F c j k   
        (7) 

This identity shows that there is a differential relation 
for the Yang-Mills Equation (1) with the classical 
sources of Formula (5). 

Consider now the classical Yang-Mills Equations (1-2) 

with cylindrical sources k,j   of the following form: 
1,0 0 1,3

1,1 1,2 2, 3,

    ( , , ),    ( , , ),

      0,     0,

j j z j j z

j j j j

 

    

   
      (8) 

where 

0 2 2 1 2 3,    ,  ,   ,   x x y x x y x z x       .  (9) 

Then let us seek the potentials ,kA   in the form 
,0 ,1

,2

,3

( , , ),   

( , , ),   

( , , ),   

( , , )

k k k

k k

k k

k

A z A

x z A

y z A

z









  

  

  

  

,          (10) 

where , ,k k k    are some functions. 

Substituting expressions (10) into Formula (2) for the 

strengths k,F  and taking into account the antisymmetry 

of klm , we find 

,01 ,02 ,03

,12 ,13 ,23

,   ,   ,

0,   ,   ,

( , , ),   ( , , ),   ( , , ),

k k k k k k

k k k k k

k k k k k k

F xu F yu F p

F F xh F yh

u u z p p z h h z

  

  

       

 (11) 

where the functions , ,  and k k ku p h  are as follows: 

/ ,    

,

 / .

k k k l m
klm

k k k l m
z klm

k k k l m
z klm

u g

p g

h g

 





     

    

     

  

  

  

        (12) 

Here / ,    / ,    /k k k k k k
z z                 . 

After substituting expressions (8-11) for k, k,j , A ,   
k,and F   into the Yang-Mills Equation (1), we obtain 

2

0

2 ( )

(4 / ) 

k k k l m l m
z klm

k

u u p g u p

c s j

    



   

 
,    (13) 

( ) 0k k l m l m
z klmu h g u h       ,       (14) 

22 ( ) (4 / )k k k l m l m k
klmp h h g p h c s j           , 

(15) 
where 

1 2 31,     0s s s   .            (16) 

In the considered case (8), from the three Equations (4) 
we obtain 

0 0zj j  ,                 (17) 

0 2 2 0 3 30,     0j j j j       .       (18) 

From (8) we have 2, 3, 0j j   . That is why we can 

choose the following gauge by some rotation about the 
first axis in the gauge space: 

0 1 1 0j j   .             (19) 

Then using (18), we obtain 
0 ,    1,  2,  3k kj j k             (20) 

In the second section we study Yang-Mills fields gen-
erated by stationary currents flowing in the direction of 
the axis z  and find a particular exact solution to the 
Yang-Mills Equations (12-16). In the third section we 
examine these equations in the case of no stationary 
plasma flowing through a thin circular cylinder and study 
the Yang-Mills field inside the cylinder. In the fourth 
section we discuss obtained results and their applications 
to some puzzling phenomena appearing in lightning and 
exploding wires. 
 
2. A Particular Exact Solution to the  

Yang-Mills Equations in the Case of  
a Cylindrical Source with Stationary  
Current 

 
Let us turn to the considered Yang-Mills Equations 
(12-16) in the following stationary case: 

0
0 0( ),    ( ),    constj j j j      ,     (21) 

where ( )j   is some function of  . 

Let us seek the functions , , and k k k    in (10) in the 

form 

00,    ( ) ( ) ( )k k k k kz             ,  (22) 

where k  and k  are some functions of  . 
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Then from Formulas (12) and (22) we find 

0 ( ),    ( ),    0k k k k ku h p        .   (23) 

Substituting Formulas (21-23) into Equations (13-15) 
and using the antisymmetry of klm  and hence the iden-

tity 0l m
klm    , we come to the following system of 

equations: 
2( ) 2 (4 / ) ,   1,  2,  3k k l m k

klmg c s j k            . 

  (24) 

Therefore, we have got three equations for the six 

functions ( ) and  ( )k k    . 

Taking into account (16), from Equation (24) we find 
1 1 2 3 2 2 3( ) 2 ( ) (4 / ) ,g c j               (25) 

3 3 2 2 1
2

2 1

2 2 2 3 1
3

2 1

( ) 2
,    

( ) 2
  .

g

g

g

g

     
 

     
 

  


  
 

       (26) 

From (26) we derive 
2 3 2 2 3

1 1 2 2 3 3 2 2 3 2

( )

( ) { [ ( ) ( )  ] 2[( ) ( ) ]}.

g    

       



    
  (27) 

Substituting (27) into Equation (25), we readily obtain 
1( 2 ) (4 / )c j       ,         (28) 

where 
2 1 2 2 2 3 2( ) ( ) ( ) ( )      .       (29) 

Since in the case (8) under consideration the axes with 
2,  3k  in the gauge space are equivalent, let us choose 

the relativistic-invariant gauge condition 
2, 2 3, 3F F F F 

  .          (30) 

Then we can take the following form for the compo-

nents k : 

1 2 3 1/2cos ,     2 sin         ,    (31) 

which satisfies (29) and (30), where ( )    and 

( )   . 

From (28) and (31) we find 

2 (4 / ) cosc j      .         (32) 

Equation (32) is the only equation for the two un-
known functions ( )  and  ( )    . Therefore, in the 

case under consideration the Yang-Mills equations can-
not allow us to uniquely determine the field strengths 

,kF  . To interpret this, let us turn to identity (7). It 
shows that the considered Yang-Mills Equation (1) with 

the classical sources of Formula (5) are not independent 
and there is a differential relation for them. 

Therefore, in order to uniquely determine the field 

strengths ,kF  , we should find an additional equation. 
For this purpose, let us represent the Yang-Mills Equa-
tion (1) in the form 

, ,(4 / )k kF c J  
  ,          (33) 

where 
, , ,( / 4 )k k l m

klmJ j cg F A   
  .        (34) 

Taking into account (33) and the evident identity 
, 0kF  

  , we find that the components ,kJ  satisfy 

the three differential equations of charge conservation 
, 0kJ 

 .                (35) 

In these equations the values ,kJ   can be interpreted 
as components of full current densities. As is seen from 

(34), they are the sum of the source components ,kj  and 

the second addendum which can correspond to charged 
field quanta. 

Using the components ,kJ   of full current densities 

and the source current densities ,kj  , the following  

additional relativistic-invariant equation was proposed  
in [4-6] to uniquely determine the field strengths  

,kF  : 
3 3

, ,
 

1 1

k k k k

k k

J J j j
 

  
  .          (36) 

The expressions on the left and right of this equation 
are proportional to the interaction energy of the full cur-
rents and source currents, respectively, in a small part of 
a field source. That is why Equation (36) implies the 
conservation of this energy when charged field quanta 
are created inside the source [5,6]. 

Using (33), we can represent Eq. (36) in the form 
3 3

, , 2 ,
      

1 1

(4 / )  k k k k

k k

F F c j j
 

     
    .   (37) 

Substituting expressions (8) and (11) into Equation 
(37), we find 

2 2 2
3

2 2 0 2 2
1

[( 2 ) ( )

( 2 ) ] (4 / ) [( ) ( ) ]

k k k k k
z z

k k k
k

u u p u h

h h p c j j

   

    
  

 

 

 
. (38) 

Using (21) and (23), from Equation (38) we obtain 
3

2 2 2

1

[ ( ) 2 ] (4 / )k k

k

c j


       .       (39) 

Taking into account Formulas (31), Equation (39) can 
be represented as 

2 2 2 2( 2 ) (  ) (4 / )c j       .   (40) 
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From Equations (32) and (40) we obtain 

(4 / ) sinc j     .         (41) 

Equations (32) and (41) give 

2 cot       .         (42) 

Dividing this equation by   and then integrating it, 

we find 

2
cot  d d

 
   

 
 
   
 

.        (43) 

Equation (43) gives 

2ln ln sin const     .        (44) 

In order to have the function ( )  nonsingular, let us 

choose the sign ‘+’ in Equation (41) and hence in Equa-
tion (44). Then from Equation (44) we find 

2
0 0sin / ,     constD D    .       (45) 

Since we have chosen the sign ‘+’ in Equation. (41), 
from it and Formula (45) we obtain 

0(4 / ) /c j D    .             (46) 

From (45) and (46) we have the following nonsingular 
solution: 

0 2
0 0

sin 4
,      ,    ( )D j d j j

cD
  

     


.  (47) 

Formulas (31) and (47) give 

1 0
2

2 3
2

2 1
sin ,      ,

4

2 1
1 cos ,     

cDD I
D

c D

D I

c D

   
 

         




 


   (48) 

0

2  I j d 


   ,             (49) 

where ( )I I   is the source current in the cylindrical 

region of radius  . 

From Equations (11), (23), and (48) we find the non-
zero strength components  

,13 ,23,  k kF F  
and  

,01 ,13 ,02 ,23
0 0,    k k k kF F F F     . 

For the components ,13 ,23 and  k kF F we have 

1,13 1,23eff eff
2 2

eff

2 2
 ,     ,   

  sin ,     ( ),    

I Ix y
F F

c c

I
I D I I

D

 



 

   
 

 

2,13 3,13
2

2,23 3,23
2

2
1 cos ,    

2
1 cos ,

D I x
F F

c D

D I y
F F

c D





         

         

    (50) 

where D  is some constant. 
Below we use the terms ‘actual’ and ‘effective’ for the 

currents I  and eff sin( / )I D I D , respectively. 

It should be noted that when I D , the effective 

current effI  practically coincides with the actual current 

I  and we have the Maxwell field expressions for the 

strength components 1,13 1,23 and  F F . The value D  

should be a sufficiently large constant. Then Formula (50) 
can be regarded as a nonlinear generalization of the cor-
responding Maxwell field expressions for the strengths 

components 1,13 1,23 and  F F  when the actual current I  
is sufficiently large. 

Formula (50) describe a nonlinear effect of field satu-
ration. Namely, let the absolute value of the actual cur-
rent I  be increasing from zero. Then when it reaches 

the value D , the strengths components 1,13F  and 
1,23F become equal to zero and after that they change 

theirs signs.  
This property could be applied to give a new interpre-

tation for the unusual phenomenon of bipolar lightning 
that actually changes its polarity (positive becoming 
negative or vice versa) [8]. 

It is also interesting to note that puzzling data for 
lightning were recently obtained by the Fermi Gamma- 
ray Space Telescope which could be explained by For-
mula (50). Namely, some of lightning storms had the 
surprising sign of positrons, and the conclusion was 
made that the normal orientation for an electromagnetic 
field associated with a lightning storm somehow reversed 
[9]. 

To explain these data, let us note that as follows from 
(50), the sign of the effective current effI  can differ 

from the sign of the actual current I  when the latter is 
sufficiently large. 

 
3. Yang-Mills Fields Inside Thin Circular  

Cylinders With Nonstationary Plasma 
 

Consider now a nonstationary thin cylindrical source of 
Formula (8) and let us assume that the matter inside it is 
in the plasma state. 

Besides, let the functions 0  and j j  in (8) have the 

following form inside the thin source: 

0 0
0( , ),     ( , ),     0j j z j j z          (51) 
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where 0  is its radius. 

Our objective is to describe the Yang-Mills field inside 
the source and for this purpose let us apply Eqs. 
(12)-(16). In the considered case we seek the functions 

,  ,  and k k k   , describing the field potentials ,kA , 

in the following special form: 

00,  ( , ),  ( , ),  0k k k k kz z               (52) 

Then substituting (52) into Formula (12) and using (20) 

and the identity 0l m
klm    , since klm  are anti-

symmetric, we find 

0,    0k ku h  ,             (53) 

0,     k k k k k
zp j j               (54) 

It should be noted that in the examined case, as fol-

lows from (11) and (53), the values ,03 ,30k kF F   are 
the only nonzero field strengths. That is why the chosen 
Formula (52) for the field potentials (10) provides the 
absence of currents in the directions orthogonal to the 
axis z  of the considered cylindrical source in the 
plasma state, in accordance with the used Formula (8) for 
the source. 

Substituting now expressions (52) and (53) into Eqs. 
(13)-(15), we obtain 

0(4 / )k l m k
z klmp g p c s j     ,       (55) 

(4 / )k l m k
klmp g p c s j              (56) 

where, as indicated in (16), 1 2 31,    0s s s   . 

Let us multiply Equations (55) and (56) by 0and j j , 

respectively, and add the products. Then using (20): 
0 0m mj j   , we obtain  

0 0k k
zj p jp   .               (57) 

To find solutions ),( zpk   to Equation (57), let us 

introduce the function 

0

0 0

( , ) (0, )
z

q j z d j z dz


    .        (58) 

Consider its partial derivatives. Using expression (58) 

and Equation (17): 0
zj j  , we obtain 

( , )q j z  ,                (59) 

0

0

( , ) (0, )z zq j z d j z


   . 

0 0 0

0

( , ) (0, ) ( , )j z d j z j z


              (60) 

From Formulas (59) and (60) we find 
0  0zj q jq   .               (61) 

Taking this into account, we come to the following 
solutions to the partial differential Equation (57) of the 

first order for ( , )kp z : 

)(qpp kk  ,              (62) 

where ( )kp q are arbitrary differentiable functions. 

Indeed, substituting (62) into Equation (57) and taking 
into account equality (61), we find 

0 0( / )( ) 0k k k
z zj p jp dp dq j q jq     ,    (63) 

and hence, Equation (57) are satisfied. 
Thus, as follows from (11), (62), and the first term in 

(58), the nonzero field strengths ,03kF  inside the cylin-
drical source under consideration depend on all charge 
passing through unit area of a cross section of the cylin-
drical source from beginning of the current flow. 

Let us turn to Equation (54) and seek the functions 

and  k k  , satisfying them, in the form 

    
0[ ( ) ( , ) ( )],

[ ( ) ( , ) ( )],

k k k

k k k

j b q z p q

j b q z p q

  

  

 

 
        (64) 

where ( )kb q are arbitrary differentiable function and 

( , )z   is some differentiable function. 

Then substituting expressions (64) into Equation (54) 

and taking into account equality (17): 0 0zj j   , we 

come to the equations 
0

0

[ / / ](

) ( )

k k k

k
z z

p db dq dp dq j q

jq j j p







 

 

  
.       (65) 

Using Formula (61), from (65) we find 
0 1zj j                  (66) 

When 0 0j  , from (17) and (66) we have 

0( )  and  / ( ) ( )j j z j       , where 0 ( )   is an 

arbitrary function. 

Consider the case 0 0j  . Then in order to solve Eq. 

(66), it is convenient to choose the variable q  instead 

of the variable z  and put 
( , ),     ( , )q q q z     .           (67) 

Indeed, using (67) and Formulas (59) and (60), we 
find 

0,     q z qj j         ,         (68) 

and substituting (68) into Equation (66), we derive 
0 1j   .                (69) 

Therefore, we obtain 
0( , ) / ( , )q d j q     ,        (70) 

where 0j is represented as a function of q and  . 

Let us now substitute Formulas (62) and (64) into Eq-
uations (55) and (56). Then using Formulas (59) and (60) 
and the evident identity, we find that Equations (55) and 
(56) give the same equations of the following form: 
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1 2 3

      / (4 / ) ,    1,  2,  3,

     ( ),    ( ),    1,    0.

k l m k
klm

k k k k

dp dq g p b c s k

p p q b b q s s s

   

    
  (71) 

Multiplying Equation (71) by kp2  and summing the 

products over, taking into account the antisymmetry of, 
we obtain 

3
2 1

1

( ) (8 / )k

k

d
p c p

dq




 .            (72) 

Besides this equation, from the second and third equa-
tions in (71) we also find relations of the functions 

2 3( ) and ( )b q b q  to the functions 1( ) and ( )kb q p q . 

Let us put 
1

2 3 1/2

(4 / ) ( ) cos ( ),  

 (4 / )2 ( )sin ( ),

p c q q

p p c q q

  

  



 
    (73) 

where condition (30) is taken into account, and 
( ) and ( )q q   are some functions. 

Then substituting expressions (73) into Equation (72), 
we find 

cos   .               (74) 

Let us now turn to Equation (38). From it and (53) we 
have 

3
2 2 2 0 2 2

1

[( ) ( ) ] (4 / ) [( ) ( ) ]k k
z

k

p p c j j 


   .  (75) 

Using Formulas (59), (60), and (62), from Equtaion 
(75) we find 

3
2 2

1

( / ) (4 / )k

k

dp dq c


 .        (76) 

Substituting Formula (73) into Equation (76), we ob-
tain 

2 2( ) ( ) 1    ,           (77) 

where ( ) and ( )q q     . 

Substituting now expression (74) for    into Equa-

tion (77), we find 

sin    .              (78) 

Equations (74) and (78) give 

/ cot        .             (79) 

Let us integrate Equation (79) and choose the sign ‘+’ 
in it and hence in (78), in order to have its nonsingular 
solution. Then we obtain 

0 sinB  ,                (80) 

where 0B  is some constant. 

Substituting expression (80) into Equation (78) and 
taking into account that the sign ‘+’ has been chosen in it, 
we find 

0 0 01/ ,     /B q B      ,        (81) 

where 0  is some constant. 

From Formulas (80) and (81) we obtain 

0 0 0sin( / )B q B   ,           (82) 

where q  is defined by Formula (58). 

Using Formulas (11), (58), (73), and (82), we find 
1,03

0 0 0

2,03 3,03
0 0 0

0
0 0

0 0

(2 / ) sin(2 / ),  

( 2 / ) [1 cos(2 / )],

2 ,     ( , ) (0, ) .
z

F c B q B

F F c B q B

q j z d j z dz


 

 

   

 

   

   

 (83) 

As follows from (83), when the value 0 02 (q B    

)n , where n  is an integer, the strength component 
1,03F  is zero and when n  is an even integer, 

,03 0,   1,  2,  3kF k  . 
Let us apply obtained results to the puzzling pheno-

menon of current pause which takes place in exploding 
wires [10]. The phenomenon proceeds in three stages. At 
the instant of closure of the circuit, sufficiently large 
current flows through the wire and causes its explosion. 
Then in some time the current flow ceases and the period 
of current pause begins. After a certain period of time the 
current pause can end and the current flow can continue. 

The origin of the current pause is not well understood 
within the framework of the Maxwell electrodynamics 
[10,11]. That is why let us apply its nonlinear generaliza-
tion based on the Yang-Mills equations which we have 
studied. For this purpose, let us turn to Formula (83) and 
apply them to an exploding wire. As follows from For-
mula (83), after some period of time the strength com-

ponent 1,03F  becomes zero. At this moment the current 
in the wire should cease. Therefore, Formula (83) allow 
one to interpret the origin of current pause in exploding 
wires. The pause could end and the current flow could 
continue after some redistribution of charges in explod-
ing wires. 

 
4. Conclusions 
 
We have studied classical Yang-Mills fields with SU(2) 
symmetry generated by charged circular cylinders with 
currents. Our objective was to find solutions to the non-
linear Yang-Mills equations that could generalize the 
corresponding solutions to the linear Maxwell equations 
for sufficiently powerful sources. 

We considered two cases. In the first of them we stu-
died a Yang-Mills field generated by a stationary current 
flowing through a circular cylinder. In this case we found 
a particular exact solution to the Yang-Mills equations. 

In the obtained solution the strength components 1,13F  
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1,23and  F  have the form 1,13 2
eff(2 / ) /F I c x  , 1,23F  

2
eff(2 / ) /I c y  , eff sin( / )I D I D , where ( ) and I I   

eff eff ( )I I   are the actual and effective currents in the 

cylindrical region of radius  , respectively, and D  is 

a sufficiently large constant. When the actual current I  
is not large and / 1I D  , the effective current effI  

is very close to the actual current I  and the found ex-

pressions for 1,13 1,23 and  F F  are practically coinciding 
with the corresponding Maxwell field expressions. At the 
same time, when the actual current I  is sufficiently 
large, the effective current effI  can substantially differ 

from the actual current I  and, moreover, the values 

eff and  I I  can have different signs. Using this result, we 

gave a new interpretation for the phenomenon of bipolar 
lightning and explained the puzzling inversion of the 
normal orientation for electromagnetic fields associated 
with some lightning storms which was recently detected 
by the Fermi Gamma-ray Space Telescope. 

In the second case we considered a Yang-Mills field 
inside a thin circular cylinder with nonstationary plasma.  
We sought field potentials in Formula (52) and came to 
the partial differential Equations (54-56). Solving these 
equations, we found expressions for the field strengths 
inside the cylindrical source under consideration. It was 
shown that the strengths could depend on all charge 
passing through unit area of a cross section of the cylin-
drical source from beginning of the current flow. The 
obtained Formula (83) shows that the field strengths in-
side the cylindrical source can become zero after some 
period of time. This property of the found solution was 

above used to explain the puzzling phenomenon of cur-
rent pause in exploding wires. 
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