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Abstract

Aims / Objectives: Typhoid fever is a threat to human race and perhaps not much research
is conducted towards mitigating it menace in Yobe State. A classical epidemic model SIR is
deployed into GLEaMviz software to simulate typhoid spread and spatially analysed the trend.
Study Design: Computational modeling and simulation.
Place and Duration of Study: Computational Laboratory, Department of Mathematics and
Statistics Yobe State University, Damaturu, Nigeria. The duration of the study is between May
2021 and December 2021.
Methodology: SIR epidemic model was used to simulate typhoid spread and time series model
was explored to investigate the disease trend.
Results: The model predicts mild seasonal fluctuations in the trend which coincides with
rainy season. The agents causing the disease transmission is possibly being transported through
flowing water.
Conclusion: A mild seasonality is present in the fluctuations of the trend of typhoid, hence the
pattern shows strong evidence of perennial tendency with likelihood of high cases during rainy
season. Further work is needed to validate this findings by using real data.
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1 Introduction

Typhoid fever is a serious public health challenge in Nigeria. The most vulnerable people are
those dwelling in rural and semi-rural areas. Poor healthcare delivery, lack of portable water, poor
drainage, poverty and general environmental hygiene are few amongst other factors contributing
to the typhoid fever transmission in Nigeria. Globally, the typhoid is classified among the deadly
infectious diseases that affecting human beings [1]. Despite typhoid is preventable and treatable, yet
is persisting. This is attributed to the poor handling of the disease combined with lack of mechanism
for reporting cases as they occur. Besides underreporting of the disease in the developing countries,
the shortages of medical facilities and well-trained healthcare workers is also another issue hindering
prevention and control. Towards investigating typhoid fever spread globally, several works have been
carried out by exploring various modelling techniques. For instance [2] used bayesian approach to
study large-scale facility based typhoid fever spread to estimate the disease incidence from passive
surveillance data. The results provides a platform that can be updated with additional data as
they become available and adapted to other contexts, thus used to adjust for underreporting in
other diseases. Spatio-temporal spreads of typhoid fever trends in Uganda between 2012-2017 was
analyzed by [3]. Furthermore, spatial and temporal transmission of typhoid and paratyphoid fever
was studied in Yunnan province of China [4]. The results exacerbated by the fact that rainwater
canals were being used for disposal of polluted waste from hospitals and residential areas. Similarly,
the incidence of Influenze-Like Illness was spatio-temporally analyzed and predicted the high-risk
regions in the United State between 2011-2020 [5]. The study identified high-risk clusters which is
concentrated in the southeast. G∗

i statistics was used to evaluate clusters of typhoid fever outbreaks
in Washington DC from recorded data 1906-1909 [6]. The results showed new insights into the
urban patterns of typhoid outbreaks during the early part of the twentieth century. Seasonality
of typhoid and paratyphoid dynamics investigated by [7] and found the underlying mechanisms
that influencing the seasonality of enteric fever are likely dependent on the local context. The
findings showed the northern region of the country was the safest based on the data analyzed. A
study by [8] predicted the impact of vaccination on the transmission dynamics of typhoid in south
Asia. The model predicts the overall and indirect effects of vaccination depend strongly on the role
of chronic carriers in transmission. However, district-level spatial and temporal heterogeneities of
typhoid fever morbidities investigated in Ghana by [9]. The study indicates temporal dependencies
of typhoid risk with incidences in the previous months with varying magnitudes across the different
regions. Mathematical models are used to investigate dynamics in typhoid fever prevention, control
and intervention. This methods is used to assess the drivers of the emergence of typhoid fever in
Blantyre of Malawi [10].

The remaining sections of this paper is organised as follows. Section 2 presents some previous works
on typhoid fever transmission and the methodologies used for modelling the transmission including
materials and methods presented in Section 3. In section 4, we presented the results and discussion
of our findings accordingly. We presented the conclusions and unravel an area for further study in
Section 5.

2 Theoretical Framework

In this section, we presents in detail the theoretical concepts of the typhoid fever transmission and
its characteristics.
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This include global perspective of the typhoid fever spread and epidemiological transition model.

2.1 Geographical distribution

Recent statistics shows that more than 22 million cases and estimated deaths of 200,000 due to
typhoid have been occurring each year globally [11]. In which, there are several cases not officially
captured [12] and thus rendered the published statistics underestimated. The underreporting is
perhaps occurring in endemic countries, especially the Saharan and sub-Saharan Africa in which
the facilities for testing and confirming the infection is inadequate [13]. Endemic areas like Asia,
Africa, Latin America, Caribbean and Oceania are having highest incidence rate of more than 100
persons per 100,000 per year [14]. The global incidence rate of typhoid fever spread could be found
in Fig. 1.

Fig. 1. Typhoid Fever Incidence Rate

2.2 Typhoid Pathogens

Salmonella typhi causes the typhoid fever infection and remains a serious public health issues in
the world despite prevention and control efforts by governments and other health donor agencies.
Substantially, the typhoid fever is negatively affect socio-economic activities and general wellbeing of
human beings. The infection in humans can range from a self-limited gastroenteritis, that is usually
associated with non-typhoidal Salmonella (NTS) to typhoid fever, which has fatal complications
that leads to perforation [15]. Non-typhoidal Salmonella is one of the principal causes of food
poisoning worldwide with an estimated annual incidence of 1.3 billion cases and about 3 million
deaths each year [16].

2.2.1 Species

The commonly known species and strains of Salmonella that causing typhoid fever in human
are Salmonella paratyphi A; Salmonella paratyphi B; Salmonella paratyphoid C and Salmonella
paratyphi D [17]. These serotypes of Salmonella can co-infect an individual or causes infection
in different form [18]. The Salmonella Typhi is causes infection in human beings only, that is
person with typhoid fever carry the bacteria in their bloodstream and intestinal tract. The typhoid
fever infection is characterized by the following symptoms: these are prolonged high fever, fatigue,
headache, nausea, abdominal pain, and constipation or diarrhoea. However, in some situation a
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patient may have a rash, also when the condition is severe a person will possibly die. Typhoid fever
can be confirmed through blood screening [19].

2.2.2 Incubation

As human beings are the sole reservoir and natural hosts of the typhoid fever, the infection is
transmitted through ingestion of contaminated food or water. The epidemic of typhoid occur where
water source for serving a large population is contaminated. Studies have shown that incubation
period of typhoid fever takes 8-14 days, but sometimes my range from 3 days up to 60 days [20].
About 25% of people infected are becoming chronic carriers harbouring S. typhi in their gall bladder.
The chronic carriers are the class of people or agent for spreading the typhoid fever infection to the
susceptible individuals. However, many mild and a typical infections occur and relapses as common.
A HIV patients are at a significantly increased risk of severe disease when exposed to S. typhi and
S. paratype [21].

2.2.3 Transmission route

Typhoid transmitted from person-person is through oral route, that is eating or drinking contamina-
ted food or water are the commonly channel. The S. Typhi is mostly found in urine and vomit and
sometimes could be traced to the contaminated food or water. A shellfish or vegetables grown in a
contaminated sewages are potential vehicles driving the infection. Furthermore, a flies can transfer
or import the organism causing the infection to food or water, where the bacteria would remained
replicating until it reaches an infective dose [21]. However, environmental consequences through
urbanization and climate change have the potential to increase the global burden of typhoid. In
addition, increasing resistance to antibiotic treatment is making it easier for typhoid to spread
through overcrowded populations in cities and inadequate and or flooded water and sanitation
systems [22]. One of the most important reasons that developed countries have become as productive
as they are today is that the population remains healthy and disease free.

2.3 Epidemic Model

An infectious disease model SIR (Susceptible, Infected and Recovered) is considered as basic the
epidemic model [23]. The model is used to syncronize infectious diseases with SIR representation
such as influenza, measles, malaria, typhoid among other. Originally, Kermack and Mckendrick
developed this model [24] and thereafter, many epidemiological components were built on the model
to aid better understandings toward prevention, control and vaccine efficacy in disease dynamics.
The SIR model is described by the following differential equations (2.1).

S′ = πN − β
SI

N
− µS + αR,

I ′ = β
SI

N
− (µ+ γ + δ)I,

R′ = γI − (µ+ α)R,

(2.1)

where: S = Susceptible human, I = Infected human, R = Recovered human, µ = Natural death rate,
β = Average contact rate, γ = Recovery rate and π = Rate of natural increase. The parameters
µ, β, γ and π are positive constant. The natural death rate µ and natural increase rate π are not
same, hence making N to be variable. A susceptible human will move to I compartment when
contacted with an infected human, while an infected human will then move to R compartment
through recovery and hence returning to the susceptible compartment through immunity lost. The
value of the parameters used for simulating the differential equations (2.1) and their sources could
be found in Table 1.
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Table 1. The values of the parameters used in the model and their sources

Parameter description Parameter symbol Parameter value Reference

Recruitment rate π 0.0817 Estimated
Average contact rate β 0.0002 [25]
Transmission probability µ 0.0011 [25]
Natural death rate µ 0.0003 Estimated
Disease-induced death rate µ 0.0010 [26]
Recovery rate γ 0.9 [25]
Immunity lost rate ρ 0.0096 [27]

3 Materials and Methods

In this section, we describe in detail the methodologies used in this paper. This comprises of the
study area of the research, data and their sources, statistical techniques deployed including the
computational software used.

3.1 Study Area

This study is conducted in Yobe State located in Northeastern part of Nigeria. The state is lies
within latitude 11◦ N and longitude 13.5◦ E with a total land area of 47,153 km2 and sharing
boundary with Borno state towards east and southeast, Jigawa state towards northwest; Bauchi
and Gombe states towards southwest. Furthermore, the state shared international border with the
Republic of Niger. This boundary stretches over 323km to the north of the State. The population
of the State according to the 2006 census is about 2.6 million. The state was created on August 27,
1991 having been carved out of the old Borno State in the year 1991 with Damaturu as the state
capital. Yobe’s terrain consists of plains that are drained by the seasonal Komadugu Yobe River
and its tributaries in the north and by the Gongola River in the south.

3.2 Data Collection

Complete data on reported cases of typhoid fever across the Yobe state hospitals is inaccessible or
readily not available, hence we resorted to the use of Google Trend data (see, https://trends.google.
com). Several studies have been conducted by exploring the Google Trend data as an option to
the lack of real data [28, 29]. Using the platform, we generated a weekly trending pattern on how
people living in the state searching to find information about typhoid fever transmission, treatment
and preventive measures (between 30/12/2019 – 21/12/2020). In Fig. 2, we presented the time-
dependent weekly interest trend of the populace searches behaviour and used log-transformation
to standardized the fluctuations. A naive normality plot of the typhoid trend is depicted in Fig.
3 which shows the trending pattern of the typhoid is assumed normal. This has evidenced by
critical value, χ2

v=2 = 2.469 and Pvalue = 0.0025 with parametric confidence interval CI: [0.29 –
10]. Furthermore, the results presented in Table 2 reaffirms the normality of the trend data through
different testing techniques. Hence, in each case of the tests, α = 5% was used and therefore the null
hypothesis has to be rejected and conclude that normality criteria is satisfied. The demographic
data for Yobe state population is retrieved from the link: https://nigerianstat.gov.ng to compute
crude birth and crude death rates. The estimates of the birth and death rates derived will be use
for simulating the potential pattern of the typhoid fever transmission in the state. Throughout the
simulation study, we assumed the crude birth and crude death rates remained constant.
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Fig. 2. Plot of log-transformed of Typhoid fever pattern in Yobe State

Fig. 3. Normality tests plot

Table 2. Expository analysis of the typhoid fever trend

Test Critical threshold Pvalue Inference Summary statistics

Doornik-Hanseen 2.4686 0.2910 approximately normal -
Shapiro-Wilk 0.9730 0.2815 approximately normal -
Lilliefors 0.0953 0.2700 approximately normal -
Jargue-Bera 2.0614 0.3568 approximately normal -
Mean - - - 28.4040
Standard deviation - - - 8.7296
Coefficient of variation - - - 0.3073
Skewness - - - 0.1491
Ex. kurtosis - - - -0.9287
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3.3 Statistical Methods

As this study is plan to investigate spatial transmission of typhoid fever incidence in a closed
population. The following methodologies are to be used, these include: serial correlation, test of
significance and time series modeling for the Google trend data.

3.4 Software

Gretl and GLEaMviz computational software will be use for modeling and simulation of the typhoid
fever transmission respectively. Particularly, the GLEaMviz has been extensively used to simulate
infectious disease transmission, for instance see, [30, 31]. The epidemic model represented in
equation (2.1) will be simulated using the parameterized values (see Table 1), thus the flow diagram
of the model is shown in Fig. 5. The GLEaMviz client bring together different modules that allow
the management of the entire process flow from the definition of the model to the visualization of
the results.

Fig. 4. GLEaMviz

Fig. 5. SIR flow with GLEaMviz
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4 Results and Discussion

From the expository analysis presented in Fig. 3 and Tables 2 and 3, the typhoid fever trend is
significant at lag 1, ρ = 0.2461, Q− stat = 3.3356 and Pvalue = 0.0280. Thus indicating the degree
of association of the typhoid fever trend is positive and approximately normal. Furthermore, lagged
regression with autoregressive structure was fitted to the Google trend dataset on typhoid fever
follows: yt = 30.3934 + 0.0203829yt−1 + ϵt, where ϵt ∼ N (0.062, 0.001). The models performance
is 62.8% accurate in predicting typhoid fever in Yobe state. The results showed mild seasonal
fluctuation in the pattern which coincides with rainfall season, thus the agents causing the disease
transmission is possibly being transported through flowing water. Also, the results shows strong
evidence of perennial incidence with likelihood of high cases during raining season. Furthermore,
an epidemic model SIR was deployed into GLEaMviz (see Fig. 5) and simulate the typhoid fever
cases by tuning model parameters to the referenced demographic characteristics of the study area.
Two independent samples test was conducted against Google trend data (Fig. 2) and the simulated
data (Fig. 7(a)), at 5% level significant of significant there is a fair evidence the two samples are
relatively similar. The simulation results further reveals age-dependent of typhoid (see Fig. 6),
which indicating less risk of being infected as age increases [32]. The infected and recovery pattern
simulated by the GLEaMviz are presented in Fig. 7(a) and (b) respectively.

Table 3. Serial correlation testing of the Google trend typhoid data

Lag Autocorrelation function (ACF) Partial autocorrelation function (PACF) Q-stat Pvalue

1 0.2461 0.2461 3.3356 0.0280
2 -0.0012 -0.0657 3.3357 0.1890
3 -0.0632 -0.0500 3.5646 0.3120
4 -0.0412 -0.0135 3.6639 0.4530
5 0.1430 0.1646 4.8861 0.4300
6 0.0299 -0.0576 4.9406 0.5510
7 0.1219 0.1435 5.8677 0.5550
8 0.0864 0.0377 6.3441 0.6090
9 0.0597 0.0519 6.5767 0.6810
10 0.0202 -0.0209 6.6041 0.7620

Fig. 6. Typhoid Fever spread decreases by age structure in Yobe
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(a) (b)

Fig. 7. The plots show time-dependent pattern of (a) human infectiousness, and (b)
recovery from typhoid

5 Conclusion

Typhoid fever is a threat to human race and perhaps not much research is conducted to investigate
the disease dynamics in Yobe State. In this study, we used the classical epidemic model SIR into
GLEaMviz computational software and simulated the annual pattern of the typhoid fever spread.
Below The following are major findings of this study

a The results showed mild seasonal fluctuation in the pattern which coincides with rainfall season,
thus the agents causing the disease transmission is possibly being transported through flowing
water.

b Also, the results shows strong evidence of perennial incidence with likelihood of high cases during
raining season. Further work is needed to validate this findings by using real data.
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