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Abstract 

 
In this paper, we proposed and analyzed the error estimate of an implicit finite difference method with 

Mamadu-Njoseh as basis functions for time fractional telegraph equation. To enhance the efficacy of the 

method we first transform the Caputo type fractional derivative into Riemann-Liouville derivatives. The error 

analysis of the method is stated and proven. Also, the optimal results for scalars unknown in    norm were 

derived for the two-dimensional case. Numerical illustrations are presented to test the reliability of the 

analytical and computed results. The resulting numerical evidence shows that the proposed method 

convergences more rapidly than the standard finite difference method. MAPLE 18 is used for all 

mathematical procedures in this paper. 
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1 Introduction  
 
The telegraph equation (otherwise known as the transmission line model) is a coupled partial differential 

equation that models the flow of voltage and current on a transmission line in time and distance. The equation 

was designed by Oliver Heaviside in 1876 in the course of developing the transmission line model. The equation 

has revolved, over the years with direct applications to transmission lines involving all frequencies, such as 

telephone lines, radio frequency, telegraph wires, power line and wire radio antenna [1]. 

 

In view of Wang et al. [2], a typical time fractional telegraph equation is given as 

 

  
 
          

                                            (1.1) 

 

with the initial conditions 

 

               

             
                (1.2) 

 

and boundary conditions 

 

      
         

        
                 (1.3) 

 

where       and        is the source term. 

 

In recent literature, there exist some numerical techniques for solving partial differential equations (PDEs), 

which include the spectral method [3], finite volume method [4], finite difference method [5], mixed finite 

element method [6], finite element method [7] and H
1
 – Galerkin mixed finite element method [2]. Yazdani et. 

al. [8] studied the numerical solution of space fractional advection-diffusion equation adopting the finite 

volume-element method. The work expressed the fractional derivative composition in the Grunwald-Letnikov 

form. The convergence and stability of the method was also studied which resulted to the conclusion that full 

discretization is possible and stable in as much as the mesh graded size is sufficiently small. In like fashion, Hao 

et. al. [9] considered the Galerkin finite element method (GFEM) for the solution of two-sided one-dimensional 

diffusion equation with variable coefficients. They reformulated the governing problem into a low-ordered term 

that is fractional by mere introduction of an extra parameter. It was argued that the GFEM is far superior to that 

of the Petro-Galerkin method in the sense that the GFEM can easily be extended to three-dimensional variable 

coefficients.  

 

However, the stability and convergence analysis of this method was not treated. Superconvergence of the finite 

element method as applied to time-fractional diffusion equation (TFDE) governed by a time-space diffusivity 

was studied by An [10]. Weak singularity of the model problem was studied at      Also, the fully discrete 

scheme on a bounded mesh, and fully discrete conforming finite element method was investigated. The author 

in conclusion remarked that superconvergence is achievable if temporary mesh pints are set at          , 

where   is graded mesh size and          Liu et. al., [6] also studied the numerical solution of time-

fractional partial differential equations. The mixed element method (MEM) was adopted as the numerical solver 

of the problem. The work of [6] is quiet fascinating in the sense that the Caputo fractional derivative was 

discretized in time via the two-step method (otherwise, finite difference method), and spatial direction was 

discretized using the mixed finite element method.  

 

There are few works existing in literature on the numerical methods of the telegraph equation. For instance, 

Wang et. al. [2] applied the H
1
 – Galerkin mixed finite element method (H

1
-GMFEM) for the solution of time 

fractional telegraph equation. In line with the approach of Liu et. al. [6], the authors also fully discretized in time 

the Caputo fractional derivative using the finite difference method, and discretized in space using the H
1
-

GMFEM. For more on this, see Wei et. al. [11], and Zhao and Li [7].  
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Mamadu-Njoseh polynomials (MNP) are orthogonal polynomials developed by Njoseh and Mamadu [12] for 

seeking the approximate solution of many linear and nonlinear problems in the field of applied mathematics. 

The polynomials were constructed in the interval [-1,1] with respect to the weight function            
These polynomials so far has contributed so much in seeking the approximate solutions of integral equations, 

boundary value problems, singular initial value problems in ordinary differential equation, integro-differential 

equation, delay differential equations. However, these polynomials are implemented through an appropriate 

numerical scheme as basis functions. For instance, the MNP were adopted by Ahmed and Singh [13] for the 

solution of integral equation via the Galerkin method. In like manner, Al-Humedi and KadhimMunaty [14] 

studied comparatively the MNP alongside Chebyshev and Laguerre polynomials for the solution of first kind 

intergral equation by the spectra petro-Galerkin method. Montazer et al. [15] studied the MNP alongside non-

uniform Haar wavelets for the numerical treatment of linear Volterra integral equations.  

 

Problems involving fractional order have equally solved applying these polynomials as seen in the literature Xie 

[16]. Njoseh and Mamadu [17] applied the MNP as trial functions for the solution of fifth order boundary value 

problems via the power series approximation method. These polynomials were also used by Mamadu and 

Njoseh [18] for the solution of Votterra integral equation via the Galerkin Method. Mamadu and Njoseh [19] 

considered the Mamadu-Njoseh  polynomials in orthogonal collocation methods for the solution of integro-

differential equations. Ogeh and Njoseh [20] constructed a modified variational iteration method for the solution 

of fifth and sixth order boundary value problems adopting the Mamadu-Njoseh polynomials as trial functions. In 

like manner, Njoseh and Musa [21] adopted these polynomials for the solution of pantograph-type delay 

differential equation in a variational iteration approach. Also, Mamadu and Ojarikre [22] proposed a 

reconstructed Elzaki transform method (RETM) for the solution of delay differential equation using Mamadu-

Njoseh polynomials as basis functions. A perturbation by decomposition technique was considered by Mamadu 

and Tsetimi [23] adopting the MNP as basis functions for the solution of singular initial value problems. 

 

This paper will centre on Mamadu-Njoseh polynomials as basis functions in a discretization scheme. Thus, a 

novel finite diference method with Mamadu-Njoseh basis functions for the time-fractional telegraph equation 

(1.1) will be proposed. An optimal error analysis for scalar unknowns in    norm will be established for the 

equation (1.1). 

 

2 Preliminaries 
 

Let equation (1.1) can be transformed into a fractional differential equation with the Riemann – 

Lionville derivatives [24] 

 

  
 
      

           (                                                 (1.4) 

 

By definition,  

 

  
 
     

    
 

  
 

 

      
           

 

 

   
  

      
 
 

  
 

 

   
       

  
      

        

 

Thus,  

 

  
 
        

    
 

     
                
 

 
  .                (1.5) 

 

Let [0, 1] be partitioned as               . by using                , we 

approximate       in time step as  

 

  
 
        

   
 

     
       

     
 

       . 

 

let           we obtain, 
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  ,                    (1.6) 

 

where                        

 

Using the quadrature formula [24],  the integral is replaced with     
 
        for each    to obtain 

 

   
 
        

    
 

     
      

 
                     

where,  
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Thus,  

 

  
 
       

      
    

      
                 

 

   

          
  
  

     
      

 

      
               

      
        

 

   

 
  
  

     
      

 

                   
  
  

     
     

 

   

  

Where, 

  

                         

 

such that      and     satisfies  

 

     
 

      
 

                                                                                              

                                          

                                                       

 , 

 

    
 

         
 

                                                                                     

                                        

                                                     

 . 

 

2.1 Discretization in time  
 

Let consider the finite difference method [25] of (1.4) at       we get 
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or  

 

  
                       

            
 
                 

  
  

     
             (1.8) 

 

Denote             we obtain, 
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Let    , we obtain, 
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But from, we find [30]  

 

     
          

     
 
  

 
       

 
   , 

 

where     
 

      
. 

 

Thus, the implicit difference formula for (1.4) is given as 

 

                                 
       

  
 

             

   
 

 
                            (1.9) 

 

2.2 Discretization in time with Mamadu-Njoseh polynomials 
 
Suppose that an approximation to (1.4) is declined by 

  

                          
 
                           (1.10) 

 

where,  

 

                                                                                  
                          
 

Using (1.10) on  (1.9), we obtain a new implicit scheme given by 

 

               
 
    

   

      
          

 
               

   
     

   

  
            
 
   

   

  
            
   
   

   

  
           
  
    

    

   
            
 
   

∆  ∆ 2 =0 −1      = ( , )                  (1.11) 

Equation (1.11) is collocated orthogonally ([26]-[28]) for any     to obtain a system of       linear 

equations which can be solve for the unknowns                via a suitable mathematical software with 

estimate              clearly given. The approximate solution to (1.4) is obtain by substituting the known 

estimate into (1.10). 
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3 Main Results 
 
In this section, we carry out a precise analysis of error estimate on the derived implicit formula (1.11). 

 

Define                                                       , then the equation (1.4) can be 

reformulated  in abstract sense as 

 

  
                                        

 ,                 (1.12) 

 

Using compound quadratic formula on         we have 

 
   

     
                                    
 
      (1.13) 

 

Evaluating                      
 

[      
                

                    
 
                

 
                        (1.14) 

 

          
                

                
 
         

 
   ,                           (1.15) 

 

Where, 

 

               
 
         . 

 

Let         be the error function, where   is the analytic solution and     then (1.15) can also reformulated 

in reference to (1.11) as  

 

       
       

       

  
  

             

   
       

               
 
          

 
         (1.16)  

 

Lemma 1 [24]: For                     
 

 with       then 

 

     
     

       
          . 

 

Lemma 2 : Suppose                                   
 
     hen,       

 

Theorem 1: Let    and    denotes the solution of (1.4) with the prescribed conditions, then 

 

               

 

where            . 
 

Proof:  Let subtract (1.15) from (1.13) to obtain the error equation as  

 

       
                           

 
                       (1.17) 
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By definition of    norm, we obtain  

 

              
        

  
                    

 
     ,               (1.18) 

 



 

 
 

 

Mamadu et al.; Asian Res. J. Math., vol. 19, no. 7, pp. 20-30, 2023; Article no.ARJOM.98744 
 

 

 
26 

 

where   is symmetric and positive definite operator [29]. Now for any function     , we have via spectral 

method that                     . 
 

Hence, using the definition of      and (1.18), we have  

 

         
        

  
    

 

         
   

        
  

                                 (1.19) 

 

                         
        

  
  

 

                              
        

  
. 

 

By definition of gamma function, it is obvious          This implies  

 

                     
        

  
  . 

 

Therefore,  

 

         
        

  
            . 

 

Thus, (1.18) becomes  

 

                                            
          

 
    ,              (1.20) 

 

               
 

Equation (1.20) can be reformulated into the form, 

 

                           
 
   ,                  (1.21) 

 

where,           
           

  
. 

 

Let    , then (1.21) becomes  

 

                                    

   

   

  

 

                                           
   
      

   

            

 

where , 

 

                               

   

   

 

 

                                  

 

   

 

 

Now using lemma 1 and lemma 2, we have from (1.21), 
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4 Numerical Illustration 
 
To test the reliability and accuracy of the proposed method, we consider the example below: 

 

    
 
          

                         
           

      
                        ,         (1.22) 

 

with the initial conditions 

 

           

         
               

 

and boundary conditions 

 

          

        
           

 

Applying the scheme (1.11) on (1.22) at     with parameters                               at      
and values of              estimated as                          ,                    and 

                   Results are presented Table 1 and Fig. 1  using MAPLE 18. 

 

Table 1. Maximum error at       

 

        Error  (Proposed method)      Error  [11] 

20 

40 

80 

160 

5.6445E-008 

3.5198E-006 

1.5441E-005 

6.3327E-005 

9.877022E-003 

3.477002E-003 

1.232302E-003 

4.249358E-004 

 

 
 

Fig. 1. Comparison of computed solutions and exact solutions 

 

Similarly at     with parameters                               at      and values of       

       estimated as                          ,                    and                     
Results are presented in Table 2 and Fig. 2 using MAPLE 18. 
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Table 2. Maximum error at       

 

        Error  (Proposed method)      Error  [11] 

20 

40 

80 

160 

6.6376E-004 

1.4188E-006 

2.4280E-007 

3.9604E-008 

1.1484477E-002 

5.148878E-003 

1.998394E-003 

8.980387E-004 

 

 
 

Fig. 2. Comparison of computed solutions and exact solutions 

 

5 Discussion of Results 
 
Numerical evidences to test the reliability and accuracy of the proposed method are presented in tables and 

figures. Tables 1 and 2 shows the maximum error of the proposed method at                   . In 

comparison with the finite difference method in [30-32] show the superiority of the proposed method with 

maximum errors of order      and     , respectively. Results are also presented in graphs showing the 

comparison of results as shown in the Figs. 1 and 2.   

 

6 Conclusion 
 
In this paper, we have successively proposed an implicit finite difference method with Mamadu-Njoseh 

polynomials as basis functions for the time fractional telegraph equation. Numerical illustration of the proposed 

method showed convergence and accuracy than the standard finite difference method. The optimal error analysis 

of the proposed method was investigated in    norm for two dimensional case. The result showed that the 

method is of order      . 
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