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Abstract 
 

This article proposed a Poisson based continuous probability distribution called Poisson-Rayleigh 
distribution. Some properties of the new distribution such as quantile and reliability functions and other 
useful measures were obtained. The model parameters were estimated using the method of maximum 
likelihood. The usefulness of the new distribution was proven empirically using real life datasets. 
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1 Introduction  
 
The Rayleigh was obtained from the amplitude of sound resulting from many important sources by Rayleigh [1]. 
It is continuous probability distribution with a wide range of applications such as in life testing experiments, 
reliability analysis, applied statistics and clinical studies. This distribution is a special case of the two parameter 
Weibull distribution with the shape parameter equal to 2. Its origin and other important features can be found in 
the work of Siddiqui [2], Hirano [3] as well as Howlader and Hossian [4].  
 
A random variable X is said to have follow Rayleigh distribution with parameter θ if its probability density 
function (pdf) is given by: 
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And its corresponding cumulative distribution function (cdf) is given as 
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where 0,0  x  where Ө is the scale parameter. 

 
In recent times, a number of authors have developed efficient families of probability distributions and it has 
been proven that they produce more flexible probability models. These proposed families among others include 
the quadratic rank transmutation map proposed by [5], the Weibull-X family of distribution by [6], the Weibull-
G family of distributions by [7], the Gamma-X family by [8], a Lomax-G family by [9], a new Weibull-G 
family by [10], a Lindley-G family by [11], a Poisson-X family by [12], a Gompertz-G family by [13], an odd 
Lindley-G family by [14], extended Poisson family of life distribution by [15] and an odd Lomax generator of 
distributions by [16]. 
 
Adequate utilization of these families and other methods have led to many extensions of the Rayleigh 
distribution some of which are; the generalized Rayleigh distribution by [17], Bivariate generalized Rayleigh 
distribution by [18], Transmuted Rayleigh distribution by [19], Weibull-Rayleigh distribution by [20], 
transmuted Weibull-Rayleigh distribution by [21], the Transmuted Inverse Rayleigh distribution studied by [22] 
and the odd Lindley-Rayleigh distribution by [23]. 
 
Besides the above extensions of the Rayleigh distribution, other models arising from these proposed families of 
distributions are the odd Lindley inverse exponential distribution by [24], the transmuted normal distribution by 
[25], the Weibull-Exponential distribution by [26], the transmuted Weibull-exponential distribution by [27], the 
Weibull-Frechet distribution by [28], the transmuted Lomax distribution by [29], the Gompertz-Lindley 
distribution by [30], Poisson-exponential distribution by [31], exponential-Poisson distribution by [32] and 
many others. 
 
Inspired by the above listed families and the related extended probability distributions, this study will propose 
another extension of the Rayleigh distribution by using the Poisson-X family proposed by [12], this proposed 
distribution is called “the Poisson-Rayleigh distribution (PRD)”. 
  
The rest of this paper is organized in sections as follows: the newly proposed distribution is defined with its 
plots in section 2. Section 3 presents statistical properties of the new distribution. Section 4 looks at the 
estimation of parameters using maximum likelihood estimation. An application of the Poisson-Rayleigh 
distribution and Rayleigh distribution to some real life datasets is presented in section 5 and the final summary 
and conclusion is provided in section 6. 
 

2 A Poisson-Rayleigh Distribution (PRD) 
 
According to [12], the cdf and pdf of a Poisson-X family of distributions are respectively given by 
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where x > 0, and   is the extra shape parameter,  G x  and  g x  are the cdf and pdf of any continuous 

distribution to be modified respectively.  
 
Putting equation (1) and (2) into equation (3) and (4) and simplifying, we obtain the cdf and pdf of the PRD 
given in equation (5) and (6) respectively as follows: 
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where 0, 0, 0,x    
  
  and   are the parameters of the PRD.  

 
Plots of the pdf and cdf of the PRD using some parameter values are presented in Fig. 1 as follows. 
 

 
 

Fig. 1. (a)-PDF and (b)-CDF of the PRD for different values of the parameters 
 
From the figure above, it can be seen that the pdf PRD distribution is positively skewed and takes various 
shapes depending on the parameter values. Also, from the above plot of the cdf, it is clear that the cdf equals to 
one when X approaches infinity and equals zero when X tends to zero as normally expected. 
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3 Useful Statistical Properties of PRD 
 
In this section, useful properties of the PRD distribution have been derived and discussed as follows:  
 

3.1 Quantile function 
 

According to [33], the quantile function for any distribution is defined in the form    1
qQ u X F u   

where  Q u  is the quantile function of F(x) for 0 1u   

 
Taking F(x) to be the cdf of the PRD and inverting it as above will give us the quantile function as follows: 
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Simplifying equation (7) above and solving for x presents the quantile function of the PRD as: 
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This function is used for obtaining some moments like skewness and kurtosis as well as the evaluation of 
median and for generation of random variables from the distribution.  
 

3.2 Skewness and kurtosis 
 
This paper presents the quantile based measures of skewness and kurtosis due to non-existence of the classical 
measures in some cases.  
 
According to [34], the Bowley’s measure of skewness based on quartiles is given by: 
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Also, the Moors kurtosis based on octiles proposed by [35] and is given by; 
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where  .Q  is obtainable with the help of equation (8). 

 

3.3 Reliability analysis of the PRD. 
 
The Survival function describes the likelihood that a system or an individual will not fail after a given time. 
Mathematically, the survival function is given by: 
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   1S x F x    (11)

  
Applying the cdf of the PRD in (11), the survival function for the PRD is obtained as: 
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where 0, , 0x    . 

 
Hazard function is a function that describes the chances that a product or component will breakdown over an 
interval of time. It is mathematically defined as: 
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Therefore, our definition of the hazard rate of the PRD is given by 
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where 0, , 0x    . 

 
The figure below presents a plot of both the survival function (SF) and hazard function (HF) of PRD based on 
arbitrary parameter values as follows: 
 

 
 

Fig. 2. (a)-SF and (b)-HF of PRD for Selected Values of the Parameters 
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The plot in Fig. 2(a) show that the chances of survival equal are higher at the beginning or early age and 
decrease as the time increases and tends to zero at infinity.

 
Fig. 2(b) also revealed that the proposed distribution 

has increasing failure rate which implies that the probability of failure for any random variable following a PRD 
increases as time increases, that is, probability of failure or death increases as the process or event progresses. 
 

4 Estimation of Unknown Parameters of the PRD 
 
In this section, the estimation of the parameters of the PRD is done by using the method of maximum likelihood 

estimation (MLE). Let nXXX .,,........., 21  be a sample of size ‘n’ independently and identically distributed 

random variables from the PRD with unknown parameters   and   defined previously.  
 
The likelihood function of the PRD using the pdf in equation (6) is given by; 
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Let l
 
be the natural logarithm of the likelihood function such that  1 2log , ,..., | ,nl L x x x   , therefore, 

taking the natural logarithm of the function above gives: 
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Differentiating l  partially with respect to 
 
and   respectively gives the following results: 
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Equating (17) and (18) to zero (0) and solving for the solution of the non-linear system of equations above will 

give the maximum likelihood estimates ̂  and ̂  of parameters   and   respectively. However, these 
solutions cannot be obtained manually except numerically with the aid of suitable statistical software such as R 
software as used in this study. 
   

5 Applications 
 
In this section, three real life datasets have been considered to check the modeling flexibility of the proposed 
distribution compared to the Rayleigh distribution. The models to be fitted in this section are the proposed 
Poisson-Rayleigh distribution (PRD) and the conventional Rayleigh distribution (RD). To identify the most 
fitted distribution to each of the datasets, the following model selection criteria were used which include the 
value of the log-likelihood function evaluated at the MLEs (ℓ), Akaike Information Criterion, AIC, Consistent 
Akaike Information Criterion, CAIC, Bayesian Information Criterion, BIC, Hannan Quin Information Criterion, 
HQIC, Anderson-Darling (A*), Cramѐr-Von Mises (W*) and Kolmogorov-smirnov (K-S) statistics. More about 
these statistics A*, W* and K-S can be seen in [36]. Some of these statistics are computed using the following 
formulas: 
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Where ℓ denotes the value of log-likelihood function evaluated at the MLEs, k is the number of model 
parameters and n is the sample size. Decisively, the distribution with the lowest values of these criteria is 
considered to be the most fitted model to the dataset. Also, all the required computations are performed using 
the R package “AdequacyModel”.  
 
Data set I: This is a dataset on the rate of mother-to-child transmission of HIV (Human 
Immunodeficiency Virus) in Nigeria from the year 2000 to the year 2019. The descriptive statistics and 
graphical summary of the dataset are also presented.  
 
The mother-to-child HIV transmission rate per 1,000 of population in Nigeria between 2000 and 2019 is as 
given as follows: 37.35, 37.08, 37.00, 36.98, 36.79, 36.75, 34.35, 32.96, 31.84, 30.35, 30.53, 28.96, 26.71, 
22.50, 19.84, 20.04, 19.44, 20.82, 22.09, 22.16 
 
Data source: www.data.unicef.org 
 
The following table presents a summary of the above dataset with some important details: 
 

Table 1. Descriptive statistics for dataset I 
 
n Minimum 

1Q  Median 
3Q  Mean Maximum Variance Skewness Kurtosis 

20 19.44  22.14  30.44  36.76  29.23   37.35  47.55  -0.18919 -1.55278  
 

 
 

Fig. 3. A graphical summary of dataset I 



 
 
 
 

Asongo et al.; ARJOM, 17(5): 69-84, 2021; Article no.ARJOM.67567 
 
 

 
76 

 

Following the summary of the descriptive statistics in Table 1 and the histogram, box plot, density and normal 
Q-Q plot generally referred to as graphical summary in Fig. 3 above, it is seen that the rate of transmission of 
HIV from mother to child is bimodal and approximately normally distributed. 
 
Applications of the proposed model and the conventional Rayleigh distribution to this data (dataset I) has been 
done and the results are presented as follows: Table 2 lists the Maximum Likelihood Estimates of the model 
parameters, Table 3 presents the statistics AIC, CAIC, BIC and HQIC while A*, W* and K-S for the fitted 
models are given in Table 4. 
 

Table 2. Maximum Likelihood Parameter Estimates for dataset I 
 
Distribution ̂  ̂  

PRD 0.005344705  3.711657673  
RD 0.002732482  - 

  
Table 3. The statistics ℓ, AIC, CAIC, BIC and HQIC based on dataset I 

 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

PRD 71.86771  147.7354  148.4413  149.7269  148.1242  1st  
RD 75.69183  153.3837  153.6059  154.3794  153.578  2nd  

 
Table 4. The A*, W*, K-S statistic and P-values based on dataset I 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
PRD  1.062499  0.158693  0.3634  0.007127  1st  
RD 1.008713  0.1445629  0.40329  0.001888  2nd  

  
The following figure presents a histogram and estimated densities and cdfs of the fitted models to dataset I.  
 

 
 

Fig. 4. Estimated densities and cdfs of the fitted distributions to dataset I 
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Fig. 5. Probability plots for the fitted distributions based on dataset I 
 
Looking at the results from Table 3, it is revealed that the proposed distribution (PRD) fits dataset I better as 
compared to the conventional Rayleiyh distribution (RD) using the information criteria (AIC, CAIC, BIC and 
HQIC). This can also be seen from the statistics in Table 4 which show that the proposed model fits the dataset 
better than the Rayleigh distribution, this is because the PRD has the minimum values of A*, W* and K-S 
compared to the conventional Rayleigh distribution.  
 
Also, the estimated densities and estimated cumulative distribution functions in Fig. 4 confirm that the proposed 
model analyses the dataset better than the conventional RD. Similarly, the probability plots presented in Fig. 5 
shows that the proposed distribution (PRD) is more flexible than the RD as already revealed previously in Table 
3 and 5.4 as well as Fig. 4.  
 
Data set II: This is a real life dataset and it represents the strength of 1.5cm glass fibers initially collected by 
members of staff at the UK national laboratory. It has been used by [37,38,7,39,27] as well as [40].  Its summary 
is given as follows: 
 

Table 5. Descriptive statistics of dataset II 
 
n Minimum 

1Q  Median 
3Q  Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 
 
Considering the descriptive statistics in Table 5 and the graphical summary in Fig. 6 above, it is observed that 
the real life data (dataset II) is negatively skewed, that is, skewed to the left. 
 
Again the applications of the proposed model and the conventional Rayleigh distribution to this data (dataset II) 
has been done and the results are presented as follows: Table 6 lists the Maximum Likelihood Estimates of the 
model parameters, Table 7 presents the statistics AIC, CAIC, BIC and HQIC while A*, W* and K-S for the 
fitted models are given in Table 8. 
 

Table 6. Maximum Likelihood Parameter Estimates for dataset II 
 
Distribution ̂  ̂  

PRD 1.545945  4.891722  
RD 0.8423323  - 
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Fig. 6. A graphical summary of dataset II 
 

Table 7.  The statistics ℓ, AIC, CAIC, BIC and HQIC based on dataset II 
 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

PRD 25.5539  55.10779  55.30451  59.42556  56.80878  1st  
RD 50.53607  103.0721  103.1367  105.231  103.9226  2nd  

 
Table 8. The A*, W*, K-S statistic and P-values based on dataset II 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
PRD  3.389985  0.6187591  0.20796  0.007888  1st  
RD 2.646397  0.483948  0.33607  1.054e-06  2nd  

  
The following figure presents the estimated densities and cdfs of the fitted models to dataset II. 
  
Considering the results from Table 7, it is seen that the new distribution (PRD) fits dataset II better than the 
conventional Rayleigh distribution (RD) using the information criteria (AIC, CAIC, BIC and HQIC). The same 
result is found from the statistics in Table 8 indicating that the proposed model (Poisson-Rayleigh distribution, 
PRD) fits dataset II better than the conventional Rayleigh distribution, this is as a result of the fact that the PRD 
has the lowest values of A*, W* and K-S compared to the conventional Rayleigh distribution.  
 
More so, the estimated densities and estimated cumulative distribution functions in Fig. 7 prove that the 
proposed model describes the second dataset better than the conventional RD. Conclusively, the probability 
plots displayed in Fig. 8 show that the proposed distribution (PRD) is more flexible compared to the RD as 
already demonstrated in Table 7 and 8 as well as Fig. 6. 
 
Data set III: This dataset is on the gauge length of 10mm obtained from [41]. The data set holds sixty-three  
observations as: 1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 
2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 
2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 
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3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 
5.020. The following table presents a summary of the above dataset: 
 

 
 

Fig. 7. Estimated densities and cdfs of the fitted distributions to dataset II 
 

 
 

Fig. 8. Probability plots for the fitted distributions based on dataset II 
 

Table 9. Descriptive Statistics for dataset III 
 
n Minimum 

1Q  Median 
3Q  Mean Maximum Variance Skewness Kurtosis 

63 1.901  2.554  2.996  3.421  3.059  5.020  0.38554  0.63285  0.28634  
 
Based on the descriptive statistics in Table 9 and the histogram, box plot, density and normal Q-Q plot or the 
graphical summary in Fig. 9 above, it is seen that the third dataset is skewed to the right or it is positively 
skewed. 



 
 
 
 

Asongo et al.; ARJOM, 17(5): 69-84, 2021; Article no.ARJOM.67567 
 
 

 
80 

 

 
 

Fig. 9. A graphical summary of dataset III 
 
Another application of the new distribution and the conventional Rayleigh distribution to this third data (dataset 
III) has been done and the results are shown in tables as follows: Table 10 lists the Maximum Likelihood 
Estimates of the model parameters, Table 11 presents the statistics AIC, CAIC, BIC and HQIC while A*, W* 
and K-S for the fitted models are given in Table 12. 
 

Table 10. Maximum likelihood parameter estimates for dataset III 
 
Distribution ̂  ̂  

PRD 0.3455407  4.6768841  
RD 0.2050128  - 

  
Table 11. The statistics ℓ, AIC, CAIC, BIC and HQIC based on dataset III 

 
Distribution ̂  

AIC CAIC  BIC  HQIC Ranks 

PRD 62.67903  129.3581  129.5581  133.6443  131.0439  1st  
RD 93.52005  189.0401  189.1057  191.1832  189.883  2nd  

 
Table 12.The A*, W*, K-S statistic and P-values based on dataset III 

 
Distribution A* W* K-S P-Value (K-S) Ranks 
PRD  0.3589833  0.06089162  0.14973  0.1186  1st  
RD 0.4380517  0.0663365  0.3602  1.59e-07  2nd  

  
The following figure presents the estimated densities and cdfs of the fitted models to dataset III.  
 
Based on the results from Table 11, one can see that the Poisson-Rayleigh distribution (PRD) fits dataset III 
much better than the conventional Rayleigh distribution (RD) following these information criteria (AIC, CAIC, 
BIC and HQIC). This same performance is also discovered with the statistics in Table 12 which is an indication 
that the proposed model fits the third dataset (dataset III) better than the conventional Rayleigh distribution, 
since it has the minimum values of A*, W* and K-S compared to the other fitted model.  
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Fig. 10. Estimated densities and cdfs of the fitted distributions to dataset III 
 

 
 

Fig. 11. Probability plots for the fitted distributions based on dataset III 
 
Also, the fitted densities and cumulative distribution functions in Fig. 10 also confirm that the proposed model 
fits the dataset (dataset III) better than the conventional RD. Again, the probability plots in Fig. 11 show that the 
proposed distribution (PRD) is more flexible than the other fitted distribution (RD) as already seen in Table 11 
and 5.12 as well as in Fig. 10.  
 
Finally, this whole analysis has proven the general statement that adding parameter(s) to any continuous 
probability distribution always lead to a distribution with greater flexibility in modeling real life data as reported 
by many other authors in previous studies. This also shows that the Poisson-X family by [12] is good for 
developing new continuous distributions. 
 

6 Conclusion 
 
This paper developed a new distribution called “a Poisson-Rayleigh distribution”. The statistical properties of 
this model which are useful have been derived and studied. The quantile function, coefficient of skewness and 
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kurtosis, survival function and hazard function were defined and discussed in this paper. The unknown 
parameters of the proposed model were estimated using the method of maximum likelihood estimation. The 
PRD was used to fit real life datasets. Results from the application of the proposed model to the real life datasets 
reveal that the Poisson-Rayleigh distribution fits the datasets much better than the Rayleigh distribution. This 
performance of our model is an indication that the proposed model will be useful for describing other real life 
situations. 
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