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Abstract

Shannon’s entropy plays important role in the information theory. However, it can’t be applied to systems
which have survived for some time. Therefore, the concept of residual entropy was developed. In this
paper, the estimation of the entropy of a two-parameter inverse Weibull distribution based on the
generalized type-I1 hybrid censored sample is considered. The Bayes estimator for the residual entropy of
the Inverse Weibull distribution under the generalized type-ll hybrid censored sample is given.
Simulation experiments are conducted to see the effectiveness of the different estimators.

Keywords: Bayes estimation; entropy; inverse weibull distribution; generalized hybrid censoring; maximum
likelihood estimation; residual entropy.

1 Introduction

There is a message (or more) in any communication channel, the sender hope to send it to the receiver. If the
channel is perfect the message will arrive complete. But most likely, the channel suffers from a lot of noise such
as bad line, data jam, etc. Then, we may need to measure how perfect communication over (through) an
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imperfect communication channel. In other words, we need to be sure that the information which the message
has carried is received completely. Entropy is a useful measure of uncertainty and dispersion, and it has many
uses in communication theory. An early definition of information entropy was introduced by Shannon in [1],
and it is usually referred to as Shannon’s entropy.

Let X be a random variable with cumulative distribution function (cdf) F(x), and probability density function
(pdf) f(x), then the entropy Hy of the random variable X is defined as:

m=HU%>£mﬁ@n=ff@n%U@»m. 1)

In this context, Hy is a measure of the uncertainty associated with the probability density function f. The
Shannon’s entropy plays a vital role as a measure of uncertainty in different areas such as physics, electronics,
engineering, and economics.

Many authors worked on entropy’s estimation for different distributions. Cramer and Bagh in [2] discussed the
entropy of Weibull distribution under progressive censoring. Cho et al. in [3] presented an estimator for the
entropy function of Rayleigh distribution based on doubly-generalized type Il hybrid censored samples. Cho et
al. in [4] considered the estimation of the entropy of Weibull distribution based on the generalized progressively
censored sample. Ahmad in [5] derived the estimators for the entropy function of the Fréchet distribution under
generalized type | hybrid censored samples. Mahmoud et al. in [6] derived the estimators for the entropy
function of the Lomax distribution under generalized type | hybrid censored samples.

Consider an inverse Weibull distribution with cdf:

A a
F(x;a,/l)=e_(¥) ,x>0,a>0A1>0, 2
and pdf:
" 3
fo;a,1) =ar®x~@e™ &) x>0, >0,1>0. ®)

For the pdf (3), the entropy (1) simplifies to

a

1
H(f):y(l +z)+log(z)+1 )
where y is the Euler-Mascheroni constant.

In the context of information theory, Shannon’s information measure is useful for measuring the uncertainty
associated with some density function. However, this entropy is not useful for a system that has survived for
some units of time. It means that, there are some units that have low uncertainty and others that have great
uncertainty. Then, if the random variable X represents the lifetime of a device, the characteristic of special
interest is the residual life distribution, which is the distribution of the random variable (X — t) truncated at (t >
0). In other words, if a unit of life length X is known to have survived to age ¢, it is the residual entropy of (X —
t) that is of interest. Ebrahimi in [7] defines the residual entropy of a random variable X with density function f
as

o fm )
H(f,t) = _thﬁ logﬁdx, St)=0

Where S(t) is the survival function of X. Using the relationship between the survival function and hazard
function h(x), the residual entropy function can be expressed as

1

H(f,t) =1 —%J; f(x) log(h(x))dx.

(6)
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In a lifetime experiment, it is most likely that the researcher terminates the experiment before the failure of all
items. This is because of the waiting time for the last failure is unknown or that the items under study may be
expensive. For these reasons the experimenter terminates the experiment before the last failure, and the data
samples obtained from such situation are called censored samples. There are many types of censoring schemes.
If we terminate the experiment at a fixed a pre-determined time T, we say that we have “type 1 censoring
scheme”. If we terminate the experiment at the r' failure, we say that we have “type II censoring scheme”. In
the reliability literature, two mixtures of both these censoring schemes have been discussed under the title
“hybrid censoring schemes” (HCS). If the experiment terminates when either the pre-fixed number of failures
(r) has failed or a pre-specified censoring time T has been reached, this is called type I hybrid censoring scheme
(Type-1 HCS). We express the termination time of the experiment as T, = min{X,.,,, T}. If the experiment
terminates when either the last of a pre-fixed failure numbers has failed or a pre-specified censoring time T is
reached, this is called type Il hybrid censoring scheme (Type-1I HCS). We express the termination time of the
experiment as T* = max{X,.,, T}. However, in type | hybrid censoring, there is high probability that the pre-
fixed time T occurs before obtaining enough failures times to make inference. on other side, in type Il hybrid
censoring, we might take a long time to observe the desired number of failures. To overcome these
disadvantages, Chandrasekar et al. in [8] introduced generalized type I and type Il hybrid censoring schemes.

Many authors have studied residual entropy function in different aspects. Ebrahimi and Pellerey in [9] proposed
the Shannon residual entropy function as a measure of uncertainty. Belzunce et al. in [10] considered the
residual entropy function. Drissi et al. in [11] consider the cumulative residual entropy. Baig and Dar in [12]
studied the concept of Varma’s entropy for the life time distributions that generalizes the entropy measure.
Kayal in [13] studied a generalized residual entropy of record values and weighted distributions. Rajesh et al. in
[14] proposed the local linear estimators for the conditional residual entropy function in the case of complete
and censored samples.

In this paper, under the generalized type Il hybrid censoring scheme (G-Type-1I HCS), we derive and estimate
the entropy and residual entropy of the inverse Weibull distribution. Also, we study the performance of the
estimates using simulated data. The simulation contains different parameter values. The relative absolute bias
and relative root MSE of the estimates have been obtained to assess the performance of the various estimates
under different models. The rest of the paper is organized as follows; in section 2, we derive the residual entropy
function associated with the Inverse Weibull model. In section 3, we discuss estimating the parameter of the
inverse Weibull distribution under the G-Type-Il HCS. In section 4, the maximum likelihood estimates of the
entropy of the inverse Weibull distribution under G-Type-11 HCS are obtained. In section 5, we derive the Bayes
estimators for the residual entropy of an inverse Weibull distribution under the squared error loss (SEL)
function. In section 6, some simulation studies are performed. Finally, the conclusions in section 7.

2 Estimation of the Residual Entropy Function of Inverse Weibull
Distribution

The residual entropy measures the uncertainty contained in the conditional density of (X — t) given X > t about
the predictability of remaining lifetime of the component. Moreover, —oo < H(f,t) < oo, and if t = 0 the
residual entropy reduces to Shnnons’s entropy which is defined over (0, ), [see Pathiyil in [15].

Consider an inverse Weibull distribution with the pdf (3), survival function

Slx;a,) =1-— e_(%)a , (7

and hazard function

antx-r =) ®)
1-— e_(%)

Then the residual entropy function associated with the inverse Weibull model is

h(x;a, 1) =
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alax—(oﬁl)e—(%)a
NG dx.
1— e_(E)

1

)

After some calculations the residual entropy function associated with the inverse Weibull model is

@)
Hy=1- ar®x~ (@ e~k ) log

1
Hy =1- m [—T(loga + alogl) 9)

—(a+1) {—(1 —1)logA — % (‘Y - (0' (%)) ~rlog GY)} Ty (2’ (%))

+{(1-1log(1—1) + T}],

3 a
where T = e_(?) ,Y is Euler’s constant (=~ 0.577), and y (s, z) = foz t5le~t dt is the lower incomplete gamma
function.

3 Generalized Type-11 Hybrid Censoring

Consider a life-testing experiment with n identical units placed on a life-test at time 0. Assume that
X1, X5, ..., Xy, denote the corresponding lifetimes from a distribution with cdf F(x) and pdf f(x). A G-Type-II
HCS is described as follows; Fix an integer r € {1, 2, ...,n} and fixed time points T; and T, € (0, ) such that
T, < T,. If the ™" failure occurs before time point T;, terminate the experiment at T;. If the ™ failure occurs
between T, and T, terminate the experiment at the time of the failure, X,.,,. If the ™" failure occurs after time T,
terminate the experiment at T,,. This type of censoring, while shooting for a minimum number of failures, r,
guarantees that the experiment will be completed by time T,. Thus T, serves as the absolute maximum time that
the experiment would not be allowed to go beyond time T, [see, Balakrishnan and Kundu in [16]. In other
words;

- If the r™ failure occurs before time T , terminate the experiment at T;,
- If the r™ failure occurs between time Ty, and time T, terminate the experiment at X,.,
- If the " failure occurs after time T,, terminate the experiment at T,
In this type of HCS, the maximum time for the duration of the experiment is pre-fixed by T,, and this is an
advantage from an experiment’s points view. We will observe one of the following forms of observations, under
such a G-Type-Il HCS:
Case I: {X1:n < KXo <o < dpy <00 <X, < Tl)}, if xpp <Ty,
CaseIl: {x;., < Xppp <+ <Ty << X ) } if Ty < Xy < Ty,
Case III: {Xy., < Xpp <+ <Ty < <xg,<Tp},  if Xy > To.
A schematic representation of the G-Type-11 HCS is presented in Fig. 1.
Let d, and d, be the number of observed failures up to time points T, and T, respectively. Then, under a
generalized type-I1 hybrid censored sample, the likelihood functions for the three different cases describe above

are as follows:

Case |

! -
(n;ndl)! Hiizll (xi:n ) [S(Tl)]n dl; for dl =T, (T + 1)! -, 0rm,
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Case Il
n!
(n—n)!
Case 111
n!
(n—dy)!
Case |

[ [renn iser,

Hfjl (Xin ) [S(T)]"%; for d, =0,1,2,...,0or (r—1).

Experiment
stop

Experiment X
Start 1

is not observed

Case Il
Experiment
stop
T, r T
Experiment X X Xr X
Start 1 2 "
\
is not observed
Case 111
Experiment
stop
T T,
— 4 { .
Experiment ¥ X r
Start 1 Xg dz Xn
is not observed

Fig. 1. Schematic representation of the G-Type-11 HCS
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4 Maximum Likelihood Estimation

Assume that the lifetimes of the experimental units are i.i.d. inverse Weibull random variables with cdf (2) and
pdf (3). If d, and d, denote the number of failures that occur by time points T, and T, respectively, then based
on the three forms of the G-Type-Il HCS, the likelihood functions of a and 4 are given by: then the likelihood
function will take one of the following forms;

Case |
d1 a n-d
n! e+ (2 —(2)° !
e = g [ ot (=)
=1
Case Il
r a n-r
n! (& ("
_ a,—(a+1) x; _ (xr)
L"(a'/n_(n—r)!<1j[0{/1 i ) ( ) )(1 ) ) '
Case 11
dy a n—-d
n! —(~ (2" 2
_ a, ~(a+1) (5 _ )
L,,,(a,/l)—(n_dz)! Ua/l X; e ( ) (1 e \Tz ) .
Additionally, the corresponding log likelihood functions are:
Case |
dq dq
AN _(L)“
Li(a,)) = ky +d,(loga + alog)) — (a + 1) z logx; — Z (—) +(n—dy)logll—e ‘T |,
i=1 =
Case Il
T r /‘l a _(L)a
Li(a, ) =k, +r(loga + alogh) — (a + 1) Z logx; — 2 (—) +(n—r)log({1l—e ¥/ |,
i=1 i=1 i
Case 11

dz

d;
AN ("
Ly (a,A) = ks + dy(loga + alogd) — (a + 1)2 logx; — Z <x_) + (n—d;)log (1 —e (Tz) >,
— i

i i=1

where k,, k,, and k5 are normalizing constants that don't depend on the parameters.

Therefore, cases I, 11, and 11l can be combined in a single formula written as:
4 4
N -3°
l(a,)) =C+tloga+ talogd— (a + I)Zlogxi —Z (x—) + (n—0Olog (1 —e \® ), (10)
i=1 =1

where {=d;,,R=T,andC =k, for case |, {=r,R=x,,andC =k, for case Il and {=d,,R =
T,,and C = k5 for case Ill.

The corresponding log likelihood equations are:
26
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e L g o e
%&"DE (14_11) ;logxl Z( ) log( )+(n E)m<%) log(%)=0,

And

i=1

nila, a ‘ )
Dt -y (E) -e-o(z) m -0

These equations cannot be solved analytically and we solve them numerically to obtain the maximum likelihood
estimates @ and A4 of o and A respectively.

Once we obtain the MLE &, and A, the MLE of the entropy is obtained as:
ﬁ(f)=y( )+1og()+1 (11)

5 Bayes Estimation

We will derive in this section, the Bayes estimator for the residual entropy of an inverse Weibull distribution. To
obtain the Bayes estimator of the residual entropy, first we will define the prior distributions of the shape (a) and
the scale parameters (1), and we will obtain the joint prior distribution of o and A. Next, we will obtain the joint
density of o, A and the random variable X. Then, we will obtain the posterior distribution of a, A given X.
Finally, we will obtain the Bayes estimates of the residual entropy.

5.1 Prior and posterior distributions

Assume that o and A are known a priori to have joint density of the form
m(a, 1) < b® @@t e~Pagc)c-le—dA,

This mean that they are independently distributed with gamma densities g(a,b) and g(c,d) respectively, with a, b,
¢, and d >0. In this case the joint density of the o, A, and X is

4

_(i)“ A
m(a, A, X) < b® a® 1 e~Pagc)cle-dAgl)al Hxl-_(aﬂ)e X <1 —e® > .

i=1

4

\@ a \n—{
= glta-1 jattc-1,-(ba+dd) (ﬂxi—(a+1)e—(7i) >(1 _ o ® ) .

i=1
Thus, we can obtain the posterior distribution of o and A, given X, as follows:

w(a,1,X)
Jo J 7@, 2, X)dad2

(e, A|X) «

Based on the joint prior distribution (a, 1) , we will obtain the Bayes estimator (Hp,,,.) of the residual entropy.
The Bayes estimate of the residual entropy under the GHCS model is

I 17 H(F, O (a, A, X)dadA

I J) m(a, 2, X)dadA (12)

HFGHC =
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6 lllustrative Example

For illustrative purposes, we use a data set given by W.B. Nelson in 1972 a subset of which is reported in
Lawless [17]. The data set, as explained by Lawless himself, “ is the results of a life test experiment in which
pattern of a type of electrical insulating fluid were subject to a constant voltage stress”. The length of time (in
minutes) until each unit broke down was: 0.27, 0.4, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.8, 53.24, 82.85,
89.29, 100.58, 215.1. We imagined subjected this data to G-Type-ll HCS. We take case | (T, =4,T, =
15,andr = 5), case Il (T, =3,T, =30,andr =9), and case Ill (T; =3,T, = 60,andr = 12). Table 1
presents the estimation of the entropy of the G-Type-Il HCS.

7 Simulation Study

Two simulation studies were carried out; the first one to assess the performance of different estimates of the
entropy under GHSC 11, and the second to study the performance of the estimates of the residual entropy using
different values of the parameters.

7.1 Simulation study for the entropy

Different sets of values of a, 4, T;, T, , and r were used to carry out the assessment. Using Inverse Weibull
distribution, a generalized type Il hybrid censored data can be generated as describe next. Start by generated
random sample of size n from the inverse Weibull distribution and let x;.,, ..., x,., be the order statistic of this
sample. Now, let d, and d, are the number of failures before T, and T, respectively. If x,.,, < T; then we have
case | and the corresponding generalized hybrid censor sample would be (X1, < X3, <" < Xpup <+ <
xq, <Typ). FT; < x.,, <T,then we have case Il and the corresponding generalized hybrid censor sample
becomes (x1., < Xpop <+ < Ty <+ <Xxpyp). If x,.,, >T, then we have case Il where we stop the
experiment at T,, and the corresponding generalized hybrid censor sample become (x;., < X3, << T; <
.. < x4, < T,). In each case the process is replicated 10,000 times. The associated ML estimates are computed
and the ML estimates of the entropy are derived. Finally, different schemes are taken into consideration to
compute the relative absolute bias, relative root mean square error (RRMSE) of all estimates, and these values
are tabulated in Table (2). We note the following from Table 1.

e The relative absolute bias (Rbias) and relative root mean square error (RRMSE) values of ML estimates
of H(X) at a = 9,and A = 3 has the smallest value among other value use.

e The Rbias and RRMSE values of ML estimates of & at @ = 10,and 4 = 2 has the smallest value
compared to the RBias and RRMSE of ML estimates for the corresponding other sets of parameters.

e The Rbias and RRMSE values of ML estimates of AatA=3,anda = 11 has the smallest value
compared to the RBias and RRMSE of ML estimates for the corresponding other sets of parameters.

e Forafixed , the RBias values increase generally as the shape parameter « increase.

e In general, for a fixed a, A,n,and T; the RBias values of H(X) increase as the stopping time point T,
increases.

e The RBias and RRMES values of H(X) decrease as the sample size n increase.

7.2 Simulation study for residual entropy

In this section, we assess the performance of the estimates of the residual entropy that are obtained using
simulated data under GHCS Type Il. The simulation encompassed different sample sizes, parameter values of
the inverse Weibull distribution, and time point T,, using the same T, for all. In each case, we replicate the
process 1000 times. Using Equation (12), all Bayes estimates are computed with respect to the prior distribution
using the Mathematica ® 12 software for evaluating the integration for numerator and denominator numerically.
For the hyperparameters of the prior distribution the values a = b = ¢ = d = 1 were used. Bayes estimates of
residual entropy are derived with respect to the squared error loss (SEL) function. Finally, different schemes
have been taken into consideration to compute the relative absolute bias (RBias), and relative root mean square
error (RRMSE) values of all estimates and these values are tabulated in Table (3). We present the following
discussions based on RBias and RRMSE;
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e The RBias and RRMSE values of the residual entropy estimates (H,,.) at @ = A = 2 have the smallest
values among other values use.

e Forafixed a,A,r,n, and Ty, it seems that the RBias values increase as the stopping time T, increase.

e In most times, for a fixed a, A, r,n, and Ty, it seems that the RRMSE values decrease as the stopping time
T, increase.

e Forafixed A the RBias values increase in general as the shape parameter « increase.

o Forafixed a the RBias values increase in general as the scale parameter 1 increase.

e The RBias and RRMES values of Hy ., . become samlller as sample size n increase.

8 Summary

In this article, we derived the entropy estimators for inverse Weibull distribution using ML estimation from
generalized type Il hybrid censored samples. Also, simulation studies were carried out to assess the effect of
different choices of censoring parameters (n, T;, T, and r) of the estimates of entropy. Furthermore, we derived
the residual entropy function of the inverse Weibull distribution based on generalized type Il hybrid censored
samples. Again, simulation studies were carried out to study the performance of the estimates of the residual
entropy using different values of the censoring parameters. while we focused on the estimation of the entropy
and residual entropy of the inverse Weibull distribution, the estimation of the entropy and the residual entropy
functions from other distribution is the subject of a forthcoming paper.

Table 1. Estimation of entropy as an example

T, T, r H RBiase MSE RRMSE
H H H
Casel 4 15 5 -2.24984 0.30465 0.01840 0.07866
Casell 3 30 9 -2.29531 0.23630 0.01283 0.06101
Caselll 3 60 12 -2.34251 0.22941 0.01273 0.05923
Table 2. Entropy estimates and relative root MSEs for @, 4, and H for selected values of a, 4, r = 50,
Tl = 7 and Tz.
A a n T, RBias RRMSE RBias RRMSE RBias RRMSE
H H a a y i

2 8 200 10  0.017000 0.000170 0.006112  0.000061  0.000341 0.0000034
11 0.020323 0.000203 0.006820  0.000068  0.000248 0.0000024

12 0.024865 0.000249 0.007856  0.000079  0.000116 0.0000011

13 0.020823 0.000208 0.006989  0.000070  0.000291 0.0000029

150 10  0.028254 0.000283 0.009521  0.000095  0.000375 0.0000037
11 0.027108 0.000271 0.009161  0.000092 0.000386 0.0000039

12 0.028659 0.000287 0.009459  0.000095  0.000279 0.0000027

13 0.032927 0.000329 0.010635 0.000106  0.000294 0.0000029

100 10  0.039407 0.000394 0.013614 0.000136  0.000589 0.0000059
11 0.043453 0.000435 0.014522  0.000145  0.000479 0.0000048

12 0.041407 0.000414 0.014087  0.000141  0.000576 0.0000057

13 0.046863 0.000469 0.015118 0.000151  0.000291 0.0000029

9 200 10  0.033728 0.000337 0.006249  0.000062 0.000285 0.0000028
11 0.038436 0.000384 0.006660  0.000067 0.000094 0.0000000

12 0.031290 0.000313 0.006070  0.000061  0.000460 0.0000046

13 0.043495 0.000435 0.007507  0.000075  0.000254 0.0000025

150 10  0.055771 0.000558 0.009616  0.000096  0.000225 0.0000022
11 0.052818 0.000528 0.009432  0.000094  0.000462 0.0000046

12 0.045529 0.000455 0.008311 0.000083  0.000312 0.0000031

13 0.130440 0.000498 0.008874  0.000089  0.000297 0.0000029

100 10  0.082880 0.000829 0.014479  0.000145  0.000401 0.0000040
11 10.95300 0.109530 0.014495  0.000145  3.565230 0.0356523
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a n T, RBias RRMSE RBias RRMSE RBias RRMSE
H H a a y 2

12 10.95300 0.109536 0.013107 0.000131 3.558980 0.0355898

13 10.95200 0.109520 0.015009 0.000150 3.567500 0.0356754

10 200 10 0.208273 0.002083 0.006840 0.000068 0.000237 0.0000023
11 0.190718 0.001907 0.006386 0.000064 0.000209 0.0000020

12 0.193213 0.001932 0.006359 0.000064 0.000091 0.0000000

13 0.189880 0.001899 0.006411 0.000064 0.000275 0.0000027

150 10 0.278510 0.002785 0.009217 0.000092 0.000306 0.0000031

11 0.296618 0.002966 0.009640 0.000096 0.000291 0.0000029

12 0.275783 0.002758 0.008994  0.000090 0.000109 0.0000011

13 0.281380 0.002814 0.009346  0.000093 0.000380 0.0000038

100 10 0.425896 0.004259 0.014185 0.000142 0.000555 0.0000056

11 0.404701 0.004047 0.013503 0.000135 0.000536 0.0000054

12 0.454614 0.004546 0.014602 0.000146 0.000353 0.0000035

13 0.390345 0.003903 0.013189 0.000132 0.000482 0.0000048

11 200 10 0.076735 0.000767 0.007317 0.000073 0.000216 0.0000022
11 0.061274 0.000613 0.006283 0.000063 0.000278 0.0000028

12 0.083022 0.000830 0.007690 0.000077 0.000167 0.0000017

13 0.081228 0.000812 0.007708 0.000077 0.000285 0.0000029

150 10 0.093312 0.000933 0.008906 0.000089 0.000140 0.0000014

11 0.108285 0.001083 0.010045  0.000100 0.000159 0.0000016

12 0.103150 0.001032 0.009654  0.000097 0.000072 0.0000000

13 0.094844 0.000948 0.009132 0.000091 0.000210 0.0000021

100 10 0.148410 0.001484 0.014488 0.000145 0.000533 0.0000053

11 0.151440 0.001514 0.014419 0.000144 0.000333 0.0000033

12 0.141503 0.001415 0.013830 0.000138 0.000489 0.0000049

13 0.151267 0.001513 0.014475 0.000145 0.000371 0.0000037

8 200 10 1.466000 0.014660 0.007931 0.000079 1.687800 0.0168780
11 1.466600 0.014666 0.007806 0.000078 1.687400 0.0168740

12 1.466600 0.014666 0.007806 0.000078 1.687400 0.0168740

13 0.009320 0.000093 0.007347 0.000073 0.000068 0.0000000

150 10 0.011011 0.000110 0.009221 0.000092 0.000162 0.0000016

11 0.012852 0.000129 0.010054 0.000101 0.000189 0.0000019

12 0.013829 0.000138 0.010838  0.000108 0.000030 0.0000000

13 0.013783 0.000138 0.010732 0.000107 0.000068 0.0000000

100 10 0.018095 0.000181 0.014830  0.000148 0.000279 0.0000028

11 0.017844 0.000178 0.014480 0.000145 0.000007 0.0000000

12 0.017319 0.000173 0.014541 0.000145 0.000444 0.0000044

13 0.018284 0.000183 0.014810 0.000148 0.000111 0.0000011

9 200 10 0.011150 0.000112 0.007285 0.000073 0.000045 0.0000000
11 0.012255 0.000123 0.007942 0.000079 0.000045 0.0000000

12 0.010871 0.000109 0.007424 0.000074 0.000250 0.0000025

13 0.008610 0.000086 0.006255 0.000063 0.000235 0.0000024

150 10 0.012394 0.000124 0.008886  0.000089 0.000503 0.0000050

11 0.015300 0.000154 0.010201 0.000102 0.000179 0.0000018

12 0.017135 0.000171 0.011118 0.000111 0.000196 0.0000020

13 0.014070 0.000141 0.009530  0.000095 0.000205 0.0000021

100 10 0.019491 0.000194 0.013556  0.000136 0.000357 0.0000036

11 0.019661 0.000197 0.013608 0.000136 0.000351 0.0000035

12 0.022523 0.000225 0.015173 0.000152 0.000378 0.0000038

13 0.019950 0.000200 0.013885 0.000139 0.000486 0.0000049

10 200 10 0.012495 0.000125 0.007037 0.000070 0.000338 0.0000034
11 0.014010 0.000140 0.007479 0.000075 0.000154 0.0000015

12 0.011203 0.000112 0.006380 0.000064 0.000252 0.0000025

13 0.011818 0.000118 0.006658 0.000067 0.000265 0.0000027

150 10 0.017985 0.000180 0.009766  0.000098 0.000230 0.0000023
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l a n T, RBias RRMSE RBias RRMSE RBias RRMSE
H H a a A 1

11 0.017619 0.000176 0.009591  0.000096 0.000318 0.0000032

12 0.014677 0.000147 0.008549  0.000085 0.000401 0.0000040

13 0.016022 0.000160 0.008986 0.000090 0.000338 0.0000034

100 10 0.025386 0.000254 0.014017 0.000140 0.000386 0.0000039
11 0.024162 0.000242 0.013544 0.000135 0.000447 0.0000045

12 0.025809 0.000258 0.014229 0.000142 0.000356 0.0000036

13 0.025559 0.000256 0.014084 0.000141 0.000360 0.0000036

11 200 10 0.013288 0.000133 0.007204 0.000072 0.000157 0.0000016
11 0.013189 0.000132 0.007110 0.000071 0.000129 0.0000013

12 0.012310 0.000123 0.006714  0.000067 0.000084 0.0000000

13 0.013685 0.000137 0.007381  0.000074 0.000172 0.0000017

150 10 0.016727 0.000167 0.009107  0.000091 0.000148 0.0000015
11 0.018324 0.000183 0.009907  0.000099 0.000240 0.0000024

12 0.016584 0.000166 0.009191  0.000092 0.000271 0.0000027

13 0.016723 0.000167 0.009180 0.000092 0.000207 0.0000021

100 10 0.026002 0.000260 0.014317 0.000143 0.000506 0.0000051
11 0.034429 0.000344 0.014472 0.000145 0.000394 0.0000039

12 0.032598 0.000326 0.013882 0.000139 0.000330 0.0000033

13 0.035905 0.000359 0.014998 0.000150 0.000381 0.0000038

Table 3. The residual entropy estimates of H . and its relative bias and relative root MSEs for selected

valuesof ¢, 4, r =50, T, =7and T,,whena=b=c=d=1andt =2

) a n T, Hienc RBias RRMSE
1 1 200 10 5.5252 0.008199 0.000082
11 5.5252 0.008193 0.000082

12 5.5253 0.008215 0.000082

13 5.5254 0.008228 0.000082

150 10 5.5415 0.011170 0.000112

11 5.5414 0.011143 0.000111

12 5.5439 0.011612 0.000116

13 5.5377 0.010483 0.000105

100 10 5.5705 0.016461 0.000165

11 5.5697 0.016316 0.000163

12 5.5691 0.016199 0.000162

13 5.5708 0.016519 0.000165

2 2 200 10 43023 0.000338 0.000011
11 43033 0.000579 0.000018

12 43056 0.001109 0.000035

13 4.2977 0.000721 0.000023

150 10 43045 0.000855 0.000027

11 4.2995 0.000312 0.000010

12 43035 0.000613 0.000019

13 4.2992 0.000374 0.000012

100 10 43108 0.002315 0.000073

11 43065 0.001322 0.000042

12 4.2952 0.001314 0.000042

13 43062 0.001256 0.000040

3 3 200 10 5.2222 0.252400 0.007982
11 5.2355 0.250499 0.007921

12 5.2413 0.249673 0.007895

13 5.2309 0.251154 0.007942

150 10 6.2439 0.106136 0.003356

11 6.2337 0.107600 0.003403
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i n T, Hignc RBias RRMSE
12 6.2403 0.106658 0.003373
13 6.2406 0.106606 0.003371
100 10 6.7429 0.034703 0.001097
11 6.7642 0.031652 0.001001
12 6.7502 0.033663 0.001065
13 6.7608 0.032146 0.001017
3 200 10 8.1356 0.296100 0.002961
11 8.1471 0.295100 0.002951
12 8.1364 0.296000 0.002960
13 8.1377 0.295900 0.002950
150 10 8.3069 0.281300 0.002813
11 8.2957 0.282200 0.002820
12 8.3220 0.280000 0.002800
13 8.3209 0.280100 0.002800
100 10 8.8433 0.234900 0.002300
11 8.7873 0.239700 0.002398
12 8.8289 0.236100 0.002362
13 8.8235 0.236600 0.002366
05 200 10 6.5859 0.022931 0.000725
11 6.5815 0.023586 0.000746
12 6.5908 0.022206 0.000702
13 6.5912 0.022151 0.000700
150 10 6.5856 0.022976 0.000727
11 6.5587 0.026963 0.000853
12 6.5691 0.025428 0.000804
13 6.5681 0.025577 0.000809
100 10 6.5444 0.029074 0.000919
11 6.5475 0.028625 0.000905
12 6.5445 0.029076 0.000919
13 6.5418 0.029468 0.000932
0.5 200 10 6.5523 0.047029 0.001487
11 6.5564 0.046441 0.001469
12 6.5465 0.047871 0.001514
13 6.5483 0.047612 0.001506
150 10 6.5357 0.049446 0.001564
11 6.5281 0.050546 0.001598
12 6.5401 0.048807 0.001543
13 6.5387 0.049015 0.001550
100 10 6.5039 0.054077 0.001710
11 6.5108 0.053063 0.001678
12 6.5018 0.054383 0.001720
13 6.5073 0.053584 0.001695
05 200 10 6.5049 0.072039 0.002278
11 6.5110 0.071169 0.002250
12 6.4997 0.072778 0.002301
13 6.4978 0.073059 0.002310
150 10 6.4969 0.073176 0.002314
11 6.4955 0.073381 0.002320
12 6.4881 0.074442 0.002354
13 6.4898 0.074190 0.002346
100 10 6.4922 0.073848 0.002335
11 6.4814 0.075395 0.002384
12 6.4797 0.075633 0.002391
13 6.4861 0.074726 0.002363
4 200 10 12.472 0.090100 0.000901
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11 12.452 0.091580 0.000916

12 12.493 0.088580 0.000886

13 12.458 0.091150 0.000912

150 10 13.543 0.011961 0.000120
11 13.522 0.013521 0.000135

12 13.580 0.009294 0.000093

13 13.466 0.017560 0.000176

100 10 16.577 0.209346 0.002093
11 16.650 0.214719 0.002147

12 16.372 0.194396 0.001944

13 16.324 0.190929 0.001909

0.5 200 10 6.5822 0.005511 0.000174
11 6.5864 0.004878 0.000154

12 6.5869 0.004812 0.000152

13 6.6058 0.001956 0.000062

150 10 6.5938 0.003766 0.000119
11 6.5760 0.006453 0.000204

12 6.5945 0.003657 0.000116

13 6.5938 0.003759 0.000119

100 10 6.5754 0.006543 0.000207
11 6.5748 0.006631 0.000210

12 6.5423 0.011543 0.000365

13 6.5739 0.006766 0.000214

1 200 10 5.9101 0.066481 0.002102
11 5.9100 0.066486 0.002103

12 5.9093 0.066604 0.002106

13 5.9075 0.066890 0.002115

150 10 5.9011 0.067894 0.002147
11 5.9009 0.067921 0.002148

12 5.9032 0.067557 0.002136

13 5.9007 0.067952 0.002149

100 10 5.8867 0.070172 0.002219
11 5.8869 0.070131 0.002218

12 5.8909 0.069502 0.002198

13 5.8912 0.069456 0.002196

9 Conclusion

Two simulation studies were carried out; in the first one, we obtained the entropy estimates and its RBiase and
RRMSE. In the second one, we obtained the residual entropy estimates and its RBiase and RRMSE. From the
two studies the results show that the estimates in general is very robust against changes of n, T;, T, and r
resulting in low levels of RBiase and RRMSE. These results are valid for reasonably small initial sample sizes.
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