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ABSTRACT 
 
The present study is designed to use FactSage version 7.3 to simulate and predict the ionic 
speciation of lead (Pb) and nickel (Ni) in surface water sampled from Woji creek in Rivers State, 
Nigeria. Along the 3 km stretch (stations 1 to 5) of Woji creek, in-situ records were taken for 
temperature, pH and electrode potential (Eh); surface water samples to be assessed for Pb and Ni 
were collected in sterile bottles. Along the creek, surface water Eh is in the order: station 2 > station 
4 > station 5 > station 3 = station 1, with mean value of Eh as 140 ± 20 mV. Surface water pH was 
close to neutral, and in line with: station 4 > station 2 > station 5 > station 1 > station 3; with 6.81 ± 
0.13 as the mean value of pH. The trend of temperature values was recorded as: station 1 > station 
2 = station 3 = station 4 > station 5; with the mean value deduced to be 25.6 ± 0.4. Mean 
concentration of Pb and Ni across the creek were 0.92 ± 0.27 mg/l and 0.46 ± 0.23 mg/l 
respectively. Pb species exists predominantly in the forms: Pb6(OH)8

4+
(aq) (45%), Pb4(OH)4

4+
(aq) 

(45%). Other forms of Pb present in the surface water are PbO(s) (5%), PbO2(s) (4%) and Pb
2+

(aq) 
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(1%). NiO(s) had the highest proportion of Ni in the surface water (67%), followed by Ni(OH)2(s) (30%) 
and Ni

2+
(aq) (3%). The predicted metallic species could possibly be sorbet to particulates; thereby 

increase their chances of bioavailability and subsequent ingestion by fishes and other aquatic 
organisms. This will in turn influence their bioaccumulation via food chain and increase the tendency 
of risk impact on man and aquatic ecosystem. 
 

 
Keywords: Heavy metal speciation; electrode potential; FactSage; surface water; pourbaix diagram; 

Woji creek. 
 
1. INTRODUCTION 
 
Physicochemical characteristics of surface water 
can affect the fate of heavy metals in the aquatic 
ecosystem. Disturbance of sediment leading to 
the resuspension of sedimentary materials can 
also aid in the production of heavy metal 
elements in the water column. Metals are either 
naturally occurring within species or complexes 
released from industrial and other anthropogenic 
activities [1]. 
 
The electrode potential (Eh), pH and temperature 
are parameters that can change the trace 
elements in sediment and water from one 
species to another; the changes in species can 
affect their rate and mode of mobility and 
absorption by biota. High turbidity and increased 
organic matter in aquatic systems can lead to 
adsorption of heavy metallic species to the 
particles in the water, thereby leading to an 
increased concentration of metal ions in the 
water column as compared to less turbid waters 
[2,3]. The distribution of heavy metals is thus, as 
a result of ion exchange, aqueous complexation, 
biological immobilization, mineral precipitation, 
and plant uptakes [4,5]. 

 
Assessing metal speciation in aquatic 
ecosystems is important in predicting the 
bioavailability of metals and providing reliable 
risk assessment strategies [6]. Lead is not 
considered an essential trace element, their NaCl 
infusion into the brackish ecosystem from the 
ocean increases the solubility of Pb, thus making 
the metal more mobile and bioavailable [7,8]. Pb 
form complexes with inorganic ligands such as 
chlorine (Cl

-
) which are in high abundance when 

the tide pushes saline water upstream [9]. Lead 
and its compounds are generally toxic pollutants. 
Pb (II) salts and organic lead compounds are 
most harmful ecotoxicologically [10,11]. Ni is an 
essential trace element; Ni (II) has the ability to 
form complexes with adenine and certain L-
amino acids such as aspartic acid, glutamic acid, 
asparagine, leucine, phenylalanine, and 

tryptophan [12]. However, a high concentration of 
Ni can cause toxicity [13]; Nickel 
sulphate, sulphides and oxides have been 
classified as human carcinogens and the 
elemental nickel as a possible carcinogenic 
metal [14]. 

 
The study of metal speciation in the environment 
is important in order to understand the potential 
fate and toxicity of a given metal; for this reason, 
several approaches have been developed over 
the years. For about 30 years, ion activity of 
metals has been studied as a means of 
assessing metal speciation [15,16]. In recent 
years, the use of predictive models (MINEQL+, 
WHAM, Visual MINTEQ and FactSage) have 
been applied to assess ion activity and metal 
speciation [17,18,19,20,21,22,23]. These models 
are based on chemical equilibrium constants, 
and are able to predict how water chemistry 
modifies different forms of the metals; and in 
some cases, for example, the Biotic ligand model 
predicts the subsequent changes in toxicity [24]. 
This study aims at using FactSage version 7.3 to 
simulate and predict the ionic speciation of Pb 
and Ni in surface water sampled from Woji creek 
in Rivers State, Nigeria. 
 

2. MATERIALS AND METHODS 
 
2.1 Study Area 
 
The Obio/Akpor Local Government Area of 
Rivers State situated in the Niger Delta region of 
Nigeria is the location of Woji creek (study area). 
Some anthropogenic activities around the study 
area with the tendency to impact metallically on 
the environmental condition and 
physicochemistry of the creek include: traffic 
emissions, mechanic workshops, urban and 
industrial effluents discharge, market, 
construction and metallurgical works, scrap yard, 
entrepreneurial firms, sewage disposal, boat 
manufacturing and maintenance companies, etc. 
Relatively high level of metallic contaminants 
such as Pb and Ni metals were reported in 
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investigation patterning to the creek [25]; and 
that these biologically indestructible heavy 
metals accumulate in the tissues of living 
organisms [26]. 
 

Five stations were mapped out along 3 km 
stretch of the creek for water sampling from June 
to September of 2018; and identified as: Station 
1- 4°49'39.5"N 7°02'35.0"E, Station 2- 
4°49'09.3"N 7°02'44.0"E, Station 3- 4°48'51.6"N 
7°02'47.0"E, Station 4- 4°48'41.7"N 7°03'01.0"E 
and Station 5- 4°48'26.6"N 7°03'31.0"E (Fig. 1). 

 
2.2 Sample Collection and Analysis 
 
Five samples of water were collected 
transversely from both upstream to downstream 
and reverse flow; and mixed to form a composite 

sample representing each station [27]. The 
surface water samples were collected in 
sterilized plastic containers; and three drops of 
HNO3 was added to act as preservative for the 
water samples [28,29]. In-situ records were     
taken for temperature, pH and Eh from the 
different sample station with the use                           
of a multipurpose pH - 8424 portable 
pH/Eh/Temperature meter. This instrument                  
has an accuracy of 0.01 for pH, ± 0.1% F·S ± 1 
bit for Eh and ± 0.4°C for temperature.                      
Water samples were analyzed by direct                    
injection method for Pb (ASTM D3559) and                   
Ni (ASTM D1886) [30]. The GBC                         
SensAA Atomic Absorption spectrophotometer                       
with detection limit of 0.001 ppm, and                  
involves the use of a flame lamp for each metal 
analyzed. 

 

 

Fig. 1. Sketch of sample stations along the Woji creek of Rivers State, Nigeria 
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2.3 Quality Control and Quality 
Assessment 

 
The accuracy of procedure for metal analysis 
with Atomic absorption spectroscopy was 
assessed using Certified Reference Materials for 
Pb and Ni standards; and the samples were 
analyzed in triplicate. The rate of recovery was 
assessed using the Matrix Spike (MS) process. 
This was generated by adding a known amount 
(a spike) of analyte to sample, testing the spiked 
sample, and determine if the added amount has 
been recovered. The recovery rate of the 
laboratory analytical method was assessed using 
water samples, to which a spiking solution was 
added. A spiking solution is a standard that is 
chosen for preparing MS; the concentration of 
the analyte in the spiking solution is usually 50 - 
100 times higher than the concentration found in 
the unspiked sample. Percentage recovery for 
Pb and Ni were calculated as 98.7 and 98.9 % 
respectively. 

 
2.4 Data Analysis 
 
To create the predominance area diagram also 
known as a pourbaix diagram, FactSage Edu 7.3 
software was used with the mean temperature of 
the surface water. FactSage is an integrated 
computing system in chemical thermodynamics 
and consists of a variety of information, 
database, calculation and manipulation modules 
that access various pure substances and 
solutions data [18]. The predominance area 
diagram identifies the species which is most 
dominant at the given temperature, while the 
species distribution diagram gives an estimate of 
the fraction or percentage of species existing at a 
specific pH and Eh. 
 

3. RESULTS AND DISCUSSION 
 
3.1 Physicochemical Characteristics of 

the Surface Water 
 

Along the creek, the trend of surface water Eh 
(mV) is: 180 ± 30 (station 2) > 150 ± 20 (station 
4) > 130 ± 22 (station 5) > 120 ± 16 (station 3) = 
120 ± 15 (station 1), with mean value of Eh as 
140 ± 20 mV (Fig. 2). Surface water pH was 
close to neutral, and in the order: 7.08 ± 0.6 
(station 4) > 7.06 ± 0.3 (station 2) > 6.95 ± 0.3 
(station 5) > 6.70 ± 0.4 (station 1) > 6.24 ± 0.6 
(station 3); with 6.81 ± 0.13 as the mean value of 
pH (Fig. 3). The temperature values were in line 
with: 25.8 ± 0.5 (station 1) > 25.6 ± 0.4 (station 2) 

= 25.6 ± 0.4 (station 3) = 25.6 ± 0.2 (station 4) > 
25.3 ± 0.3 (station 5); with the mean value 
deduced as 25.6 ± 0.4 (Fig. 4). pH levels across 
the creek are similar to those measured along 
the lower reaches of the Sambreiro River [31], 
and surface water in Ekerekana and Buguma 
creeks [32]. 

 
3.2 Heavy Metal Concentration and 

Speciation in Surface Water 
 
3.2.1 Concentration of Pb and speciation in 

surface water 

 
Concentration of Pb was highest in station 3 
(1.33 ± 0.09 mg/l) and lowest in station 5 (0.54 ± 
0.11 mg/l); mean concentration of Pb across the 
creek was 0.92 ± 0.27 mg/l (Fig. 5). Assessment 
of Pb concentration in Elechi creek which is also 
located in the Niger Delta region of Nigeria 
recorded concentrations that were below 
detectable limits (< 0.001) [33]. Concentrations of 
Pb across the creek also exceeded those 
measured in Elechi creek in 2012 [34]. 

 
As the pH values fluctuated across the creek, the 
pourbaix diagram (Fig. 6) showed that the Pb 
speciation also varied. In the creek, Pb species 
exists predominantly in the forms: Pb6(OH)8

4+
 

and Pb4(OH)4
4+

 (Fig. 6); having proportions as: 
Pb6(OH)8

4+
(aq) (45%), Pb4(OH)4

4+
(aq) (45%), PbO(s) 

(5%), PbO2(s) (4%), Pb
2+

(aq) (1%) (Fig. 7). 

 
Under the stated environmental conditions in the 
surface water, Pb forms Pb6(OH)8

4+
 and 

Pb4(OH)4
4+

 species are forms of lead that exists 
in water with a slightly basic condition. This 
species of Pb can bind to finely dispersed 
suspensions in surface water, and this will lead 
to high retention periods in the water and 
transportation of the metals for a considerably 
long distance [35]. Although Pb and its 
compounds are generally toxic, Pb

2+
 salts and 

organic lead compounds are most harmful [10]. 
An excess of Pb can impair morphological and 
biochemical functions in plant tissue. It can also 
inhibit essential enzymatic activities required for 
the survival of the plant [36]. 

 
3.2.2 Concentration of Ni and speciation in 

surface water 
 
Concentrations (mg/l) of Ni measured in surface 
water are as follows: station 1- 0.59 ± 0.12, 
station 2- 0.22 ± 0.09, station 3- 0.77 ± 0.11, 
station 4- 0.17 ± 0.09, and station 5- 0.54 ± 0.16 
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(Fig. 8). Mean concentration of Ni in the creek 
was calculated as 0.46 ± 0.23 mg/l. Mean 
concentration of Ni in a tropical manmade lake in 
Southwestern Nigeria was computed 0.08 ± 0.15 
mg/l [37], this value is less than the values 
measured across Woji creek. 
 
Pourbaix diagram for Ni at different pH and Eh 
across the creek revealed the presence of three 
species of Ni: Ni2+

(aq), NiO(s) and NiOOH(s) (Fig. 
9). The proportion of species indicated that 
NiO(s) had the highest proportion of Ni in the 
surface water (67%), followed by NiOOH (30%) 
and Ni

2+
 (3%). Ni(OH)2 and NiOOH are redox 

couple (Fig.10), hence can replace each other in 
the aquatic ecosystem depending on the 
presence or absence of protons in the ecosystem 
[38]. 
 
Nickel is one of 23 metal pollutants of great 
concern to the environment and human health 
[39], and it is an abundant element in the earth’s 
crust (84 mg/l) [40,41]. However, due to 
anthropogenic activities, Ni is continuously added 

into the environment [42], leading to exposure of 
living organisms to increased concentrations of 
Ni, as well as an attendant increase in the risk of 
toxicity. In the environment, Ni is added through 
the combustion of fossil fuels and use of Ni 
compounds and alloys in industries such as steel 
as is found in Woji creek [25,43]. The most 
common state of Ni found in biological systems is 
Ni (II) [44]. 
 
The studied heavy metals exist in aqueous and 
solid phases; thus, giving the possibility of the 
metals in the solid form to adhere to particulates 
in the surface water [45]. Consequently, leading 
to the ingestion of metals adhered to suspended 
particles by fishes and other aquatic organisms; 
hence increasing the risk associated with 
bioavailability and bioaccumulation [46]. This 
could account for the high concentration of 
metals detected in different tissues of grey mullet 
sampled from Woji creek [26]. Metals bound to 
particulates in surface water also led to an 
increased ability for metal transport from the 
source of metal input to other reaches [47,48,49].

 

 
 

Fig. 2. Electrode potential at each station 
 

 
 

Fig. 3. pH at each station along the creek 
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Fig. 4. Temperature (
o
C) at each station 

 

 
 

Fig. 5. Concentration of Pb across sample stations 
 

 
 

Fig. 6. Pourbaix diagram for Pb in the surface water 
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Fig. 7. Proportional plot of Pb species in surface water of Woji creek 
 

 
 

Fig. 8. Concentration of Ni across sample stations 
 

 
 

Fig. 9. Pourbaix diagram for Ni in the surface water 
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Fig. 10. Proportional plot of Ni species in surface water of Woji creek 
 

4. CONCLUSION 
 
In this study, the use of FactSage version 7.3 
software together with in-situ pH, temperature 
and electrode potential was employed as a 
modelling tool to simulate the speciation of Pb 
and Ni metals in the surface water. Following 
simulation, Pb species exists predominantly in 
the forms: Pb6(OH)8

4+
 (45%), Pb4(OH)4

4+
 (45%). 

Other forms of Pb present in the surface water 
are PbO (5%), PbO2 (4%) and Pb

2+
 (1%). NiO 

had the highest proportion of Ni in the surface 
water (67%), followed by Ni(OH)2 (30%) and Ni2+ 
(3%). The predicted species can adhere to 
particulates in the water; this could facilitate the 
transport of the metallic species, and also 
increase their bioavailability and 
bioaccumulation. There is need therefore, for 
relevant environmental regulatory agencies to 
brace up to the task of ensuring proper 
monitoring of treatment of wastes and effluents 
to appropriate standards before their discharge 
into waterways. 
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