
Asian Research Journal of Mathematics

18(11): 342-350, 2022; Article no.ARJOM.92827

ISSN: 2456-477X

Asymptotic Expansions Related to the Wallis Ratio
Based on the Bell Polynomials

Aimin Xu a∗

aInstitute of Mathematics, Zhejiang Wanli University, Ningbo 315100, China.

Author’s contribution

The sole author designed, analysed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2022/v18i11608

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and

additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors,

etc are available here: https://www.sdiarticle5.com/review-history/92827

Received: 20 August 2022

Accepted: 25 October 2022

Original Research Article Published: 27 October 2022

Abstract

In this paper, we establish a new asymptotic expansion related to the Wallis ratio. By using
the exponential Bell polynomials, we show that the coefficients of the asymptotic expansion can
be recursively determined. In addition, an explicit expression for the coefficients is given. Our
results improve and generalize the existing ones [1].
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1 Introduction

Let Z+ be the set of all positive integers. For n ∈ Z+ the double factorial n!! is defined by

n!! =

b(n−1)/2c∏
i=0

(n− 2i), (1.1)

where the floor function bxc denotes the largest integer less than or equal to x.
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Using the double factorial, the Wallis ratio is usually defined as

Wn =
(2n− 1)!!

(2n)!!
=

1√
π

Γ(n+ 1
2
)

Γ(n+ 1)
, (1.2)

where Γ is the classical Euler gamma function which is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, Re(z) > 0. (1.3)

The study and applications of Wn have a long history and a lot of literature [2–6]. Recently, many
authors paid attention to giving increasing better approximations for the Wallis ratio. For example,
Guo, Xu and Qi proved in [7] that the double inequality√

e

π

(
1− 1

2n

)n √
n− 1

n
< Wn ≤

4

3

(
1− 1

2n

)n √
n− 1

n
, (1.4)

where for n ≥ 2 is valid and sharp in the sense that the constants
√
e/π and 4/3 are best possible.

In their paper, Guo et al. also proposed an approximation formula for Wn as follows

Wn ∼
√
e

π

(
1− 1

2n

)n √
n− 1

n
. (1.5)

With the help of a lemma first proposed by Mortici [8], which plays a key role in many interesting
works related to approximation of mathematical constants and special functions [9–25], Qi and
Mortici [1] improved the double inequality (1.4) and the approximation formula (1.5). They provided
a best approximation formula of the Wallis ratio:

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n
, n→∞, (1.6)

and proved this formula is the best approximation of the form

Wn ∼
√
e

π

(
1− 1

2n

)n √
n+ a

n
, n→∞, (1.7)

where a is a real parameter. The approximation formula (1.6) can be viewed as an improvement of
(1.5), because the approximation formula (1.5) is the special case a = −1 in (1.7). Qi and Mortici [1]
further generalized the best approximation formula (1.6) as

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n

exp
( a2
n2

+
a3
n3

+
a4
n4

+
a5
n5

+ · · ·
)
, n→∞, (1.8)

where the ak’s are determined by an infinite triangular system

a1 −

(
k − 1

1

)
a2 + · · ·+ (−1)k

(
k − 1

k − 2

)
ak−1 =

1 + (−1)k

(k + 1)2k+1
− 1

k + 1
+

1

2k

which has a solution a1 = 0, a2 = 1/24, a3 = 1/48, a4 = 1/160, a5 = 1/960, . . ., and they improved
the left-hand side of the double inequality (1.4) as

Wn >

√
e

π

(
1− 1

2n

)n
1√
n

exp

(
1

24n2
+

1

48n3
+

1

160n4
+

1

960n5

)
. (1.9)

Moreover, several other types of asymptotic expansions of the Wallis formula have been obtained by
physical methods [26, 27] and probability integral method [28]. In [29, 30], various generalizations
were derived.
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Motivated by these interesting works, in this paper we will consider the following asymptotic
expansion which is more general than (1.7):

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n

(
1 +

c1
n

+
c2
n2

+ · · ·
)1/r

, n→∞, (1.10)

where r is a nonzero real number. One of the goals of this paper is to find an explicit expression
for the coefficients ci(i = 1, 2, . . .) based on the exponential complete Bell polynomials. Also, we
will show that the ci’s can be recursively determined. Therefore, a series of the best approximation
formulas of the Wallis ratio Wn including Formula (1.6) can be derived. In addition, an explicit
expression of the coefficients ai(i = 2, 3, . . .) in (1.8) will be derived. Our approach is based on
the complete asymptotic expansion of ln Γ(x) and some basic facts from combinatorics. The work
in this paper can be also considered as an application of the Bell polynomials in the asymptotic
expansion of a type of special numbers.

2 Preliminaries

It is well known that Bell polynomials play very important role in enumerative combinatorics [31].
They are also important in our derivation, so we start from the definition of Bell polynomials and
some properties of them. In the following, we are ready to introduce two kinds of Bell polynomials.
One is of partial type and the other is of complete type.

The exponential partial Bell polynomials, named in honor of Bell [32], are the polynomials

Bn,k := Bn,k(x1, x2, . . . , xn−k+1) (2.1)

in an infinite number of variables x1, x2, . . . , defined by the formal double series expansion:

exp

(
u

∞∑
m=1

xm
tm

m!

)
=
∑

n,k≥0

Bn,k
tn

n!
uk (2.2)

or, what amounts to the same, by the series expansion:

1

k!

(
∞∑

m=1

xm
tm

m!

)k

=
∑
n≥k

Bn,k
tn

n!
. (2.3)

An alternative representation is

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1!(1!)c1c2!(2!)c2 · · ·x
c1
1 x

c2
2 · · · , (2.4)

where the summation takes place over all integers c1, c2, . . . ≥ 0, such that:

c1 + 2c2 + · · · = n,

c1 + c2 + · · · = k.

The first few cases of the exponential partial Bell polynomial are

B1,1(x1) = x1,B2,1(x1, x2) = x2,B2,2(x1) = x21,

B3,1(x1, x2, x3) = x3,B3,2(x1, x2) = 3x1x2,B3,3(x1) = x31.

From (2.3) the exponential partial Bell polynomials can be recursively determined:

kBn,k =

n−1∑
l=k−1

(
n

l

)
xn−lBl,k−1. (2.5)
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Related to exponential partial Bell polynomials are exponential complete Bell polynomials Yn :=
Yn(x1, x2, . . . , xn) defined by

exp

(
∞∑

m=1

xm
tm

m!

)
= 1 +

∑
n≥1

Yn
tn

n!
, (2.6)

in other words:

Yn =

n∑
k=1

Bn,k, Y0 := 1.

For an application of the Bell polynomials to the asymptotic expansion of the Somos recurrence
constant, one is referred to [33].

Recall that Bi is the ith Bernoulli number defined by the power series expansion

x

ex − 1
=

∞∑
i=0

Bi
xi

i!
= 1− x

2
+

∞∑
i=1

B2i
x2i

(2i)!
. (2.7)

It is well known that B2i+1 = 0, for all i ≥ 1, and the first few Bernoulli numbers are B1 =
−1/2, B2 = 1/6, B4 = −1/30 and B6 = 1/42.

A formula approximating Γ(x) for large values of x:

Γ(x+ 1) ∼
√

2πx
(x
e

)x
,

known as Stirling’s formula, is of special attraction. Many mathematicians are interested in
improving such formulas in the form of an asymptotic series. It is now of general knowledge that
the following Stirling series is (e.g., [34])

Γ(x+ 1) =
√

2πx
(x
e

)x
exp

(
∞∑
j=1

B2j

2j(2j − 1)x2j−1

)
.

In fact, the above formula can be equivalently rewritten as the following lemma.

Lemma 2.1. We have the complete asymptotic expansion of ln Γ(x+ 1):

ln Γ(x+ 1) ∼
(
x+

1

2

)
lnx− x+

1

2
ln 2π +

∞∑
j=1

B2j

2j(2j − 1)x2j−1
. (2.8)

It is worth noting that since B2i+1 = 0, for all i ≥ 1, Eq.(2.8) can be reformulated as an equivalent
form

ln Γ(x+ 1) ∼
(
x+

1

2

)
lnx− x+

1

2
ln 2π +

∞∑
j=1

Bj+1

j(j + 1)xj
, (2.9)

which will be used more conveniently in the next section.

3 Main Results

In order to determine the coefficients ci(i = 1, 2, . . .) in (1.10), we firstly derive an explicit expression
for the coefficients ai(i = 1, 2, . . .) in the following asymptotic expansion due to Qi and Mortici [1].
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Theorem 3.1. As n→∞, we have

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n

exp

(
∞∑
i=1

ai
ni

)
, (3.1)

where

a1 = 0, ai =

i−1∑
j=1

Bj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, i ≥ 2. (3.2)

Proof. From (1.2) and (2.9), it follows

lnWn = −1

2
lnπ + ln Γ

(
n+

1

2

)
− ln Γ(n+ 1)

∼ 1

2
(1− lnπ) + n ln

(
1− 1

2n

)
− 1

2
lnn+

∞∑
j=1

Bj+1

j(j + 1)(n− 1/2)j
−
∞∑
j=1

Bj+1

j(j + 1)nj
.

Since
∞∑
j=1

Bj+1

j(j + 1)(n− 1/2)j
=

∞∑
j=1

Bj+1

j(j + 1)nj

∞∑
k=0

(
j + k − 1

k

)
1

2k

1

nk

=

∞∑
i=1

1

ni

i∑
j=1

Bj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
,

it is not difficult to obtain

lnWn ∼
1

2
(1− lnπ) + n ln

(
1− 1

2n

)
− 1

2
lnn+

∞∑
i=1

1

ni

i−1∑
j=1

Bj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, (3.3)

which is equivalent to (3.1) with

a1 = 0, ai =

i−1∑
j=1

Bj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, i ≥ 2.

Thus, the proof is complete.

According to (3.2), the first few cases of the ai’s are

a1 = 0, a2 =
1

24
, a3 =

1

48
, a4 =

1

160
, a5 =

1

960
.

See also Theorem 4.1 in [1]. Based on Theorem 3.1, we find a new asymptotic formula for Wn which
generalizes the best approximation formula (1.6).

Theorem 3.2. If r is a given nonzero real number, then the following asymptotic formula holds
true:

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n

(
1 +

c1
n

+
c2
n2

+ · · ·
)1/r

, n→∞, (3.4)

where the coefficients ci’s are recursively determined by

c1 = 0,

ci =
1

i!

i∑
j=2

(−1)j(j − 1)!Bi,j(1!c1, 2!c2, . . . , (i− j + 1)!ci−j+1)

+

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, i ≥ 2. (3.5)
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Proof. From (3.3) and (3.4) it follows

ln
(

1 +
c1
n

+
c2
n2

+ · · ·
)1/r

∼
∞∑
i=1

1

ni

i−1∑
j=1

Bj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
. (3.6)

It is well known that

ln

(
1 +

∞∑
j=1

cj
nj

)
=

∞∑
i=1

(−1)i−1

i

(
∞∑
j=1

cj
nj

)i

. (3.7)

Therefore, by (3.6) and (3.7) we have

∞∑
i=1

(−1)i−1

i

(
∞∑
j=1

cj
nj

)i

∼
∞∑
i=1

1

ni

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
.

The definition of the exponential partial Bell polynomials yields

∞∑
i=1

1

i!

1

ni

i∑
j=1

(−1)j−1(j − 1)!Bi,j(1!c1, 2!c2, . . . , (i− j + 1)!ci−j+1)

∼
∞∑
i=1

1

ni

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
.

Equating the coefficients of 1/ni on both sides and noting that Bi,1(1!c1, 2!c2, . . . , i!ci) = i!ci, we
derive (3.5).

Notice that ci does not appear in the right-hand side of (3.5). Notice also both the Bell polynomials
Bi,j ’s and the Bernoulli numbers Bj ’s can be recursively calculated. This means that (3.5) can be
computed by using symbolic software such as Maple or Mathematica. Having previously computed
c1, c2, . . . , ci−1, we can then compute ci using (3.5). In fact, the ci’s can also be explicitly given in
terms of the exponential complete Bell polynomials.

Theorem 3.3. If r is a given nonzero real number, then the following asymptotic formula holds
true:

Wn ∼
√
e

π

(
1− 1

2n

)n
1√
n

(
1 +

c1
n

+
c2
n2

+ · · ·
)1/r

, n→∞, (3.8)

where the coefficients ci’s can be explicitly given by

c1 = 0,

ci =
1

i!
Yi(b1, b2, . . . , bi), i ≥ 2. (3.9)

Here

b1 = 0, bi = i!

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, i ≥ 2.

Proof. From (3.6) it follows

1 +

∞∑
i=1

ci
ni
∼ exp

(
∞∑
i=1

1

ni

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j

)
.
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According to (2.6) we have

exp

(
∞∑
i=1

1

ni

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j

)
= 1 +

∑
i≥1

Yi(b1, b2, . . . , bi)
1

i!

1

ni
,

where

b1 = 0, bi = i!

i−1∑
j=1

rBj+1

j(j + 1)

(
i− 1

i− j

)
1

2i−j
, i ≥ 2.

Equating the coefficients of 1/ni yields (3.9).

Finally, by virtue of Theorems 3.2 and 3.3 we give the first few cases of the coefficient ci to end this
section.

c1 = 0, c2 =
r

24
, c3 =

r

48
, c4 =

r2

1152
+

r

160
, c5 =

r2

1152
+

r

960
.
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