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Abstract 
Given the 24–48 h turn-around time of conventional surveillance approaches, methods are needed that improve the 
timeliness and accuracy of recreational water quality risk assessments. Although one useful approach is to 
combine existing monitoring programmes with predictive faecal indicator bacteria (FIB) models, these models are 
largely ‘top-down’ in their approach to safeguarding public health. Beyond being simply ‘advised when to avoid 
swimming’, there is an increasing awareness amongst the general public regarding the role they can play in water 
quality monitoring. Using quantile, maximum value and optimized incremental modelling approaches, this study 
reports on the possibility of developing intuitive, public-friendly models that are based on the physical appearance 
of water (clarity), to estimate 8103 nation-wide E. coli concentrations in rivers, and to assess whether water is safe 
to swim in. If swimmers were to avoid river waters with <1.1 m black disc visibility during autumn and summer, 
and river waters with values <0.5 m black disc visibility during spring and winter, they would also avoid microbial 
hazards that are associated with exceedances of the 540 CFU/100 mL single sample bathing water standard. 
Regardless of the climatic season, stream order classification, catchment land cover or geology of streams 
considered, the clarity-based E. coli models performed well as they presented with sensitivity, specificity and 
accuracy values of at least 72%. The developed models offer the benefit of providing a faster method for 
estimating E. coli concentration, potentially engaging the public in water monitoring, and allowing them to make 
informed decisions on whether it is safe to swim. 
Keywords: faecal indicator bacteria, water clarity, predictive model, water quality, public health 
1. Introduction  
Surface waters are prone to contamination from various point and nonpoint sources and can therefore serve as a 
vehicle for transmission of potentially pathogenic bacteria (Dada & Hamilton, 2016; Devane, Gilpin, & Moriarty, 
2015; Praveena et al., 2018). Consequently, beach monitoring programmes have been adopted and implemented in 
many nations to protect beachgoers from health risks caused by potentially harmful bacteria. In New Zealand, 
policies such as the National Policy Statement on Freshwater (NPS, 2014) provide guidelines for regulators to 
ensure that monitoring programs are in place to warn the public about the risk of exposure to these pathogens 
during recreational contact. Current risk assessment is based on microbiological culturing of Escherichia coli, and 
results are thus used to inform the issuance of swimming advisories to reduce the risks of exposure to potentially 
pathogenic bacteria at recreational sites. However, given the 24–48 h turn-around time before swimming 
advisories are released, advisories issued to protect public health effectively only indicate ‘it may be unsafe to 
swim yesterday’. Thus, while dissemination of accurate and timely information is critical to preventing illness, 
water quality advisories often do not present accurate assessments of such risk in a timely manner.  
Predictive modelling for faecal indicator bacteria (FIB) concentrations can complement the current culture-based 
monitoring approach to recreational water risk assessment. Predictive FIB models provide a rapid estimation of the 
bacteriological condition, potentially assisting local beach managers in the decision process related to the issue of 
swimming advisories. In recent years, many beach managers have increasingly adopted predictive tools, of which 
the most widely applied are models developed through multi-variable linear regression (e.g., Olyphant, 2005; 
Nevers & Whitman, 2005; Feng et al., 2015). Process-based models, which couple hydrodynamic models with a 
microbe transport-fate model involving microbial loading, transport, and fate processes, have also been 
demonstrated to make predictions (e.g., Sanders et al., 2005; Hipsey et al., 2008; Feng et al., 2013, 2015; Thupaki 
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et al., 2013).  
While these predictive faecal indicator bacteria (FIB) models have been used to estimate bacteriological 
water-quality, they have largely adopted a ‘top-down’ approach to safeguarding public health (i.e. models are run 
by science staff of regulatory bodies who simply advise the public when it’s safe or not safe to swim). Beyond 
being simply ‘advised when to avoid swimming’, there is an increasing awareness amongst the general public 
regarding the role they can play in water quality monitoring. This presents novel opportunities for citizen 
participation in predictive FIB modeling. This study presents a classic example of developing intuitive, 
‘public-friendly’ and ‘public-usable’ models, using the physical appearance of water (as measured by water clarity) 
as a way of estimating E. coli concentrations in surface water, to assess whether water is safe to swim in. The goal 
of this study was to evaluate the possibility of using clarity models for E. coli nowcast prediction, at both a local 
and national scale throughout New Zealand. This will constitute a milestone in efforts geared towards developing 
and deploying site-specific river clarity-based E. coli models at local scales for nowcast prediction of E. coli 
concentrations at popular recreational sites in New Zealand and other nations worldwide. 
2. Methods 
2.1 Study Sites  
A total of 145,040 water quality datasets, which have been routinely collected by regional authorities from as early 
as the late 1980s for most New Zealand rivers and tributaries (https://data.mfe.govt.nz/), was used in the analysis. 
These datasets contained measured values for several parameters including ammoniacal nitrogen, total nitrogen, 
nitrate-nitrogen, dissolved reactive phosphorus, total phosphorus, and E.coli. All E.coli datasets were extracted 
(n=8170). Of these, a total of 8103 E.coli datasets that had corresponding discharge data were subsequently used 
for the analysis. E.coli data used thus spanned the period 2005 to 2013 at a total of 77 freshwater swimming sites 
representing 49 rivers and tributaries throughout New Zealand. The frequency of sampling varied across the sites 
represented in the dataset from fortnightly to quarterly. While constraints and objectives associated with the design 
of regional sampling programs tend to influence variability in the geographical coverage of the sites in the database 
(as noted in McDowell et al., 2017) (Figure 1), we consider that the sites in our dataset adequately represent river 
sites nationally. Climatological, geological and land use characteristics for the sites are as described in the NZ 
River Environment Classification scheme (McDowell et al 2017). 
2.2 Determination of E. coli and Water Clarity  
As part of the national bathing site E. coli surveillance program, water samples from New Zealand rivers and 
tributaries are collected during recreational seasons and low flow months, particularly between October and March 
of every year (Davies-Colley, 1988). Microbiological water quality analyses are completed using the membrane 
filtration method (EPA, 2002) for E. coli. Counts are recorded as colony forming units (CFU/100 mL) and entered 
into spreadsheets. At these sites, water clarity is typically measured using a black disc which is placed in the water 
and viewed through an underwater viewing box at increasing distances until the black disc disappears from sight 
(Davies–Colley, 1988). 
2.3 Data Management, Statistical Analysis, and Modeling  
E. coli concentrations rarely fit into a normal distribution. Hence, they were log transformed before any 
exploratory data analysis was done to achieve normality (following Francy et al., 2013). Data applied were split in 
a ratio 2:1 between model development and validation (Gramatica, 2007). To fit the 8103 E. coli datasets based on 
their clarity, three approaches were used (as schematically represented in Figure 2).  

i. Quantile approach: A classification scheme was applied that resolved the water clarity datasets 
into quantiles. To achieve this, quartiles were determined on the basis of stream order. Hence, 
quartile classes specific to each stream order were applied. Water clarity values less than the first, 
second, third and fourth quartiles were designated as Q1, Q2, Q3 and Q4, while water clarity 
values higher than the fourth quartile were designated as Q5. 

ii. Maximum value approach: The maximum observed log E. coli concentrations per unique 
water clarity values were fitted using a linear regression model. This produced specific 
equations that predicted E. coli concentrations using water clarity values. 

iii. Gradient/incremental approach: Incremental ‘trigger’ values or water clarity ‘thresholds’ (i.e. 
from lowest to highest) were applied as ‘thresholds’ to predict exceedances and 
non-exceedances of the national bathing water standard. These triggers or thresholds are water 
clarity values that would warrant additional site-based investigation, as they are indicative of 
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conditions of elevated faecal indicator bacteria levels higher than the national bathing water 
standard of 540 CFU/100mL.  

 
Figure 1. 77 New Zealand freshwater swimming sites (49 rivers and tributaries) in the E.coli predictive modeling 

using water clarity as a predictor variable 

 

2.4 Model Performance and Swimming Advisory Assessment  
Exceedances of bathing water thresholds applied in this study were compared against national and international 
guidelines. An exceedance (or a positive model outcome) was recorded when sampled or predicted E. coli levels 
exceeded the bathing water standard (BWS) of 235 CFU/100 mL (USEPA guidelines), or 260 and 540 CFU/100 
mL (as stipulated in the New Zealand National Policy Statement for Freshwater Management) (NPS, 2014). A type 
I error (or a false positive outcome) was identified when the modelled E. coli level was above the thresholds, but 
the observed E. coli level was below the thresholds. When the modelled and observed E. coli levels were both 
above the thresholds, this was considered a true positive. On the other hand, a false negative result (type II error) 
was inferred when the modeled E. coli level was less than the thresholds but the observed E. coli level was higher. 
In such a case, potential microbial contamination would be undetected by the model and no swimming advisory 
would be issued. When the modeled and observed E. coli levels are both below the thresholds, this is identified as 
a true negative.  
Model accuracy was determined in the study as the percentage of correct advisory predictions. Sensitivity and 
specificity are defined as the rates of correctly predicted exceedances and non-exceedances, respectively. 
Specificity, sensitivity, and accuracy of the model were determined using the following equations: 𝑀𝑜𝑑𝑒𝑙 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ሺ%ሻ = Number of True Positives ∗ 100ሺNumber of True Positives ൅ Number of False Negativesሻ 

𝑀𝑜𝑑𝑒𝑙 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ሺ%ሻ = Number of True Negatives ∗ 100ሺNumber of True Negatives ൅ Number of False Positivesሻ 

𝑀𝑜𝑑𝑒𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ሺ%ሻ = ሺNumber of True Negatives ൅  Number of True Positivesሻ ∗ 100ሺTotal number of observationsሻ  

One-way analysis of variance (ANOVA) was conducted to compare significant differences between the modelled 
and observational results. Additionally, the correlation coefficient, R2 (an estimate of the proportion of total 
variation in the data series which is explained by the model) and the residual root mean square error (RMSE) were 
used to measure the goodness-of-fit of the FIB models developed. The RMSE is a measure of variation of the 
observed E. coli concentration from its model-predicted value.   
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Figure 2. Methodology for Determining Water Clarity-based E. coli Predictions 
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3. Results 
3.1 E. coli Concentrations in 49 Rivers Designated as Swimming Sites 
On the whole, the Clutha, Waitaki and Waikato Rivers had the highest nine-year mean E. coli concentrations (2.59, 
2.53 and 2.38 CFU/100 mL, respectively). However, rivers with the highest yearly summer average E. coli 
concentrations were Waikohu, Waihou, Sutton Stream, Waitara, Haast and Opihi. Monowai, a river flowing 
through non-pastoral catchments in the South Island, presented with the lowest yearly summer average E. coli 
concentrations. The proportion of samples with E. coli concentrations that exceed bathing water standards was 
highest for Waitara, Waipa, Waihou, and Waikohu as more than 30% of exceedances were observed during the 
nine-year period included in this study (Figure 3).  
 

 

Figure 3. Proportion of samples exceeding the NZ-NPS 540 CFU/100mL single sample bathing water standard 
(2005-2013) 

 
3.2 Relationship Between E. coli and Clarity  
A correlational analysis of 8103 E. coli and clarity datasets collated nationwide for a total of 49 rivers that have 
been routinely sampled at 77 sites by regional authorities in New Zealand was also done in this study. Results from 
the quartile approach indicate that river E. coli concentrations were inversely proportional to river water clarity, 
with a simply fitted spline accounting for more than 60% of the variability in the national E. coli dataset (Figure 4). 
E. coli concentrations declined with increasing water clarity, as assessed using clarity quartile categories (Figure 4). 
Water clarity quartile classification of rivers had a strong negative relationship with median faecal bacteria levels 
(Figure 4). Median E. coli concentrations were closer to the bathing water standard for water samples having water 
clarity values that fell within the first quartile (Figure 4). This inverse trend was also readily observable when box 
plots of E. coli concentrations versus water clarity quartiles were plotted for all different regions in New Zealand 
(Supplementary Figure 1), as well as for rivers categorized by land use (Supplementary Figure 2a), geology 
(Supplementary Figure 2b) and stream order classifications (Supplementary Figure 3). 
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Figure 4. Plots of 8103 E.coli concentrations versus quartile distribution of water clarity. R-squared = 0.613. Red 
line is the line of fit that runs across median E.coli concentrations at different water clarity quartiles 

 
3.3 Nation-Wide Trigger Values: Application of Clarity-Based Model for Estimating E. coli Concentrations in New 
Zealand Rivers  
The applicability of water clarity-based E. coli models for use on a national scale was tested using the datasets 
described earlier. This was done with a view to developing a clarity-based classification scheme that could 
potentially identify exceedances of bathing water standards in recreational water using an easily measured 
indicator. This approach thus identifies trigger clarity ranges or thresholds that could initiate further investigation 
to confirm whether there is a problem related to faecal contamination.  
Using the maximum value approach stated in Section 2.3, maximum E. coli concentrations per unique water clarity 
value (in meters) were fitted using a regression model. Based on unique water clarity values, a predictive E. coli 
model was developed for rivers and tributaries in New Zealand with the equation below: Maximum Log𝐸. 𝑐𝑜𝑙𝑖 = 3.82 − 0.91 ∗ 𝑆𝑞𝑢𝑎𝑟𝑒𝑑𝑟𝑜𝑜𝑡[𝑊𝑎𝑡𝑒𝑟𝐶𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝑚ሻ] 
The water clarity-based E. coli model adequately captured the variability in E. coli data during the modeling period. 
Based on the obtained R-squared values, nearly 70% of the variability in maximum E. coli concentrations was 
explained by the model (Table 1 and Figure 5a). When model performance was assessed against the NZ NPS-FM 
bathing water criterion of 540 CFU/100 mL, a total of 113 out of the 168 exceedances (67%) in the calibration 
period were correctly predicted by the model (Figure 5a), with a sensitivity and specificity of 67 and 89%, 
respectively. The model was at least 81% accurate as it correctly predicted 399 exceedances and non-exceedances 
out of the 489 observations in the calibration period (Figure 5a).  
The model also performed well when validated against the E. coli concentrations measured in rivers and tributaries 
during the validation period, 2011-2013 (Figure 5b). For instance, the model accurately predicted more than 75% 
of all exceedances in the E. coli data (Table 1) when assessed against the NPS-FM and USEPA bathing water 
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criteria. The root mean square errors of prediction for modeled mean E. coli concentrations were also low (0.02 
LogCFU/100 mL).  
 

 
(a) 

 
(b) 

Figure 5. Model performance plots fitted for New Zealand wide dataset using maximum value modelling approach: 
(a) Calibration Period, 2005-1010. (b) Validation Period, 2011-2013. Light green error bar indicates the 90% 
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Table 1. FIB model performance during calibration (2005-2010) and validation (2011-2013) period. Performance 
of the classification scheme was assessed against a BWS of 540 CFU/100 mL, 260 CFU/100 mL, and 235 
CFU/100 mL, respectively as in the New Zealand National Policy Statement on Freshwater Management and the 
USEPA guidelines 

Model Statistics 
Calibration Period (2005-2010)  Validation Period (2011-2013 

NPS-540 NPS-260 USEPA-235  NFP-540 NPS-260 USEPA-235 

Sensitivity (%) 67.26 82.86 82.94  78.81 85.41 87.37 

Specificity (%) 89.10 84.02 79.75  78.82 62.50 60.31 

Accuracy (%) 81.60 83.44 81.39  78.82 75.70 76.32 

RMSE (LogCFU/100mL) 0.02 0.02 0.02  0.02 0.02 0.02 

R Squared 0.69 0.69 0.69  0.67 0.67 0.67 

Pearson Correlation 0.83 0.83 0.83  0.82 0.82 0.82 

 
Figure 6 presents the receiver operating characteristic (ROC) curve of sensitivity, specificity and accuracy 
obtained when incremental water clarity ‘thresholds’ were applied to predict exceedances and non-exceedances of 
8103 E. coli datasets, against a national bathing water standard of 540 CFU/100 mL, for each season. Table 2 
summarizes the model performance data. 
With increasing water clarity ‘trigger value’, the sensitivity of the model increases: there is an increase in the 
proportion of correctly predicted true exceedances but a concomitant reduction in the specificity of the model; i.e. 
decreases in the proportion of correctly predicted BWS non-exceedances. A plot of sensitivity and specificity 
versus potential trigger values quite easily delineated a crossover value. This crossover value is the optimum 
decision threshold where the maximum number of exceedances are correctly identified and is a reasonable 
trade-off between sensitivity, specificity, and accuracy (Arad, Housh, Perelman, & Ostfeld, 2013). Regardless of 
the season considered, the E. coli clarity models performed well as they presented with at least 75% sensitivity, 
specificity and accuracy at the crossover value (Figure 6, Table 2).  
During summer and autumn, the crossover (trigger) value was observed to be 1.1m (Figure 6); i.e. on a nation-wide 
scale, there is a high likelihood that elevated levels of faecal indicator bacteria, above the E. coli BWS, would be 
present in rivers when the stream or river water clarity was lower than 1.1m. At this trigger value, 324 out of the 
423 total E. coli BWS exceedances observed in the summers and autumns of the 9-year period were correctly 
predicted (i.e. 133 +191, see Table 2).  
During winter and spring, the crossover (trigger) value was observed to be lower; 0.5m and 0.6m respectively 
(Figure 6), i.e. on a nation-wide scale, during these seasons, there is a high likelihood that elevated levels of faecal 
indicator bacteria, above the E. coli BWS, would be present in rivers when the stream or river water clarity is lower 
than 0.6m. At this trigger value, at least 383 out of the 465 exceedances observed in the winters and springs over 
the 9-year period were correctly predicted (i.e. 195+198, see Table 2). This trigger value also correctly predicted a 
high proportion of the non-exceedances observed in the winters and springs of the 9-year period, with a minimum 
specificity of 79% (Table 2). Regardless of the scenario of river catchment land use, geology, and stream order 
classifications considered in this study, the E. coli clarity models performed well as they presented with sensitivity, 
specificity and accuracy that ranged between 72.82% and 100% (Table 2).  
On the whole, these results show that if swimmers were to avoid river waters with <1.1 m black disc visibility 
during summer and autumn or river waters with <0.5m black disc visibility during spring and winter, they would 
also avoid microbial hazards that are associated with exceedances of the 540 CFU/100 mL single sample bathing 
water standard (Table 2).  
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Figure 6. Receiver operating characteristic (ROC) plots of sensitivity, specificity, and accuracy versus incremental 

water clarity ‘trigger’ values that predict E.coli BWS exceedances at 77 freshwater sites nationwide during 
different seasons. Performance of the classification scheme was assessed against a BWS of 540CFU/100 mL as in 

the New Zealand National Policy Statement on Freshwater Management (2014) 
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Table 2. Model performance of seasonal water clarity trigger values used to fit exceedances and non-exceedances 
of E.coli data 
 Land cover 

  EF P S IF   

Trigger Value (m) 1.1 0.9 1 0.7 

True Exceedances of BWS 11 296 7 380 

Total number of exceedances 11 391 9 476 

Total number of observations 106 4306 207 3484 

Sensitivity (%) 100 75.7 77.78 79.83 

Specificity (%) 90.53 72.82 78.79 80.55 

Accuracy (%) 91.51 73.08 78.74 80.45   

Season  

  Summer Autumn Winter Spring All seasons 

Trigger Value (m) 1.1 1.1 0.5 0.6 0.8 

True Exceedances of BWS 133 191 195 188 698 

Total number of exceedances 181 242 231 234 887 

Total number of observations 1952 2064 2043 2044 8103 

Sensitivity (%) 73.48 78.93 84.42 80.34 78.69 

Specificity (%) 76.76 79.36 79.08 80.22 77.63 

Accuracy (%) 76.46 79.31 79.69 80.23 77.75   

 Stream order 

  1 2 3 4 5 6 

Trigger Value (m) 0.6 0.6 1 0.7 0.6 0.8 

True Exceedances of BWS 25 100 174 241 118 31 

Total number of exceedances 32 133 230 301 154 37 

Total number of observations 526 839 2518 2428 1266 526 

Sensitivity (%) 78.13 75.19 75.65 80.07 76.62 83.78 

Specificity (%) 79.35 76.35 74.83 79.5 79.84 83.44 

Accuracy (%) 79.28 76.16 74.9 79.57 79.45 83.46 

Geology 

  VA SS PI HS VB AL 

Trigger Value (m) 0.7 0.8 N/A 0.6 1.8 0.8 

True Exceedances of BWS 75 298 0 132 5 174 

Total number of exceedances 97 398 0 179 6 207 

Total number of observations 950 2846 207 1372 106 2622 

Sensitivity (%) 77.32 74.87 0 73.74 83.33 84.06 

Specificity (%) 75.85 77.61 N/A 77.03 87 81.78 

Accuracy (%) 76 77.23 N/A 76.6 86.79 81.96 

EF= exotic forest, P = Pastoral, S = Scrub, IF= Indigenous forest, VA = Volcanic acidic, VB = Volcanic basic, Pl = Plutonics, 
HS = Hard sedimentary, ss = Soft sedimentary, AL = Alluvium, as in McDowell et al (2017), N/A = Not applicable, since no 
exceedances were observed for streams and rivers with plutonic geology throughout the entire 9-year modelling period. 
Trigger values were obtained from cross over plots for each scenario of river land use type, season, stream order and geology. 
Performance of the classification scheme was assessed against a single sample BWS of 540 CFU/100 mL as in the New 
Zealand National Policy Statement on Freshwater Management (NPS 2014). 
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4. Discussion 
The goal of this study was to develop predictive models, based on the visual clarity of a waterbody, which could be 
used by the general public, as well as by the water science staff in regulatory institutions to predict the 
concentrations of E. coli in rivers and tributaries before water quality tests results are ready or during days when 
monitoring is not conducted. One critical goal was to build the model using relatively basic numerical concepts 
that could be relayed to and be useable by the public. In this way, the public can make smarter, faster decisions on 
the bacteriological quality of water at their favourite swimming spot.  
In order to achieve this objective, this study focused on water clarity as a potential environmental surrogate for E. 
coli in the development of predictive FIB models. The use of water clarity to predict stream bacteriological water 
quality in our study is logical since it has been shown that this variable is strongly correlated with turbidity, which 
also influences water quality in a water body (Dada & Hamilton, 2016), and is related to E. coli concentration. A 
number of studies have previously shown strong relationships between E. coli and turbidity (Christensen, 2001; 
Rasmussen and Ziegler, 2003, Riverkeeper et al., 2008) and between E. coli and other variables that influence 
turbidity, including antecedent rainfall, suspended solids, and phosphorus nutrient enrichment. Gregory and Frick 
(2000) reported that faecal coliform bacteria densities in the Chattahoochee River were highest after rainstorms, 
when the river was turbid. Dada and Hamilton (2016) reported an increase in total phosphorus (TP) and suspended 
solids at some streams in New Zealand in relation to E. coli. For example, like phosphorus, faecal bacteria tend to 
be bound to particulate matter, and are often transported in a particle-facilitated manner (Hong et al., 2010). Also, 
suspended solids include a wide variety of material (such as silt, decaying plant and animal matter and wastes) 
(Kannel et al., 2007), which could provide attachment surfaces for bacteria, a process important for the growth and 
survival of organisms in the aquatic environment. With increased concentrations of suspended solids in these 
streams, E. coli may be able to attach to more particle surfaces by adsorption. Fries et al. (2006) reported that 34 to 
42 percent of E. coli in surface-water samples were attached to particles in the water column. The presence of 
suspended solids in the water column increases the survival rates of E. coli by limiting the inactivating effects of 
sunlight (Sinton et al., 2002; Stapleton et al., 2004; Kay et al., 2005; Liu et al., 2006). 
Unlike turbidity or suspended solids, however, water clarity can be easily measured with very minimal training and 
basic equipment. Additionally, in instances where there is no equipment, a water clarity-based predictive system, 
when translated into specific meter measurements, could potentially help the public make fast, informed decisions 
on the bacteriological quality of the water they are about to wade into. For instance, regional authorities can 
harness historical water clarity and E. coli data to mathematically determine water clarity thresholds that tend to be 
mostly associated with exceedances of the bathing water standard. In this study, our results show that if swimmers 
were to avoid river waters with <1.1 m black disc visibility during autumn and summer or river waters with <0.5 m 
black disc visibility during spring and winter, they would also avoid microbial hazards that are associated with 
exceedances of the 540 CFU/100 mL single sample bathing water standard. These water clarity thresholds could 
then be used by relevant authorities to build an early warning system, which could be communicated to the public. 
This could result in warnings like, ‘if you cannot see your feet in ankle-deep water, don’t go swimming’ (see Figure 
2). 
We used water clarity to calibrate and validate FIB models to predict E. coli concentrations on a nation-wide scale 
for all rivers in New Zealand. The E. coli model built using the maximum value approach showed high predictive 
power, which could account for more than 67% of the variability in the E. coli data (R2 ranged between 0.67 and 
0.69 during the calibration and validation period). Based on a recent literature study, de Brauwere et al. (2014) 
reported that the performance (adjusted R2) of multiple linear regression models varies widely, ranging from 0.29 
to 0.99, thus emphasizing their extreme case-sensitivity. 
The models developed in this study were also able to advise on exceedances or non-exceedances of existing BWS. 
Model performances, in terms of predicting whether a warning should be issued, varied among the rivers and 
streams considered depending on the season, land cover, geology and stream order classification. However, in 
most instances, the model sensitivity and specificity were higher than 70% in most scenarios of season, land cover, 
geology and stream order classification. The variability observed in our model performance is in agreement with 
the observations of Thoe et al. (2014).  
Also, model performances, in terms of predicting whether a warning should be issued, varied among the modelling 
approaches used. For instance, while model specificity, specificity and accuracy ranged from 67.26% to 89.1% for 
the gradient modelling approach, higher values of model specificity, specificity and accuracy (range 72.8% - 100%) 
were recorded for the incremental modelling approach. These results suggest that the best approach to using water 
clarity to predict E. coli concentrations is the incremental modeling approach, coupled with an ROC-curve 
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optimization to determine water clarity ‘thresholds’ that best predict exceedances of the bathing water standard. 
From a public health protection perspective, Thoe et al. (2014) suggested that a model ready for management 
applications should predict a greater percentage of beach postings (water quality warnings) than the current 
method, without the expense of excessive ‘false alarms’. Given this background, criteria were proposed by Thoe et 
al. (2014) to determine whether a model is effective for beach management. These conditions require that the 
selected model should have (i) sensitivity greater than 30% and (ii) specificity greater than 80%. The water 
clarity-based FIB models developed in this study using the incremental approach largely satisfy these criteria.  
Despite the performance of these models, some exceedances of the bathing water standards were still missed. This 
suggests that there are factors other than clarity affecting E. coli concentrations, which are not captured by the 
model. Notwithstanding this limitation, our model was able to accurately predict more than 75% of the 
exceedances and non-exceedances recorded at these sampling sites (1990-2013); hence, it is a useful tool for 
bacteriological water quality management. Under varying scenarios of water clarity conditions, water science 
managers and the public at large can make a reliable prediction of current E. coli concentrations faster than the 
turn-around period of currently available, conventional assay-based methods. We believe that the approach used in 
this study could be adapted for wide-spread use in local water bodies in New Zealand and beyond.  
While a number of studies globally have reported correlations of E. coli concentrations with the physical 
appearance of water (e.g. turbidity and water clarity), these studies are often site-specific (Collins, 2003, Dwivedi 
et al 2013, Francy et al 2013). It thus becomes logical to argue that strong correlations reported for one site do not 
necessarily mean the same is true for other rivers not covered in any given study. Besides, the characteristics of 
every river will differ, typically reflective of the catchments they run through. Our unique approach goes beyond 
exploring water clarity and E. coli concentrations at a site-specific level and covers entire national datasets, 
capturing multi-river considerations and differing land use, geology, river order classification and seasons.  
A recent article (Davies-Colley et al., 2018) published during the preparation of this paper, operates at a national 
level. Davies-Colley et al. (2018) described a uniform water clarity threshold across different conditions, 
suggesting that ‘if swimmers were to avoid river waters <1.6 m black disc visibility, they would also avoid 
microbial hazards about 99% of the time’. The current study advances these findings reported by Davies-Colley et 
al. (2018) by showing that there are differences in the ability of water clarity to predict E. coli concentrations 
depending on climatic seasons, land use, geology, and stream order classifications. Kelly et al. (2018) reported that 
swimming site geomorphology was highly associated with exceedance of regulatory standards. Similarly, 
Paule-Marcado et al. (2016) and Donahue et al. (2017) reported that faecal indicator bacteria exceedances were 
associated with land use. 
Our study also successfully applied receiver operating characteristic (ROC) curves to optimize the determination 
of water clarity ‘thresholds’ that predict exceedances of the bathing water standard (as in Figure 6). This 
ROC-guided crossover value is the optimum decision threshold where the maximum number of exceedances are 
correctly identified and is a reasonable trade-off between sensitivity, specificity, and accuracy (Arad, Housh, 
Perelman, & Ostfeld, 2013). The ROC approach was able to optimize the water clarity thresholds in this report, 
rather than applying a single uniform water clarity threshold across different seasons and land use conditions. For 
instance, applying a single threshold of 1.6m without the ROC optimization will predict that a stream is safe for 
recreation when it actually contains E. coli at concentrations above the bathing water standard (at least half of the 
predicted times, based on the low model specificity and accuracy of 47.7% and 52.5%, respectively (see 
supplementary sheet)). The findings of this research have important policy implications because site-specific 
considerations for water clarity-based E. coli prediction could be implemented in other parts of the country and 
around the world to augment conventional culture-based approaches in a way that improves the timeliness of 
swimming water advisories.  
We note however that there are potential limitations to the modelling approach in our study. For instance, in 
summer, 133 out of 183 exceedances of the BWS were predicted by the water clarity-based model. This suggests 
that there are situations when water clarity may prove to be a poor model for E. coli levels (i.e. erosion of 
sediments with little microbial input or clear water in urban systems despite high concentrations of microbial 
pollutants). Also, while our focus was to model the relationship between water clarity and faecal indicator bacteria, 
it does not differentiate between contributions of faecal bacteria from the sediment bed and from the watershed. 
There was also no delineation between free and particle-associated faecal bacteria. In the future, sediment 
deposition and resuspension fluxes of faecal bacteria across the sediment bed–water interface at river-specific 
levels could be incorporated into the model. Based on this, it would be possible to apply the model to hypothetical 
scenarios that can potentially evaluate the impact of varying catchment management conditions as well as settling 
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and resuspension conditions on E. coli concentrations observable in the water column. 
Another limitation to our approach is spatial variability. For instance, bacteriological water quality at designated 
sampling sites is thought to be representative of that particular water body. However, considerable spatial 
variability has been documented over scales of 10 m and more (Schang et al, 2018; Boehm et al 2009). It is thus 
hoped that future studies will combine E. coli and water clarity data with geographic information systems in a way 
that dynamically captures both spatial and temporal dimensions. A similar approach was adopted by Money et al. 
(2009) in a study that combined E. coli and turbidity data in a river-based space/time geostatistical framework for 
basin-wide assessment of faecal contamination. This can harness the power of aerial photography and 
satellite-based remote sensing to provide real-time aerial prediction of E. coli conditions.  
We note that the assessment of recreational water, depending on the location, may require consideration for other 
parameters apart from E. coli. These include, for instance, nuisance algae and floating trash that may contribute to 
the overall suitability of a water body for contact recreation. In the future, studies will emerge that attempt to 
aggregate a range of environmental variables other than E. coli into a single index that comprehensively assesses 
risk and that is understandable to the public and decision makers. The use of comprehensive contact recreation 
attributes rather than single E. coli-based measures have recently emerged (e.g. SafeSwim-Auckland Council, 
Milne et al., 2016, 2017; Lopes et al., 2018) and show potential for national and global application. 
5. Conclusion 
In this study, a direct negative correlation between water clarity and E. coli concentrations was observed for most 
major rivers and tributaries in New Zealand. This correlation was used to develop predictive models that can 
produce estimates of E. coli concentrations rather than waiting for the 24-48-hour reporting time that conventional 
monitoring procedures require. Water clarity trigger values defined by the model can be used by authorities to 
alerts recreational users of possible high faecal bacteria values. Water clarity trigger values defined for specific 
bathing sites can also be incorporated into early warning systems, which could be communicated to the public. 
This could result in warnings like, ‘if you cannot see your feet in ankle-deep water, don’t go swimming’. The 
developed models can provide a faster estimation of E. coli concentrations, allowing the public to engage in water 
quality monitoring, and also to make informed decisions on whether it is safe to swim at their favourite swimming 
spot. 
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Supplemental Figure S1. Box plots of 8103 datasets of river E.coli concentrations grouped by clarity class and 

categorized by region. Region 1=AC, 2=BOP, 3=ECAN, 4=ES, 5=EW, 6=GDC, 7=GWRC, 8=HBRC, 9=HRC, 
10=MDC, 11=NRC, 12=ORC, 13=TDC, 14=TRC, 15=WCRC 
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(a) 

 
(b) 

 
Supplemental Figure S2. Box plots of 8103 datasets of river E.coli concentrations grouped by clarity class and 

categorized by a) land use and b) geology. 
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Supplemental Figure S3. Box plots of 8103 datasets of river E.coli concentrations grouped by clarity class and 

categorized by stream order classification 
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Supplemental Table S1. Sensitivity, specificity, and accuracy associated with various incremental water clarity 
‘trigger’ values (in meters) when used to predict E.coli BWS exceedances at 77 freshwater sites nationwide 
during spring.  
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0.01 0 1808 234 1 234 1809 2043 0.00 99.94 88.50 -99.9
0.02 3 1803 231 6 234 1809 2043 1.28 99.67 88.40 -98.4
0.03 7 1799 227 10 234 1809 2043 2.99 99.45 88.40 -96.5
0.04 12 1793 222 16 234 1809 2043 5.13 99.12 88.35 -94.0
0.05 17 1789 217 20 234 1809 2043 7.26 98.89 88.40 -91.6
0.06 22 1786 212 23 234 1809 2043 9.40 98.73 88.50 -89.3
0.07 28 1781 206 28 234 1809 2043 11.97 98.45 88.55 -86.5
0.08 33 1777 201 32 234 1809 2043 14.10 98.23 88.60 -84.1
0.09 33 1773 201 36 234 1809 2043 14.10 98.01 88.40 -83.9
0.1 39 1763 195 46 234 1809 2043 16.67 97.46 88.20 -80.8
0.2 89 1698 145 111 234 1809 2043 38.03 93.86 87.47 -55.8
0.3 127 1635 107 174 234 1809 2043 54.27 90.38 86.25 -36.1
0.4 150 1584 84 225 234 1809 2043 64.10 87.56 84.88 -23.5
0.5 178 1517 56 292 234 1809 2043 76.07 83.86 82.97 -7.8

0.6* 188 1451 46 358 234 1809 2043 80.34 80.21 80.23 0.1
0.7 191 1370 43 439 234 1809 2043 81.62 75.73 76.41 5.9
0.8 195 1309 39 500 234 1809 2043 83.33 72.36 73.62 11.0
0.9 200 1245 34 564 234 1809 2043 85.47 68.82 70.73 16.6
1 205 1191 29 618 234 1809 2043 87.61 65.84 68.33 21.8

1.1 207 1129 27 680 234 1809 2043 88.46 62.41 65.39 26.1
1.2 211 1075 23 734 234 1809 2043 90.17 59.43 62.95 30.7
1.3 211 1016 23 793 234 1809 2043 90.17 56.16 60.06 34.0
1.4 214 964 20 845 234 1809 2043 91.45 53.29 57.66 38.2
1.5 216 900 18 909 234 1809 2043 92.31 49.75 54.63 42.6

1.6** 216 862 18 947 234 1809 2043 92.31 47.65 52.77 44.7
1.7 218 822 16 987 234 1809 2043 93.16 45.44 50.91 47.7
1.8 219 790 15 1019 234 1809 2043 93.59 43.67 49.39 49.9
1.9 220 752 14 1057 234 1809 2043 94.02 41.57 47.58 52.4
2 223 717 11 1092 234 1809 2043 95.30 39.64 46.01 55.7

2.1 224 689 10 1120 234 1809 2043 95.73 38.09 44.69 57.6
2.2 225 661 9 1148 234 1809 2043 96.15 36.54 43.37 59.6
2.3 226 630 8 1179 234 1809 2043 96.58 34.83 41.90 61.8
2.4 226 609 8 1200 234 1809 2043 96.58 33.67 40.87 62.9
2.5 226 581 8 1228 234 1809 2043 96.58 32.12 39.50 64.5
2.6 227 547 7 1262 234 1809 2043 97.01 30.24 37.89 66.8
2.7 227 523 7 1286 234 1809 2043 97.01 28.91 36.71 68.1
2.8 228 501 6 1308 234 1809 2043 97.44 27.69 35.68 69.7
2.9 228 471 6 1338 234 1809 2043 97.44 26.04 34.21 71.4
3 228 448 6 1361 234 1809 2043 97.44 24.77 33.09 72.7

3.1 229 423 5 1386 234 1809 2043 97.86 23.38 31.91 74.5
3.2 231 408 3 1401 234 1809 2043 98.72 22.55 31.28 76.2
3.3 231 394 3 1415 234 1809 2043 98.72 21.78 30.59 76.9
3.4 231 369 3 1440 234 1809 2043 98.72 20.40 29.37 78.3
3.5 232 354 2 1455 234 1809 2043 99.15 19.57 28.68 79.6
3.6 232 344 2 1465 234 1809 2043 99.15 19.02 28.19 80.1
3.7 232 330 2 1479 234 1809 2043 99.15 18.24 27.51 80.9
7.7 234 53 0 1756 234 1809 2043 100.00 2.93 14.05 97.1
7.8 234 49 0 1760 234 1809 2043 100.00 2.71 13.85 97.3
20 234 0 0 1809 234 1809 2043 100.00 0.00 11.45 100.0

Optimum  threshold (spring), this study, **1.6m threshold reported in Davies-Colley et al (2018)
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