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Abstract. Displacement tracking is an important step in realization of 
compression optical coherence elastography (C-OCE), especially in the context 
of obtaining nonlinear stress-strain dependences and subsequent evaluation of 
the tissue Young’s modulus. The rapidly progressing phase-sensitive C-OCE, 
however, enables direct measurements of only rather small interframe strains 
(below 1%), for which displacements are also small. Obtaining stress-strain 
curves for larger strains (~10% and greater) in phase-sensitive C-OCE can be 
made via cumulation of interframe strains and particle displacements. The 
resultant values of the so-found cumulative displacements may significantly 
exceed the pixel size, whereas measurements of the phase variations in C-OCE 
are usually performed by comparing the signals from the same pixel in a series 
of compared scans. When displacements of particles in a series of acquired scans 
reach supra-pixel values, simple pixel-to-pixel estimation of interframe phase 
variations may lead to significant errors in evaluating linear and nonlinear 
elastic properties of tissues. Thus, for large strains, adequate accounting for the 
resultant supra-pixel displacements of order of several pixels and greater is of 
key importance for undistorted mapping of elastic properties of heterogeneous 
materials, as well as for correct tracking of boundaries separating tissue regions 
with different elastic properties. In this paper we discuss the elastographic 
procedures of correct tracking of supra-pixel displacements in phase-sensitive 
C-OCE and give real examples demonstrating the importance of such 
displacement tracking for undistorted reconstruction of two-dimensional maps 
of linear and nonlinear elastic properties of real biological tissues.  
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1 Introduction 
Visualization of deformations in optical coherence 
tomography has been attracting much attention since the 
seminal paper by J. Schmitt [1], in which of the idea of 
compression elastography [2] initially proposed in 
medical ultrasound was transferred to optical coherence 
elastography. As a result of intense effort of various 

groups working in Optical Coherence Elastography 
(OCE), a breakthrough in the development of OCT-based 
methods for mapping genuine local strains occurred in 
the recent ~5 years, so that practically operable 
realizations of OCT-based strain visualization, as well as 
stiffness mapping using the compression OCE principle 
were demonstrated [3–8]. Of key importance in 
realization of these methods was the development of the 
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phase-resolved approach to mapping axial strains. In 
particular, in Ref. [3] the least-square fitting for finding 
axial gradients of interframe phase variations was 
proposed with the additional amplitude weighting, due to 
which noisy contributions of small-amplitude pixels can 
be appreciably suppressed. Works [5, 6] proposed 
advanced variants of determining such gradients based 
on the vector approach (in which the complex-valued 
amplitudes are processed as vectors in the complex 
plane). The vector method also realizes amplitude 
weighting, obviates the necessity of conventionally 
required phase unwrapping for supra-wavelength 
displacements of scatterers and is especially tolerant to 
various measurement errors (including both the noises of 
the receiving array and deformation-induced 
decorrelation of the compared OCT scans). It should also 
be mentioned that in parallel with the above-mentioned 
approach to OCE realization, in which mapping local 
strains is of key importance, there is another approach, 
dynamic OCE methods which utilize measurements of 
elastic-wave velocities either for shear waves or surface 
waves (see, e.g. reviews [9, 10]). However, wave-
induced perturbations usually have fairly small amplitude 
with essentially sub-pixel displacements and, 
furthermore, estimation of local strains is not required for 
their tracking. In view of this, the problem of mapping 
large strains and supra-pixel (of the order of several 
pixels and greater) displacements does not arise in 
dynamic OCE methods, but is important for compression 
OCE, in which, besides small-amplitude perturbations, 
nonlinearity of stress-strain dependences can be studied 
and the tissue strains may reach tens of percent [11]. It 
may also be noted that although the use of phase-
sensitive OCT for mapping strains was proposed over 15 
years ago [12, 13] in this study for estimating strains and 
presenting the corresponding experimental 
demonstrations we will use the vector method in form [6] 
for analyzing phase-sensitive OCT signals. 

Like for other applications of phase variations (e.g. in 
the estimation of the Doppler phase shift) in what follows 
the discussion will be focused on the estimation of axial 
displacements u and axial strains  related to 
the interframe variation Φ of the OCT signal as follows: 

 (1) 

where λ0 is the central optical wavelength in vacuum and 
n is the refractive index. 

For the straightforward comparison of phases in 
sequentially acquired phase-sensitive OCT scans, the 
maximal magnitudes of estimated strains and 
displacements are limited by decorrelation effects caused 
by both relative interframe displacements of scatterers 
and their displacements from one pixel of the reference 
OCT scan to a neighboring pixel in the other scan. For 
such supra-pixel interframe displacements direct pixel-
to-pixel comparison of the current and initial phases leads 
to serious errors because for such strong displacements, 
the initial and current signal in the considered pixel is 

formed by essentially different scatterers that were 
initially located in neighboring pixels [4, 5]. However, if 
the interframe phase variation in the strained tissue does 
not yet experience phase wrapping within the vertical 
size of individual pixels, to a certain degree the 
decorrelation caused by vertical displacements of 
scatterers between the neighboring pixels can be 
compensated. This can be made by comparing phases of 
pixels with neighboring numbers in the compared scans 
instead of straightforward pixel-to-pixel 
comparison [4, 5]. In practice such compensation is fairly 
efficient for displacements about one pixel, but does not 
help much to improve the quality of phase-variation 
estimates if the interframe displacements are greater than 
one pixel. For “typical” OCT systems, the maximal 
interframe strains that can be directly estimated via pair-
wise comparison of OCT scans roughly amount to 
~1% [5]. 

However, larger strains that cause essentially supra-
pixel displacements are also of great interest for various 
applications (e.g., for studying thermo-mechanical 
deformations, drying, osmotic deformations [14–19]), as 
well as for studying stress-strain dependences beyond the 
linear Hooke’s law. The latter, for many tissues, may be 
essentially violated for strains on the order of several tens 
of percent [8, 20–22].  

In such situations, even if estimation of fairly large 
deformations via direct pair-wise comparison of OCT 
scans is impossible, incremental approach can be applied 
by performing cumulation of smaller directly measurable 
strains for a sequence of OCT scans [23, 24]. This 
incremental approach makes it possible to quantify much 
larger deformations resulting in strains up to several tens 
of percent and multiple-pixel displacements.  

Unlike small strains under such conditions even the 
notion of “correct” cumulative strain becomes dependent 
on the particular application of the estimated large 
deformations, so that different definitions of cumulative 
strain may be required for various tasks, for which 
procedures of estimating large cumulative strains also 
may require modifications. Indeed, different methods 
that are (nearly) equivalent for finding small strains may 
give strongly differing results for large cumulative strains 
and in some cases the inappropriately chosen method of 
finding cumulative strains may result in strongly 
erroneous conclusions.  

In what follows we analyze the notion of cumulative 
strains and displacements, demonstrate situations in 
which one or another definition should be chosen, and 
formulate algorithms that give physically meaningful 
cumulative results depending on the particular task. In 
particular, we discuss correct finding of supra-pixel 
displacements including tracking of boundaries that are 
not contrasted in structural OCT scans, quantification of 
large strains, as well as quantification and visualization 
of elastic properties of elastically-nonlinear tissues, for 
which their stiffness pronouncedly depends of strain and 
stress, correct visualization of tissue nonlinearity and 
related issues. For experimental illustrations we will use 
OCT scans obtained with OCT systems operating at a 
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wavelength of 1300 nm (and spectral width 90–100 nm) 
similar to those used in previous works [22, 25, 26]. 

2 When displacement tracking is 
important for finding cumulative strains 

The purpose of this section is to demonstrate that even if 
one is not interested in the displacements of the scattering 
particles themselves, but wants to estimate fairly large 
strains of the tissue, correct finding of these strains in 
most cases cannot be made without auxiliary estimation 
of displacements experienced by the scatterers. This is a 
fairly general statement except for a special case of 
spatially uniform strain distribution. Such a simple 
situation occurs when mechanically homogeneous tissue 
experiences spatially uniform uniaxial stress. In such a 
case the resultant strain is also spatially uniform. In 
practice uniaxial stress can be created in the vicinity of 
an output window of the OCT probe that compresses the 
tissue. It is assumed that the tissue is not confined in the 
lateral directions and can fairly freely expand laterally 
(this also implies that there is no appreciable stiction at 
the interface between the OCT probe and the tissue, 
which may be enabled by putting a lubricating liquid onto 
the tissue surface).  

A corresponding real example is shown in Fig. 1 that 
demonstrates compression of a layer of homogeneous 
silicone compressed by the output OCT probe window 
under the control of an automated moving support 
enabling a constant compression rate. Fig. 1a shows a 
structural image in which the two rectangles 1 and 2 are 
located at different depths and show the initial positions 
of two processing windows over which the axial phase 
gradients  are estimated (and, therefore, strains 
can be found using Eq. (1)). Fig. 1b shows an example of 
the spatial distribution of the compression-produced 
interframe strain which, as expected, looks fairly 
uniform. The two rectangles 1’ and 2’ show slightly 

displaced positions of the scatterers initially located 
within windows 1 and 2. For the deeper rectangles 2 and 
2’ the displacements are somewhat greater than for 
rectangles 1 and 1’. However, for small interframe 
displacements in Fig. 1b, it makes no sense to distinguish 
window 1 from 1’ and even the stronger displaced 
windows 2 from 2’. Fig. 1c shows the distribution of 
cumulative strain found via straightforward summation 
of interframe strains (for ~150 frames). The total 
variation in the silicone-layer thickness is over 30%, so 
that during the compression, the scatterers are gradually 
displaced outside the initial locations of the processing 
windows and are substituted by other scatterers. The 
position of particles initially located within window 1 by 
the end of compression shifts to position 1’ (so that still 
window 1 and 1’ are significantly overlapped), whereas 
window 2 shifts to the strongly displaced position labeled 
as 2’, so that window 2 and 2’ do not overlap at all and 
contain different portions of particles. However, since the 
“instantaneous” interframe strain is spatially uniform, for 
estimating strains, it makes no sense to track the actual 
positions of the same physical particles, so that 
processing windows with fixed coordinates enable 
correct estimation of strains. This statement is illustrated 
by the strain dependences shown in Fig. 1d obtained for 
the processing window 1, as well as for window 2 with 
the fixed position and gradually displaced window 2’. 
The procedure of tracking the gradual displacements of 
the particles is explained below in detail, however, Fig. 1 
shows that, for the uniform silicone, such tracking does 
not affect the estimated cumulative strain. The 
cumulative strain in Fig. 1d for all three curves is found 
using straightforward summation of incremental 
interframe strains. In Section 3 another form of 
cumulative strain is discussed, but for illustration of the 
absence of changes in the result with/without window 
tracking in Fig. 1 the used straightforward summation is 
enough. 

 

 

Fig. 1 Elucidation that in a homogeneous material correct strain can be found even without any displacement tracking. 
Panel (a) is a structural OCT scan of the compressed homogeneous silicone layer in which windows 1 and 2 with different 
vertical (lateral) coordinates are shown in the beginning of compression. Panel (b) shows the spatial distribution of 
interframe strain which is rather uniform over the entire visualized region (for the small interframe strains, the difference 
between initial posisions 1 and 2 and displaced positions 1’ and 2’ is insignificant). Panel (c) shows the much larger 
cumulative strain found by straightforward summation of interframe strains (notice than the deeper window 2 in the 
displaced position 2’ does not overlap with the initial position). Panel (d) shows the cumulative strain as a function of 
frame number found using the processing windows 1, 2 (without tracking) and 2’ with gradual tracking; all three curves 
are nearly indistinguishable even if for window 2’ the initial particles were substituted by new portions of the material. 
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Fig. 2 The scheme explaining the importance of displacement tracking and the fallacy of finding local material strain in 
initial position of the processing window during the significant compression. It is clear that in the beginning of 
compression the window shown by the solid line contains a portion of Material A and by the end of compression it already 
contains only particles of Material B with a larger Young’s modulus. Therefore, to correctly estimate strain for the portion 
of Material A (shown by asterisks) during the compression, one has to track the changed positions of this material portion 
and correspondingly shift the position of the window, over which the strain is found.  

In contrast to the homogeneous sample shown in 
Fig. 1, usually real tissues are mechanically 
inhomogeneous. Consequently, during the material 
deformation, the same position of the processing window 
may correspond to different portions of the 
inhomogeneous material with potentially significantly 
different elastic properties and different deformability. It 
is known that deformability (stiffness) of different 
portions of inhomogeneous tissues may differ quite 
strongly (several times and greater, e.g. for cancerous and 
normal tissues [25–28]). Consequently, for a fixed 
coordinate, during deformation of heterogeneous tissues 
one tissue component can be substituted by the tissue 
portions with strongly different elastic properties. In view 
of this, to find the resultant (cumulative) strain for a 
particular portion of the tissue, the processing window 
should be gradually shifted to follow the displacement of 
a particular tissue portion. The necessity to track the 
displacement of the particles and correspondingly move 
the processing window for mechanically inhomogeneous 
samples, as well as the reason of possible errors when the 
particle tracking is not used, are schematically elucidated 
in Fig. 2. 

The discussed displacement tracking is equivalent to 
continuous estimation of the thickness of the material 
layer separating the OCT window surface and the current 
position of the tissue portion that we aim to keep within 
the processing window. This tracking method should be 
operable for any point of the material even in the absence 
of any visible markers associated with the initial 
particular position of the window. Furthermore, for a 
mechanically inhomogeneous material, within the layer 
separating the OCT probe and the current position of the 
processing window, the strain distribution may be 
essentially non-uniform in space. To correctly estimate 
local strains for every tissue portion that gradually 
moves, one should synchronously move the processing 
window. In other words, one should know the current 
distance of each material portion from the OCT probe 
surface. In turn, in the absence of any trackable markers, 
to calculate the current distance for every tissue portion, 

one has to correctly estimate strain of each portion of the 
tissue within the layer separating the OCT probe surface 
and the processing window. Therefore, the tracking of the 
processing window position should be performed in a 
self-consistent manner: correct estimation of strains 
requires knowing of the current position (cumulative 
displacement) of each moving tissue portion, whereas 
tracking of the position of each tissue portion in the 
absence of trackable markers requires correct estimation 
of cumulative strains for all over-laying layers of the 
material.  

It should be pointed out that small interframe 
(incremental) strains are unambiguously related by 
Eq. (1) with the axial gradient of interframe phase 
variations. We refer the readers to papers [3, 5, 6], where 
the estimation of this gradient was discussed in ample 
detail. Finding total (cumulative) strains and total strain-
induced displacement of the scatterers was used in some 
earlier papers, e.g. [14, 16, 23]. However, those papers 
discussed fairly homogeneous tissues and moderately 
large strains (usually essentially below 10%), for which 
tracking of a particular tissue portion was not very critical 
in contrast to strongly heterogeneous tissues (such as 
cancerous ones discussed in Ref. [22]), for which the 
procedures of correct particle tracking deserve a special 
detailed discussion.  

We emphasize once again that only in special 
simplified cases (fairly uniform materials like in Fig. 1) 
large strains may be correctly evaluated independently of 
displacements. However, for most real mechanically 
inhomogeneous tissues, strain estimation performed 
without simultaneous tracking of displaced tissue 
portions with different elastic properties leads to strong 
errors. This in turn may significantly distort the 
diagnostic conclusions based on the OCT-elastography 
data.  

Next, it can be pointed out that, unlike 
straightforward estimation of small strains via Eq. (1), 
the larger cumulative strain can be defined in different 
forms depending on the particular problem. 
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Fig. 3 Schematic of the self-consistent procedures of displacement tracking for correct evaluation of fairly large strains 
and accompanying variations in the elastic properties of the tissue. Namely, knowing the current distance between the 
OCT probe surface and every portions of the tissue is required to correctly evaluate strain of every tissue portion. In turn, 
knowing the current cumulative strains of all tissue portions is required to find the current position of every tissue particle 
(and to enable the corresponding shift of the processing window containing this tissue portion). 

These definitions almost coincide for sufficiently 
small (say, ~ several %) strains, but significantly deviate 
for larger strains of the order of tens of percent. It can be 
shown that the “cumulative strain” destined for correct 
tracking of particle displacements the absence of evident 
markers (we denote this strain as “C”) and cumulative 
strain intended for obtaining local “stress-strain” 
relationships and Young’s modulus estimation (we 
denote it as “S”) require different definitions. 

In terms of notations “C” and “S” for the two 
definitions of cumulative strains the self-consistent 
procedures of strain estimation and displacement 
tracking are schematically depicted in Fig. 3. 

In the following sections we explicitly give the 
definitions of cumulative strains “C” and “S”, explain 
their inter-relations and present experimental examples to 
illustrate the importance of the self-consistent tracking of 
cumulative displacements and local strains of the 
displaced tissue particles.  

3 How to relate interframe strains to 
cumulative strain that defines thickness 
variation 

For non-infinitesimal deformation of inhomogeneous 
material, correct estimation of local strains requires that 
the processing window, over which the local strain is 
estimated, should contain the same portion of the 
material. To enable tracking of the same material portion, 
one has to estimate the current thickness of the material 
layer separating the OCT probe surface and the initial 
position of the processing window. Sufficiently small 
incremental displacements can be found via pixel-to-
pixel comparison of the phase for a pair of sequential 
complex-valued OCT scans. Then the axial strain  

defined by Eq. (1) can be found by estimating the axial 
gradient of this interframe phase variation (e.g., using the 
least-square approach [3] or vector method [6]). Let us 
consider a sufficiently thin (and therefore mechanically 
homogeneous) layer, for which the current thickness is 

 
 by the (i–1) acquired frame. Then a small 

incremental strain  between ith and (i–1)th frames 

causes the following small change in the layer thickness 
, so that the resultant thickness after a series 

of n incremental strains is 

 (2) 

where h0 is the initial thickness. Assuming for simplicity 
that incremental strains are identical,  one obtains 

 (3) 

For sufficiently small term 
 
(in practice, on 

the order of a few percent), Eq. (3) reduces to 

 (4) 

where we denote . In the general case, when 
incremental strains si are not necessarily identical, the 
definition of cumulative strain S found via 

s

1ih -

is

1(1 )i i ih h s-= +

0
1
(1 ),

n

n i
i

h h s
=

= +Õ

is s=

)...
!3

)2)(1(
!2
)1(1()1(

3

2
00

n

n
n

ssnnn

snnnshshh

++
--

+

+
-

++=+=

1ns <<

0 (1 ),nh h S» +

S ns=



A.A. Sovetsky et al.: Mapping Large Strains in Phase-Sensitive OCT: Key Role of... doi: 10.18287/JBPE22.08.030304 

J of Biomedical Photonics & Eng 8(3)   22 Sep 2022 © J-BPE 030304-6 

straightforward summation of incremental strains can be 
generalized as 

 (5) 

However, if the condition  is not satisfied, 
Eq. (4) for the current thickness gives an appreciable 
error. For the exact estimation of the thickness variation, 
another definition of cumulative strain may be 
formulated (we denote this quantity as C) 

, or . (6) 

From comparison of Eq. (6) and Eq. (3) it is clear that 
in the case of identical incremental strains s,  

 (7) 

In more general situations, when incremental interframe 
strains si are not necessarily identical, a convenient 
recurrent definition of Cn can be formulated:  

 (8) 

It should be recalled that for a mechanically 
inhomogeneous sample, to find the variation in the 
thickness of the entire layer separating the OCT-probe 
window and the tracked portion of the material, one 
should take into account the inhomogeneity of overlaying 
material. Schematically this is shown in Fig. 4 for  
a 3-layer case. In the general case the inhomogeneity is 
a priori unknown, so that the cumulative strain should be 
found for every pixel above the considered pixel J, such 

that the variation 
 
in the total thickens of the 

overlaying material after  incremental steps of 
straining is given by 

 (9) 

where Hpx is the vertical pixel size. The depth of each 
processing window centered around a given pixel should 
be shifted by one pixel every time when the so-found 
additional displacement ΔH of the tracked portion of the 
material increases by Hpx as shown in Fig. 4. 

In the conclusion of this section we note that one can 
obtain another useful relationship between the 
cumulative strain C defined via the non-infinitesimal 
change in the thickness of a considered material layer 
(Eqs. (6) and (8)) and strains S found via straightforward 
summation of incremental strains si (see Eq. (5)). Using 
Eq. (5) and recalling that an arbitrary S can be 
represented as a sum of a large number  of 

infinitesimal identical incremental strains ( , 

), Eq. (3) can be rewritten as  

 (10) 

Comparison of Eq. (10) and Eq. (6) indicates that the 
cumulative strains C and S are related as 

 and . (11) 

For sufficiently small deformations (in practice, 
below ~10%) both definitions of cumulative strains are 
almost indistinguishable, , whereas for several 
tens of percent, cumulative strains S and C differ rather  
 

 

 

Fig. 4 Schematic of updating the processing window depth by estimating the deformation-produced displacement of 
tracked material portions. 
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significantly. Generally speaking, both strains S or C may 
be either positive or negative, their sign determines which 
one is greater in the absolute value. For compression 
(when S and C both are negative),  and for 

expansion (when S and both are positive), . As 
shown in what follows, the nonlinear relationship at 
Eq. (11) between S and C may be responsible for 
somewhat different conclusions about the material 
nonlinearity. 

4 Usage of cumulative strains for obtaining 
nonlinear stress-strain relationships  

In the optical coherence elastography based on the 
compression principle [1, 2] it was proposed to use the 
difference in strains of compressed layers for evaluation 
of differences in their Young’s moduli. In the framework 
of the linear paradigm, for uniaxial stress σ created in the 
vicinity of the OCT probe that compresses the two layers 
of materials with the Young’s moduli E1,2, the resultant 
strains  produced by the same uniaxial strain σ 

are related via the linear Hooke’s law: 

 (12) 

For soft biological tissues, the linear approximation 
usually well holds for strains below 10–2. In this case even 
if the applied stress is unknown, the relative value of the 
elastic moduli at different depths corresponds to the 
inverse ratio of the strains, . Thus, if for 

one layer its Young’s modulus is known, the modulus for 
the second layer can readily be quantified. In practice, a 
layer of transparent or weakly scattering soft silicone 
with pre-calibrated Young’s modulus can be placed over 
the examined tissue to enable quantification of its 
stiffness [7, 8] using the proportion (12). 

The situation, however, is not that trivial if the created 
strains are not infinitesimal and, especially, if the 
constitutive equations  relating strains in the 

material and the applied stress are nonlinear. In what 
follows we discuss how this nonlinearity can be 
characterized in a wide range of strains up to several tens 
of percent, for which the definition of what is “correct” 
strain is less evident.  

For an optically transparent silicone layer (like used 
in Ref. [7]), it looks natural to define its finite axial strain 
sfinit via the variation of the layer thickness: 

  (13) 

Such a definition indeed was used in the compression 
OCE variant described in paper [7], where the strain in 
the bulk of the transparent reference layer was not 
measurable and only the total layer thickness could be 
estimated by tracking its boundaries. In terms of the 
above-introduced cumulative strains C and strain S, it is 
clear from Eq. (13) that in Ref. [7] the strain of the 

reference silicone layer was actually understood as strain 
C defined by Eq. (6).  

As was mentioned in the discussion of Eq. (11), for 
strains on the order of several percent there is almost no 
difference between the cumulative strain C describing the 
variations in material thickness and strain S defined as 
straightforward summation of incremental small strains. 
However, in quite realistic situations strains in either 
reference layer or the examined tissue may reach 
significantly larger values, on the order of several tens of 
percent. In such cases the following questions arise: 
(i) whether the reference silicone can still be considered 
as an elastically linear material for strains >20–30% and 
(ii) if a material behaves as linear-elastic one, which of 
the two types of cumulative strains C or  should be 
linearly proportional to the applied stress? 

The above formulated questions can readily be 
verified experimentally since, for strains >20–30%, the 
quantities C and S should differ rather pronouncedly 
according to their nonlinear inter-relationship (12). If one 
assumes that the stress-strain relationship (12) should 
hold for the strain defined via Eq. (6) (i.e., via the layer-
thickness variation as in paper [7]), then the following 
relationship should be expected 

 (14) 

which can be verified experimentally.  
Another understanding of the material linearity 

implies that the linear proportionality (12) holds for small 
increments in stress and strain,  with 
invariable proportionality coefficient E in a fairly broad 
total strain range. Then it should be expected that the 
same proportionality holds for cumulative strain S 
defined via Eq. (5):  

 (15) 

Which of Eqs. (14) or (15) is closer to reality can be 
verified experimentally. Furthermore, this verification 
can be performed even without the necessity of 
independent measurement of stresses/forces by 
auxiliary force cells. Such a “self-calibration” test 
requires measurements of only local strains. Namely, 
one may perform compression of a sandwich structure 
made of two silicone layers with sufficiently strongly 
(say 5–10 times) differing elastic moduli as illustrated in 
Fig. 5a. For such silicones that are strongly-contrasted in 
stiffness, the strains under compression are also strongly 
different, so that for the softer silicone, its strain may 
reach values of several tens of percent, whereas for the 
stiffer silicone, the strain may remain sufficiently small 

 (say within a few percent). For such small 

strains, the two definitions of cumulative strains 
practically do not differ, , and one should expect 
the small strain developed in the stiffer are proportional 
to the applied stress with a high accuracy (although the 
proportionality coefficient may remain unknown). This 
value proportional to stress can be plotted against the 
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larger strains, either C or S, of the softer silicone layer. In 
such a way it is possible to verify which of the assumed 
forms of the Hooke’s law (Eq. (14) for  or Eq. (15) for 

) is closer to a linear dependence in a wide range of 
strains.  

The results of such experimental verification are 
shown in Fig. 5b for two pair of silicones with the 
approximate proportions of the elastic moduli 
550 kPa / 40 kPa and 550 kPa / 100 kPa. We emphasize, 
that precise values of the Young’s moduli are not 
required for the verification of linearity. Fig. 5 
demonstrates that the appreciable difference between the 
cumulative strains C or S become noticeable for strains 

. The main conclusion is that it is strain S found via 
straightforward summation of incremental interframe 
strains, for which the proportionality between the small 
strain in the stiffer silicone (vertical axis) and larger 
strain  of the softer silicone (horizontal axis) remains 
nearly perfectly linear up to strains ~0.4–0.5. In contrast, 
for cumulative strains C the dependence is pronouncedly 
nonlinear starting from values ~0.2.  

It is also interesting to mention that the stress-strain 
data presented in paper [7] demonstrate pronounced 
nonlinearity of the relationship between independently 
measured stress and strain C defined via variations in the 
silicone-layer thickness (see Eq. (14)). However, using 
the relation (11) between C and S, one can easily replot 
these data from [7] in the form . The two curves 

in the replotted form and original one from [7] are shown 
in Fig. 5c. It is clear that in the replotted form  

data [7] look as a fairly linear dependence up to strains 
 similarly to the nearly-linear dependences 

shown in Fig. 5b for the same strain range.  
For even larger strains, the additional stiffening of 

silicones becomes noticeable. It is likely, however, that 
this stiffening is mostly caused by adhesion/stiction 
effects. Indeed, the elastic response of a material is 
determined by the Young’s modulus only for true 

uniaxial loading when the material is not confined in the 
lateral direction and can freely expand laterally. Stiction 
to either OCT probe glass or to the rigid bottom surface 
(or both) may significantly impede the lateral expansion, 
such that the material begins to experience some 
contribution of volumetric (“all-round”) compression, 
the reaction to which is determined by the bulk modulus 
K rather than the Young’s modulus E˂˂K. For biological 
tissues and similar materials (like soft silicones), this 
difference may reach 5–6 orders of magnitude, such that 
even incomplete stiction may cause noticeable coupling 
with the bulk compression, which may result in quite a 
significant difference between the true Young’s modulus 
and its apparent higher value distorted by insufficiently 
free lateral expansion of the material due to stiction to the 
contacting rigid surfaces. Very clearly this influence of 
stiction on the apparent increase in the Young’s modulus 
can be seen using weakly scattering silicone layers, in 
which the local depth-resolved strains can be readily 
visualized in the silicone bulk (experimental examples of 
such apparent stiffening due to stiction at the silicone-
glass interface are shown in Ref. [8]). In practical 
measurements, putting lubrication (e.g. physiological 
saline solution) can be sufficient to significantly reduce 
the distorting role of stiction. 

The above-presented considerations indicate that it 
makes no sense to state that one of cumulative strains C 
or S is “correct”, because they reflect essentially different 
properties of the deformation process and both may be 
useful for different purposes.  

For instance, for fairly large strains, when different 
material portions experience significant supra-pixel 
displacements, the varying positions of the tissue 
particles should be tracked as depicted in Fig. 3, which 
requires calculation of cumulative strains C to estimate 
the current thickness of the tissue layer separating every 
material particle and the OCT-probe surface. 

 
Fig. 5 Verification of linearity of stress-strain dependences for silicones. (a) is the scheme of the “self-calibration test” 
based on compression of two layers with strongly contrasting stiffness, so that sufficiently small strain ( ) in 
the stiffer silicone is linearly proportional to stress with a good accuracy. In plot (b) the vertical axis is for the smaller 
strain  of  the stiffer silicone (proportional to stress with a good accuracy) and the horizontal axis corresponds 
to either  or  in the softer silicone. It is clear that for large strain , the dependences are nearly perfectly 
linear. For comparison,  (c) shows the independent data from paper [7] for stress measured with a force cell and plotted 
as a function of cumulative strain , as well as the same data  recalculated as a function of strain .  
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Next, if the goal is to verify linearity/nonlinearity of 
the elastic response for the tracked tissue portions, then 
cumulative strains  should be calculated for each tissue 
particle characterized by its initial depth and lateral 
coordinate. Thus, for characterization of nonlinear elastic 
response of tissues, it follows from the discussion of 
Fig. 5 that it is reasonable to plot the cumulative strain  
in the reference silicone against strain  in the examined 
material with unknown elastic behavior. Due to the 
verified linearity, strain  in the pre-calibrated silicone 
readily allows one to quantify local axial stress for every 
lateral coordinate. For an elastically linear examined 
material (like another silicone), such a -versus-  plot 
should be linear in the strain range up to 30–50%, 
although for further increase in strain, it is likely that 
adhesion/stiction influence may cause the deviation from 
the linear dependence even for a pair of ideally linear 
materials. For working with real biological tissues, such 
a strain range limited to 30–50% looks more than 
sufficient, because even for easily deformable tissues, 
usually strains should not exceed 10–20% to prevent 
irreversible mechanical damage. Furthermore, many 
tissues demonstrate pronounced elastic nonlinearity even 
for strains of the order of a few percent [8]. 

It should be emphasized that the sought nonlinear 
stress-strain dependences of real heterogeneous tissues 
should refer to every physical portion of the tissue rather 
that to every position in a fixed coordinate system. For 
strains on the order of several tens of percent, material 
particles may experience significant supra-pixel 
displacements, so that their tracking is critically 
important for obtaining the correct (undistorted) form the 
stress-strain curves for different components of real 
inhomogeneous tissues. The corresponding experimental 
examples demonstrating how these curves may be 
distorted without duly performed tracking are given in 
what follows.  

5 How to visualize current elastic 
properties of the strongly deformed 
tissue 

In the course of non-infinitesimal deformations, the 
tissue may pronouncedly change its form in the obtained 
series of images. Thus, tissue particles are characterized 
by different coordinates in different frames in the 
acquired series of images. In view of this, to enable 
comparison of the tissue properties for different stages of 
deformation, it is reasonable to ascribe the information 
about gradually-varying elastic properties of the tracked 
tissue particles by storing the current estimated elastic 
properties in the pixels corresponding to the initial 
coordinates of the particles. For the so-performed 
elastographic visualization, it is possible to clearly see 
how the elastic properties of every tissue portion are 
evolved, because in such a representation corresponding 

to the initial form of the tissue the geometrical form of 
tissue regions will remain invariable. 

Before turning directly to the corresponding 
experimental examples, another important note should be 
made about visualization of the current (tangent) Young 
modulus. It is equal to the slope of the stress-strain curve 

, so that for tissues with nonlinear stress-strain 
dependences  (like breast cancer sample discussed 

in Ref. [8]), the tangent Young’s modulus strongly 
depends on the current stress (pressure). This pressure, 
however, in real conditions is usually rather non-uniform 
in the lateral direction over an OCT scan. The numerous 
reasons of this non-uniformity are incontrollable in 
practice [29]. In particular, the thickness of the reference 
silicone layer may fluctuate over the scan so that one 
region may already get in contact with the compressing 
OCT probe, whereas the other may be yet non-contacted; 
similarly the tissue surface often is pronouncedly non-
planar; the tissue structure may be mechanically 
inhomogeneous laterally, so that the resultant strains for 
different coordinates may strongly differ even for the 
same stress value.  

It is clear that in such situations utilization of force 
cells enabling the estimation of the average stress over 
the OCT probe surface does not help much, because the 
stress over the visualized region may unpredictably differ 
up to several times. In configurations similar to that 
shown in Fig. 6a, high linearity of silicones described by 
Eq. (15) makes it possible to use the silicone layer as a 
distributed fully-optical stress sensor [29]. When non-
infinitesimal strains are of interest as discussed above, a 
series of OCT images are acquired and cumulative strains 

 and  are calculated using the above-described 
procedures with parallel displacement tracking. The 
current stress and strains of various tissue portions are 
attributed to their initial coordinates. Examples of such 
laterally inhomogeneous strain maps for various degrees 
of compression are shown in Fig. 6b. Having a series of 
such cumulative-strain maps, for every lateral coordinate 
(i.e., every A-scan) it is possible to find the frame number 
corresponding to a chosen stress value determined by the 
strain  in the pre-calibrated reference silicone (see 
Eq. (15)). Then the so-found A-scans with the desired 
stress level from strain maps with different numbers can 
be reassembled in a synthetic strain map, for which the 
stress is equal to the same pre-chosen value at every 
lateral coordinate. Such reassembled strain maps with the 
“standardized” stress over the entire scan are shown in 
the right part of Fig. 6b. This standardization allows one 
to estimate the current Young’s modulus as the slope of 
the chord connecting the points with the pre-chosen 
stresses and corresponding strains as shown in Fig. 6b. In 
such a way maps of the Young’s modulus for chosen 
standardized stresses can be readily plotted (see details in 
Ref. [29]). This procedure leads to the repeatability of the 
results, the possibility of comparing the stiffness both 
along one scan and among different scans and samples. 
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Fig. 6 Schematic of the OCE realization with silicone layers serving as optical stress sensors (a). A series of OCT scans 
obtains during compression of the tissue trough a silicone layer, in which its spatially-resolve cumulative strain  is 
linearly proportional to stress that may be laterally pronouncedly inhomogeneous as shown in the left part of panel (b). 
The right part of (b) shown a series of OCT scans with the same “standardized” pressure obtained by reassembling  
A-scans from the initially acquired OCT scans. Panel (c) shows an example of nonlinear stress-strain curve that can be 
obtained by plotting strain  in silicone proportional to stress according to Eq. (15) as a function of strain  in the studied 
tissue. After obtaining such spatially-resolved nonlinear curves, the Young’s modulus of the tissue can be estimated for 
a chosen stress level.  

Examples of application of these procedures to particular 
biomedical problems can be found in Refs. [22, 25] 
(morphological segmentation of human breast-cancer 
samples) and Ref. [26] (monitoring of morphological 
changes of animal-model tumors). 

Using the experimental scheme depicted in Fig. 6, in 
the next section we discuss experimental examples 
demonstrating the key role of displacement tracking 
based on finding cumulative strain , accompanied by 
finding cumulative strain  required for correct 
characterization of elastic properties of biological tissues. 

6 Experimental examples demonstrating 
importance of self-consistent 
displacement and strain tracking for 
characterization of linear and nonlinear 
elastic properties of materials 

The first example demonstrates strong influence of 
displacement tracking on the form of reconstructed 
stress-strain curves and the corresponding dependences 
of the tangent Young’s modulus represented as a function 
of either current stress or strain of the tissue. For real 
nonlinear tissues, the latter dependences may differ quite 
significantly. Fig. 7 shows an example obtained for an 
excised rat cornea subjected to compression between two 
layers of soft reference silicone (with the Young’s 
modulus  kPa). The experimental configuration 
is shown in Fig. 7a, where additionally a heating beam of 
IR laser is shown (because the experiments were made in 
the context of studies of new technologies of laser-
assisted modification of microstructure and shape of 
collagenous tissues, which are in more detail discussed in 
Refs. [16, 30, 31]). The inhomogeneity of elastic 
properties of the corneal sample is related to the 
preliminary performed spatially-inhomogeneous 
moderate heating.  

The structural images in the very beginning and at the 
end of the corneal sample compression are shown in 
Figs. 7b and 7c (notice that before compression the lower 
layer of silicone is not yet visible within the visualized 
depth). The initial position of the processing window is 
shown in Fig. 7b and its new position by the end of 
compression (tracked according to scheme shown in 
Fig. 2) is shown in Fig. 7c. In Fig. 7e the solid line shows 
the stress-strain curve found with correct tracking and the 
dashed line is obtained without tracking, i.e., for a 
processing window fixed in its initial position. It is clear 
that by the end of compression, the corneal layer inside 
the initial position of the processing window is 
completely substituted by the underlying silicone layer, 
so that the dashed curve is strongly distorted. Figs. 7f and 
7g show the current slopes of the stress-strain curves 
(Young’s modulus) found for the curves shown in Fig. 7e 
as functions of strain of the corneal tissue (for the tissue 
portion corresponding to the initial position of the 
processing window) and the stress applied to the tissue, 
respectively. Fig. 7f and 7g additionally clearly 
demonstrate that physically meaningful results with 
displacement tracking are strongly distorted when 
displacement tracking is not performed. Also, there is a 
clear difference between the dependences of the Young’s 
modulus on either strain or stress. This fact is due to 
pronounced nonlinearity of the stress-strain relationship 
for the corneal tissue.  

Figs. 7d and 7h show the 2D maps of the so-found 
Young’s modulus distribution found for the stress 2 kPa 
standardized over the scan area (i.e., in the beginning of 
compression) and for much higher stress 30 kPa by the 
end of compression, respectively. Details of stress 
standardization can be found in Ref. [29]. Very strong 
stiffening of the corneal tissue is clearly seen in Fig. 7h 
in comparison with Fig. 7d, which is in contrast with 
invariable Young’s modulus of the silicone layer in the 
upper parts of Figs. 7d and 7h. 
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Fig. 7 Experimental demonstration of importance of displacements tracking for OCE examination of a strongly elastically 
nonlinear sample of rat cornea. Panel (a) illustrates experimental scheme of pore formation research based on stiffness 
changes of the rat cornea after laser exposure. Structural OCT images (b) and (c) corresponding to the beginning and end 
of compression clearly illustrate significant displacement of the scatterers. 2D plots (d) and (h) demonstrate changes in 
the shape, position and stiffness (with standardization of pressure by 2 kPa and 30 kPa) of the cornea in the beginning 
and by the end of compression. Panels (e), (f), and (g), for corneal particles in the irradiated zone, show stress-strain, 
stiffness-strain and stiffness-stress dependences in the correct and distorted forms found with and without displacement 
tracking, respectively. Index “I” in panel (c) denoted the initial position of the processing window (the same as in (b)) 
containing the tracked particles; index “C” shows the new position of the processing window containing the same tissue 
particles correctly found by calculating cumulative strain C, and index “S” shows erroneously found new position found 
using strain S instead of C. The dashed lines in (d) and (h) show the boundary between silicone and corneal tissue. 

It can also be emphasized that the geometrical shape 
of the tissue in the OCT images may vary not only due to 
the mechanically created deformations, but may 
additionally be distorted by procedures of obtaining 
synthesized scans to enable stress standardization. 
Indeed, the physical stress distribution may be 
pronouncedly inhomogeneous, so that desired 
“standardized” stress at different lateral coordinates may 
be attained for scans with different numbers. 
Consequently, in the “standardized” scans, assembled 
using A-scans taken from initial scans with different 
numbers, the geometrical shape of the tissue in the 
resultant pressure-standardized images may differ from 
real geometrical shapes of the examined tissue. This 
gives an additional argument that, to better represent how 
strongly different tissue portions change their elastic 
properties for a certain applied stress, it is reasonable first 
to track gradually varying positions for every pixel, but 
then to place the estimated current elastic parameters for 
every tracked particle into the pixels corresponding to the 
initial positions of those particles rather than to their 
current positions.  

Fig. 8 based on real measurements of deformed 
corneal sample (the same as in Fig. 7) demonstrates in 
another form the difference between cumulative strains S 
and C, as well as the influence of their usage on the 
resultant stiffness maps. We recall once again that it is 
strain C, which correctly characterizes the change in the 
thickness of the tissue layer according to Eqs. (6). For 
compressive strains, according to Eq. (11) . The 
difference between S and C may be significant as is 
clearly seen from comparison of the displacement maps 

in Fig. 8, where panel (a) corresponds to cumulative 
strain C that gives correct estimates of particle 
displacements, whereas Fig. 8b shows for every tracked 
pixel cumulative strain S using which one may 
overestimate displacements by the end of compression. 
The structural image corresponding to the initial state of 
the corneal sample was shown in Fig. 7b, where the layer 
of linear silicone with E = 40 kPa is clearly seen above 
the nonlinear corneal tissue. Next, Fig. 8c shows the 
spatial distribution of the estimated Young’s modulus by 
the end of compression (for the maximal stress 40 kPa). 
The estimated Young’s modulus for every particle is 
stored in the pixels corresponding to the initial sample 
configuration. The back-shift in Fig. 8c in correctly made 
based on the estimated strain C shown in Fig. 8a. Since 
Fig. 8c is obtained using correct back-shift to the initial 
pixels, the so-obtained elasticity map clearly shows that 
the thickness of the uniform layer of silicone well 
corresponds to its thickness in the structural image in 
Fig. 7b. In contrast, in Fig. 8d the back-shift to initial 
positions was made incorrectly, using strain S shown in 
Fig. 7b. Cumulative strain S strongly overestimated 
displacements, such that because of the over-estimated 
back-shift, the uniform layer of silicone looks much 
thicker. Correspondingly, the overall stiffness 
distribution is strongly distorted. For the considered 
example with a clear boundary between the tissue and 
silicone (see structural scan in Fig. 7b), this inconsistency 
with Fig. 8d can be rather easily noticed. However, 
usually inside real tissues are no such high-contrast 
boundaries, so that it is not so simple to compare 
structural and derived elastographic images. 
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Fig. 8 Illustration of correct and incorrect displacement tracking (accumulated during gradual stress increase up to 
40 kPa). Panel (a) is the correctly reconstructed displacement field based on the cumulative strain C; (b) is a similar 
incorrectly reconstructed displacement map based on utilization of cumulative strain S. (c) is the Young’s modulus 
distribution obtained by correctly (d) is the Young’s modulus map based on incorrectly back-shifted current position of 
every particle corresponding to panel (b) in which the displacement are over-estimated. Panel (e) schematically elucidates 
the reason of obtaining incorrectly back-shifted maps of elastic properties when the displacements are erroneously 
estimated using cumulative strain S instead of C. The dashed lines in panels (a)–(d) show the position of boundary between 
silicon and tissue as shown in the structural image in Fig. 6b.  

Consequently, erroneously performed displacement 
tracking and back-shift of the current positions of 
particles may lead to strong distortions which are not 
easily detectable. Schematically the origin of the 
discussed errors in another form is elucidated in Fig. 8e, 
where correct (based on strain C) and overestimated 
(based on strain S) displacements and back-shifts are 
shown. 

Fig. 8e demonstrates that when the displacement is 
significantly overestimated, one may erroneously place 
the current positions of tissue particles inside the layer of 
silicone and, consequently, to make too strong back-shift 
of the current positions of the tissue particles. Thus, the 
Young’s modulus values actually found inside silicone 
can be erroneously ascribed to the tissue. When samples 
are mechanically depth-dependent and there are no 
evident layers/boundaries, the tracking of displacements 
can be based only on incremental estimations of strains, 
so that the proper method of finding cumulative strains is 
of key importance for correct displacement tracking.  

Finally, it can be pointed out that the term “elastic 
properties” is not reduced to evaluation of the Young’s 
modulus. Indeed, the described OCE method based on 
utilization of linear reference silicone layers enables 
obtaining nonlinear stress-strain dependences for 
examined tissues, from which not only the Young’s 
modulus can be estimated (as elucidated in Fig 6c), but 
also dependences of the Young’s modulus on either strain 
or applied stress can be derived as demonstrated in 

Figs. 7f and 7g. From the nonlinear stress-strain 
dependences and the derived pressure dependences of the 
Young’s modulus one can estimate parameters of elastic 
nonlinearity of examined tissues. For example, one may 
use the following power-law expansion of the 
reconstructed stress-strain curves around a pre-selected 
stress σ0: 

 (16) 

where σ is the current stress, ε is strain, and σ0 is the 
chosen initial stress around which the nonlinear stress-
strain dependence is expanded; E(σ0) is the current 
(tangent) Young’s modulus for , and quantity β is 

the dimensionless nonlinearity parameter characterizing 
quadratic-in-strain nonlinearity.  

By definition, the current Young’s modulus 
corresponds to the slope of the stress-strain dependence 
(as illustrated in Fig. 6c), so that for the chosen pre-
compression σ0 one can write: 

 (17) 

As follows from Eq. (16), in the vicinity of point σ0 
the current Young’s modulus can be represented as:  

 (18) 
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Fig. 9 Examples of the evolution of the Young’s modulus maps with increasing stress and utilization of these maps for 
finding the nonlinearity parameter distribution. (a)–(e) Young’s modulus maps for stresses 2 kPa, 15 kPa, 20 kPa, and 
30 kPa, respectively. Panel (c) shows the stress-strain dependences for the regions (I) and (II) shown in panels (a)–(e). 
Panel (f) is the nonlinearity parameter distribution obtained by subtraction of the Young’s modulus maps for 2 kPa and 
10 kPa shown in panels (d) and (e).  

so that the quadratic nonlinearity parameter β near the 
stress point σ0 can be found as 

 (19) 

The initial stress  can be chosen zero 

(corresponding to the very beginning of tissue 
compression) or some non-zero value may be chosen. 
Preliminary studies demonstrated that various tissue 
components (for example, morphological component of 
breast cancer) can exhibit very similar values of the 
Young’s modulus, but at the same time the very same 
components may demonstrate clearly differing values of 
the nonlinear parameter β [22]. This fact opens the 
possibility to differentiate various tissue types using in 
combination the characteristic values of both the 
Young’s modulus and the nonlinearity parameter.  

In what follows for the same corneal sample that was 
used in Figs. 7 and 8, we demonstrate how the above 
described approach to mapping the current elastic 
properties of the tissue with the back-shift to the initial 
positions of the tissue particles can be used for 
convenient obtaining of the nonlinearity parameter. 
Indeed, it is clear that differential for of Eq. (19) can 
readily be represented in the difference form: 

 (20) 

Eq. (20) indicates that if one has the Young’s 
modulus maps as in Fig. 8c obtained for fairly close 
stress levels σ0 and σ0+Δσ with correct back-shift of the 

estimated local Young’s moduli E(σ0) and E(σ0+Δσ) of 
the tracked tissue particles to the same initial pixels of the 
particles, then the pixel-to-pixel difference of such two 
maps E(σ0+Δσ)–E(σ0) readily yields the map of the 
quantity  proportional to the 

nonlinearity parameter.  
Fig. 9 demonstrates the maps of the Young’s modulus 

(similar to Fig. 8c) for four different levels of applied 
stress (2, 10, 20, and 30 kPa). The spatial inhomogeneity 
of the Young’s modulus in the corneal sample is caused 
by spatially-inhomogeneous irradiation with the heating 
laser beam (see the scheme in Fig. 7a) prior to the 
elasticity measurements. The heating produces changes 
in the entire stress-strain curves, examples of which are 
shown in Fig. 9c for the regions labeled as (I) and (II). 
Finally, Fig. 9f shows the map of the nonlinearity 
parameter obtained by subtraction of the Young’s 
modulus maps for 2 kPa and 10 kPa (Figs. 9a and 9b). 
Fig. 9f is represented in the pseudo-3D-form to clearer 
show the spatial inhomogeneity of the nonlinearity 
parameter. It is clear from Fig. 9c that in the stress range 
2–10 kPa the Young’s modulus values are fairly similar 
in regions (I) and (II), but the nonlinearity parameters are 
pronouncedly different as is clearly seen from Fig. 9f. 
Thus, combined consideration of both Young’s modulus 
and nonlinearity parameter can be much more efficient 
for differentiation among various tissue types as 
demonstrated in Ref. [22] for breast cancer tissues. 

We also emphasize that even if particles in the 
deformed material are gradually shifted with increasing 
pressure, the correctly-performed back-shift to the initial 
positions allows one to place the estimated elastic 
parameters to the invariable initial pixels of the particles. 
Due to this, for visualizing the nonlinearity-parameter 
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distribution, straightforward subtraction of the Young’s 
modulus maps is sufficient. 

7 Conclusions 
In this paper we discuss the problem of correct tracking 
of particle displacement in compression optical 
coherence elastography. In the above consideration we 
focused on the axial displacements, although due to 
Poisson’s effect axial compression also causes lateral 
strains and displacements. However, there are several 
factors due to which the effect of lateral displacements is 
of secondary importance compared with axial ones. 
Some of these factors relate to the OCT system and some 
other to the studied material and character of its 
deformation. First, from the viewpoint is signal analysis, 
the analyzed OCT signal phase is much stronger sensitive 
to axial scatterer displacements in comparison with 
lateral ones. Next, comparing displacements of tissue 
particles to neighboring pixels, it should be pointed out 
that the lateral size of pixels (in fact the diameter of a 
single axial A-scan) in conventional point-scanning OCT 
systems with weakly focused beams is several times 
greater than the vertical pixel size (the typical difference 
is 3–5 times). Another feature of scanning is that usually 
the A-scans are noticeably overlapped in the lateral 
direction (the typical overlap corresponds to another 
factor of 3–4 times). Thus, the neighboring A-scans 
visualize almost the same portion of the examined tissue. 
Comparing axial and lateral strains, it can be mentioned 
that for soft tissues with Poisson’s ratio close to 0.5, 
lateral strains are twice smaller than the axial ones. 
Furthermore, for ideally plane-layered structures, in 
contrast to the depth dependence, the tissue properties do 
not depend on lateral positions at all, whereas the 
structure of many real biological tissues is close to plane-
layered. Due to all these features, the elastographic 
images are at least an order of magnitude more tolerant 
to lateral motions.  

By the above-mentioned reasons we focused on the 
problem of axial tracking in the context of estimation of 
larger strains and supra-pixel displacements,  which has 
not specifically discussed in previous publications, 
although the interest to OCT-based phase-sensitive strain 
mapping and compression OCT-based elastography 
rapidly grows in the recent years in various research 
groups [7, 20, 32–34] (see also review [11] and 
Refs. therein). Obtaining of nonlinear stress-strain curves 

using compression OCT elastography opens previously 
unavailable prospects for high-selectivity differentiation 
of cancerous tissues [22]. For obtaining nonlinear stress-
strain curves of real heterogeneous tissues in sufficiently 
broad strain ranges (say, for strains >10–20% that are still 
biologically non-destructive), the above-discussed 
tracking is of key importance. Without correctly 
performed displacement tracking one may obtain 
essentially erroneous maps of the reconstructed elastic 
parameters and, consequently, derive strongly incorrect 
diagnostic conclusions.  

We demonstrated that even if direct measurements of 
such fairly strong interframe strains are prevented by 
strong decorrelation effects, correctly designed 
incremental procedures can be efficiently used to 
evaluate and map both linear and nonlinear elastic 
properties of examined tissues. For the discussed strain 
ranges up to several tens of percent, we considered 
various definitions of the notion of cumulative strain and 
elucidated which particular definition should be used for 
various applications/purposes. It was shown that 
incorrect choice of the definition may lead to essentially 
erroneous conclusions about the spatial distribution of 
the elastic properties and their nonlinearity. Although it 
this study we used a particular vector approach for phase-
sensitive strain estimation, but generally speaking the 
procedures of self-consistent simultaneous tracking of 
large strains and displacements presented in Fig. 3 
remain valid for other methods of incremental strain 
estimation (e.g., the least square phase-sensitive 
approach [3] or even amplitude-based correlational 
approaches if their accuracy can be made sufficient [35]).  

The presented results construct the basis for rapidly 
developing biomedical diagnostic methods that are based 
on the utilization of differences in both linear and 
nonlinear elastic parameters of biological tissues, which 
is especially important for oncologic 
applications [22, 25–28]. 
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