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Abstract. A well-designed CAD tool should respond to input requests, user 
actions, and perform input checks. Thus, an important element of such a tool is 
the pre-processing of incoming data and screening out those data that cannot 
be processed by the application. In this paper, we consider non-trivial methods 
of chest computed tomography (CT) images verifications: modality and human 
chest checks. We review sources to develop training datasets, describe 
architectures of convolution neural networks (CNN), clarify pre-processing and 
augmentation processes of chest CT scans and show results of training. The 
developed application showed good results: 100% classification accuracy on the 
test dataset for modality check and 89% classification accuracy on the test 
dataset for checking of lungs presence. Analysis of wrong predictions showed 
that the model performs poorly on biopsy of lungs. In general, the developed 
input data validation model shows good results on the designed datasets for CT 
image modality check and for checking of lungs presence. © 2022 Journal of 
Biomedical Photonics & Engineering. 
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1 Introduction 
Thanks to the advent of Artificial Intelligence and Deep 
Learning methods a large number of CAD (Computer-
Aided Diagnosis) tools are becoming available. One of 
the challenges of using such tools in real practice is 
incorrect input data, including incorrect modalities and 
other anatomical organs that are mistakenly fed into the 
system but not intended to be processed by the specific 
software. In this case, the diagnostic results will lead to 
incorrect results from the CAD system. For example, in 
one trial among 7830 Chest XRay images received from 
various hospitals in 10 countries, there were 564 cases, 
containing flawed data of such kind [1]. The input data 
may contain errors, for example, upside down images, 
different file format, different modality, wrong organs, 
etc. [2–4].  

In this paper, we consider the validity check of input 
chest CT images. This important phase of any software 
for medical image processing and analysis is rarely 
considered in detail during scientific research. If some 
data is not valid for a specific application (for example, 
the shape, modality, content or orientation of the image 
does not match the business logic of the application), it 
should be dropped out and given a clear descriptive 
message. For computed tomography (CT) scans of 
human lungs, there are three main verification processes: 

1. Trivial checks to verify that the input image is 
indeed a 3D scan with the required parameters in its 
header (check the actual format of an image file, check 
image volume rank, check that the image contains non-
zero data, etc.); 
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2. Modality check to verify that the input image is 
CT scan and not ultrasound, PET, MRI or binary mask 
image; 

3. Human chest check to test that input CT scan 
contains lungs in necessary proportion to be processed by 
the application. 

In this article we review different datasets and 
describe CNN architectures to perform non-trivial 
methods of chest CT images verification. Currently these 
non-trivial checks can only be solved using neural 
networks. The developed methods show good results on 
the designed datasets. We obtained 100% classification 
accuracy on the test dataset for modality check and 89% 
classification accuracy on the test dataset for checking 
lung presence. Analysis of wrong predictions showed 
that the model for checking lung presence performs 
poorly on biopsy of lungs. 

2 Materials and methods 

2.1 Materials 
Dataset used for CT image modality check. The 
training dataset (acronym DS1) is divided into two 
classes (CT and non-CT) with 113 images in each class 
(total 226 3D images). The 3D image data classes of CT 
and “Non-CT” (ultrasound, PET, MRI, binary masks) 
used in this study originated from fifteen datasets [5]: 

1. COVID-19 CT segmentation (14 CT scans, 
7 3D masks [6]). 

2. Lung CT Segmentation Challenge 2017 (14 CT 
scans [7]). 

3. Lung Nodule Analysis 2016 (14 CT scans [8]). 
4. Private CT dataset from UIIP NASB (15 CT 

scans). 
5. Pancreas-CT (TCIA) (14 CT scans [9]). 
6. DeepLesion (14 CT scans [10]). 
7. Head-Neck-PET-CT (14 CT scans [11]). 
8. ACRIN-NSCLC-FDG-PET (ACRIN 6668) (14 

CT scans, 12 PET images [12]). 
9. Anti-PD-1 Immunotherapy Lung (12 PET 

images [13]). 
10. Ultrasound data of a variety of liver masses 

(B-mode-and-CEUS-Liver) (15 ultrasound 
images [14]). 

11. Prostate MRI and Ultrasound with Pathology 
and Coordinates of Tracked Biopsy (Prostate-MRI-US-
Biopsy) (10 ultrasound images, 7 MRI Images and 5 3D 
masks [15]). 

12. OASIS (10 MRI images [16]). 
13. BRAINS Imagebank (10 MRI images [17]). 
14. Breast-MRI-NACT-Pilot (10 MRI 

images [18]). 
15. MRI Dataset for Hippocampus Segmentation 

(10 MRI images, 5 3D masks [19]). 
We also used an additional dataset to test the trained 

model, which contains 50 non CT series. Test dataset 
includes cases from the aforementioned datasets, as well 
as additional datasets of digital mammography and 
radiography: 

1. The VICTRE Trial: Open-Source, In-Silico 
Clinical Trial for Evaluating Digital Breast 
Tomosynthesis (35 mammography images [20]). 

2. CPTAC-PDA (15 XRay images [21]). 
Dataset used for checking of lungs presence. The 

training dataset (acronym DS2) is divided into two 
classes (lungs and non-lungs) with 293 images in each 
class for training and 41 images for testing part (Fig. 1), 
total 668 3D images. 

 

	
Fig. 1 Dataset DS2 directory structure which is used for 
checking of lungs presence. 

The CT image data used in this study originated from 
the following twelve sources.  

1. STOIC2021-COVID-19 AI Challenge (57 CT 
scans of lungs [22]). 

2. Private dataset of Tuberculosis Portals (81 CT 
scans of lungs [1]). 

3. ACRIN-NSCLC-FDG-PET (ACRIN 6668) 
(256 CT scans of different body parts [12]). 

4. CT images with lung caverns from National 
Center of Tuberculosis and Lung Diseases, Georgia 
(13 CT scans of lungs and 11 3D lung masks). 

5. MosMedData: Chest CT Scans with COVID-19 
Related Findings COVID19_1110 1.0 (24 CT scans of 
lungs and 11 3D lung masks [23]). 

6. RibFrac Dataset: A Benchmark for Rib Fracture 
Detection, Segmentation and Classification (23 CT scans 
of lungs [24]). 

7. Coronacases Initiative and Radiopaedia (10 CT 
scans of lungs). 

8. IH Pancreas-CT Dataset (43 CT scans of 
abdomen [9]). 

9. Head-Neck-PET-CT (68 CT scans of the head 
and upper body [11]). 

10. Private CT dataset from UIIP NASB (21 CT 
lung masks). 

11. CQ500 Dataset (23 CT scans of the head and 
upper body [25]). 

12. NODE21 dataset (27 CT images of box-shaped 
regions containing lung nodules [26]). 
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Some smaller part of dataset images was artificially 
created and added to the train and test datasets: 

1. Artificial biopsy images and multiple lungs to 
classify them as non-lungs; 

2. Doubled lungs to classify them as non-lungs; 
3. Slightly cropped images at the top and bottom 

of lungs to classify them as lungs; 
4. Significantly cropped images of lungs to 

classify them as non-lungs; 
5. Images of chest with head to classify them as 

lungs. 

2.2 The Method of CT Image Modality Check 
After trivial checks which are not considered in this 
paper, the next step is to check if the modality of an input 
data is CT scan or not. Medical input data are often 
provided in DICOM format, when a modality attribute 
(0008,0060) is available, so the modality check is trivial 
in this case. However, for a general purpose only image 
data are available, thus the more sophisticated task of 
modality estimation by image content becomes the only 
way. In order to solve this problem, we use a Deep 
Learning technique based on convolutional neural 
networks. The CNN was trained on the DS1 image 
dataset (see above), which contains images of various 
modalities including CT, ultrasound, PET, and MRI. 
Examples are presented in Fig. 2. 

CNN architecture is shown in Fig. 3 and consists of 
the following layers: Conv3D, MaxPool3D, Dropout, 
GlobalAveragePooling3D. 

Neural network parameters were selected in practice 
during numerous training sessions. The study showed 
that the input layer with resolution 64×64×64 and 
convolutional layer with 25 output filters turned out to be 
acceptable for the modality check method. Training data 
were normalized and rotated by 90, 180, and 270 degrees, 
which eliminates inaccuracies associated with image 
rotation. 

2.3 Method of Checking of Lungs Presence 
To determine if a CT scan contains images of a person’s 
lungs and not another part of the body, we used CNN to 
classify lungs and non-lungs, i.e. a binary classification 
task was implemented. The CNN was trained on the DS2 
image dataset, which included chest CT scans with lungs 
and other body parts (non-lungs). 

Obvious CT scans of non-lungs type are masks, head, 
abdomen, limbs, scout preliminary scans, empty scans, 
etc. However, the difference between lungs and non-
lungs is not as obvious as it seems. We agreed that the 
following categories are “non-lungs” class: 

- biopsy scans of lungs; 
- double, triple and multiple lungs in one image; 
- whole body scans including lungs, abdomen, 

head, limbs, etc.; 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 2 Examples of 2D layers of 3D images of the “non-CT” class in the dataset DS1 for CT images modality check: 
(a) binary mask of lungs (512×512 pixels); (b) ultrasound images of prostate (452×452 pixels); (c) ultrasound images of 
baby phantom (532×416 pixels); (d) MRI images of prostate (256×256 pixels); (e) MRI images of brain (256×256 pixels); 
(f) PET image of body (128×128 pixels). 
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Fig. 3 Convolutional neural network architecture for CT images modality check. 

	

	 	
(a) (b) (c) 

	

	 	
(d) (e) (f) 

Fig. 4 Examples of 2D layers of 3D images of the non-obvious cases of “non-lungs” class in the DS2 dataset for checking 
of lungs presence: (a) biopsy scan of lungs (512×43 pixels); (b) triple lungs in one image (512×87 pixels); (c) whole body 
scan including lungs, abdomen, head, limbs, etc. (512×287 pixels); (d) pancake-like (significantly cropped) scan of lungs 
(512×51 pixels); (e) 3D box-shaped region containing lung nodules (50×50 pixels); (f) lungs occupy less than 50% of the 
coronal axis (512×135 pixels). 
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- pancake-like (significantly cropped) scans of 
lungs; 

- 3D box-shaped regions containing lung 
nodules; 

- if the lungs occupy less than 50 % of the coronal 
axis. 

- Examples of non-obvious types are shown in 
Fig. 4. 

Binary classification of lungs from non-lungs is a 
relatively simple task, so a simple 4-block CNN was used 
(Fig. 5). 

	

Fig. 5 Convolutional neural network architecture for 
checking of lungs presence. 

Each block of the 4-block neural network consists of 
the same three layers: Conv3D, MaxPool3D, and 
BatchNormalization. After four blocks, the 
GlobalAveragePooling3D layer is added. Convolution 
layers and the penultimate dense layer have ReLU 
activation and the final dense layer has Sigmoid 
activation to perform binary classification. 

Files are provided in NifTI format with the “.nii.gz” 
extension. To read the scans, we use the “nibabel” 
package. CT scans store raw voxel intensities in 
Hounsfield units (HU), which vary widely and may differ 
from dataset to dataset. Above 500 HU are bones with 
different radio intensity, so this is used as a higher bound. 
Air and subtle tissues usually associated with [–1500, 0] 
HU range. A threshold between –1500 and 500 is 
commonly used to normalize CT scans. To preprocess 
the data, we do the following [27]: 

1. Apply threshold [–1500, 500] HU; 
2. Scale the HU values down to the [–1, 1] range; 
3. Resize width, height and depth to 128×128×128, 

the volume has to be cubic for the further augmentation; 

4. Rotate the volumes by 90 degrees, so the 
orientation is fixed. 

The last step with rotation by 90 degrees is not 
necessary, because of subsequent augmentation with 
random rotations. To increase preprocessing speed, we 
used a “multiprocessing” Python module so that all or 
part of the CPU cores can be used in a parallel mode. 

Augmentation is used both for the training and 
validation sets. The reason to use augmentation for the 
validation set is that we have many augmented CT 
images in our testing set. Also note that a random 
transposition followed by a flip is equivalent to random 
rotation. Augmentation function: 

1. Permutes randomly (transposes) three axes of a 
3D CT image; 

2. Flips randomly a volume out of eight different 
choices, including identity flip (or None), which does 
nothing (flips = [None, 0, 1, 2, (0,1), (0,2), (1,2), 
(0,1,2)]); 

3. Finally makes sure that the volume stays 
between the [–1, 1] range. 

Neural network architecture, augmentation and 
hyperparameters were modified several times. After each 
modification and training of the model it was used to the 
datasets mentioned above to find wrong predictions 
between lungs and non-lungs (false-positive and false-
negative predictions). All images found with incorrect 
predictions were visually reviewed and added to our 
dataset. 

3 Results and Discussions 

3.1 CT Image Modality Check  
The trained model for method of modality check 
achieved 100% classification accuracy on the test dataset, 
which was not involved in model training. All of the 
images were attributed to the desired class. Model 
accuracy and loss for train and validation sets are shown 
in Fig. 6. 

Results of binary classification of CT from non-CT 
images are shown in Table 1. 

Table 1 Results of binary classification of CT from non-
CT images. 

Dataset Accuracy, 
% 

Number 
of 

images 

Number of 
wrong 

predictions 
train 100 214 0 

validation 100 12 0 

test 100 280 0 
 
The model was trained five times and each time it 

showed one hundred percent result on a test dataset. The 
train and validation datasets changed when learning 
every time. Therefore, the results of the model 
predictions do not depend on the data composition in the 
training set. 
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(a) 

	
(b) 

Fig. 6 Training diagram for model accuracy (a) and loss 
(b) for classification of CT from non-CT images in 100 
epochs for dataset DS1. 

Regarding 100% accuracy in modality verification, 
we did a similar study to verify the modality of X-ray 
images (similar to CT), and we are preparing a new 
article on this topic. During the experiments, it turned out 
that the same method showed less than 70% accuracy for 
X-ray images. So, we had to significantly increase the 
training samples up to 1000 images for each class and use 
more advanced architecture of EfficientNet CNN to 
achieve 99.8% accuracy. For this reason, we believe that 
CT images have significant differences from MRI, 
ultrasound, binary masks, histological images, etc. 

Finally, based on our results we can conclude that the 
method can be used for CT images modality check. 
Despite the fact that the model showed a good result on 
the CT images, this approach needs to be explored to 
solve problems of determining other modalities. This is 
necessary for the development of medical (non-CT) 
imaging services. 

3.2 Checking of Lungs Presence 
Results for binary classification of lungs from non-lungs 
are not so unambiguous. Model training used a large 
patience for callback “keras.callbacks.EarlyStopping” 
equal to 50 epochs and stopped training automatically 
after 147 epochs. Model accuracy and loss for train and 
validation sets are shown in Fig. 7. 

	
(a)

 
(b)	

Fig. 7 Training diagram for model accuracy (a) and loss 
(b) for classification of lungs from non-lungs in 
147 epochs for dataset DS2. 

Results of checking of lungs presence are shown in 
Table 2. 

Table 2 Results for classification of lungs from non-
lungs. 

Dataset Accuracy, 
% 

Number 
of 

images 

Number of 
wrong 

predictions 
train 98.64 440 6 

validation 98.63 146 2 

test 89.02 82 9 
 
From the total 17 wrong predictions only one CT scan 

is from the STOIC2021 dataset. Other 16 CT images are 
from the ACRIN-NSCLC-FDG-PET (ACRIN 6668) 
dataset [12]: eleven are artificially created; three are 
biopsy scans; one real CT scan with chest and part of the 
head; one real pancake-like (significantly cropped) scan 
of lungs. 
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(a) (b) (c) 

Fig. 8 Examples of biopsy CT images, coronal view (2D layer image sizes are 512×69 (a), 512×65 (b), and 512×43 pixels. 

Eleven artificially created scans with wrong 
predictions are: four out of total six artificially made 
biopsy scans; three out of total eight artificially made 
doubled lungs; two out of total ten artificially made 
pancake-like (significantly cropped) scans of lungs; and 
two out of total fifteen artificially made CT scans of lungs 
with part of the head. A possible reason for the low 
classification accuracy for artificially created images is 
their small number, only about a dozen for each non-
standard case in DS2. Perhaps we need to add more 
artificial images to improve the classification accuracy. 

Analysis of wrong predictions showed that the model 
performs poorly on biopsy of lungs. Seven out of total 
nine (real and artificially created) biopsy CT scans were 
incorrectly classified as lungs. A possible reason why CT 
biopsies are incorrectly classified as “lungs” is that their 
axial view does not differ from normal lungs. However, 
coronal and sagittal views differ a lot from the lungs class 
(Fig. 8). 

To improve the classification accuracy of biopsy CT 
scans, we have to add more real and artificial biopsy 
scans and try more complex standard neural network 
architectures. 

4 Conclusions 
The developed validation model shows good results on 
datasets DS1 and DS2: 100% for CT image modality 

check and 89.02% for checking of lungs presence. For 
example, we found nine chest CT scans of lungs which 
were mistakenly placed in the dataset of head CT scans 
“CQ500 Dataset” [25]. These scans of lungs were 
visually checked and added into the “lungs” folder to 
improve model accuracy. The task of verifying medical 
data requires further study. We are going to check 2D 
images for XRay of human lungs. It is necessary to 
develop a more general method capable of solving the 
evaluation problem simultaneously at different levels. In 
general, our trained models performed well and are 
already being used in our application called “AI-based 
software for computer-assisted diagnosis of lung diseases 
using chest X-Ray and CT images” (LungExpert) [1] for 
screening of incoming data. 
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