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Abstract: The knowledge of the chilling requirements for breaking rest and flowering of fruit trees is
necessary to properly select cultivars and to avoid losses due to an inappropriate cultivar selection
in a particular geographical location. With the aim of providing an analysis using three models
(Chilling Hours, Utah Model, and Positive Utah Model) to estimate the accumulation of winter
chilling, quantifying its spatial variability and representing the spatial pattern throughout mainland
Spain, temperature data from 72 meteorological stations, considering the 1975–2015 period, were
utilized. The statistical properties of values corresponding to each winter chilling model were
assessed and, later, they were mapped by means of an integrated geographic information system
(GIS) and a multivariate geostatistics (regression-kriging) and algebra map approach. The results
show that measures obtained with the three chilling models were highly related, which were used to
visualize the spatial variability of the accumulated winter chilling considering each model. Moreover,
the fact that elevation and latitude are related to the chilling hours enables their use as auxiliary
variables to better estimate at unsampled locations and generate more accurate maps. Knowledge of
the spatial patterns of chill accumulation in different areas of mainland Spain is of great importance
when appropriate fruit trees and cultivars have to be selected. Moreover, if a high probability of
satisfying the chilling requirements in any area is considered, quantile maps can be used instead of
maps based on mean values. Finally, the potential spatial distributions of three sweet cherry cultivars
were delineated using the obtained maps.

Keywords: geostatistics; geographical information systems; fruit trees; chilling models

1. Introduction

One of the main factors influencing crop aptitude is climate [1]. Particularly, de-
ciduous fruit trees of temperate climates require a certain amount of winter chilling to
overcome their dormancy, depending on the species, cultivar, and even on the year and
location [2,3]. Vegetative growth and yield are severely reduced when the accumulated
chilling is lacking [4]. Fruit trees are planted in many different environmental conditions,
sometimes without taking into account their chilling requirements, so incomplete breaking
of dormancy occurs.

The fresh fruit producing sector is very important in Spain, both in terms of surface
area, around 1,700,103 ha [5], and economic valuation, around EUR 6,600,106 [6], ranking
first among countries in the European Union [7]. The wide climatic diversity of mainland
Spain allows the cultivation of a great variety of fruit species, from subtropical ones, such
as avocado or citrus fruits in the Mediterranean coastal areas, to fruit trees which require
a temperate climate, such as olive, vine, peach, apple, etc., distributed throughout the

Agronomy 2021, 11, 330. https://doi.org/10.3390/agronomy11020330 https://www.mdpi.com/journal/agronomy

https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-8465-1318
https://orcid.org/0000-0001-6975-0350
https://doi.org/10.3390/agronomy11020330
https://doi.org/10.3390/agronomy11020330
https://doi.org/10.3390/agronomy11020330
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agronomy11020330
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/2073-4395/11/2/330?type=check_update&version=2


Agronomy 2021, 11, 330 2 of 14

Spanish territory. Cold winters and frosts occur in the interior areas of the Iberian Peninsula,
making the cultivation of subtropical species impossible, but unlike these, the fruit trees
of temperate climate have a dormancy period, in which they are very resistant to winter
chilling, allowing for commercial cultivation.

In general, fruit trees need to accumulate between 200 and 1500 h below 7.22 ◦C
during the winter to break dormancy and later to properly produce flowers and fruit [8,9].
The fulfillment of the chilling requirements has an important impact on the phenology
of the fruit trees during the campaign, affecting their different phases and finally, the
ripening process. Yong et al. [10] determined that the flowering time of some fruit trees is
negatively related to the accumulated chilling hours, and Egea et al. [9], Ruiz et al. [3], and
Alburquerque et al. [11] established that the chilling requirement is the most influential
factor on blooming date. Additionally, the lack of chilling causes many negative effects,
such as the delay and lack of sprouting uniformity, decrease in the number of flowers
and vegetative buds, and fall of flowers [12]. Moreover, unusual shape of fruits and the
existence of some defects (sutures and protuberances) can also be consequences of few
chilling hours [13,14].

There are many models which have been developed to measure the accumulation
of winter chilling in fruit-growing areas. However, three of the most used models are
the Chilling Hours Model, the Utah Model, and the Positive Utah Model. The Chilling
Hours Model [15], also known as the Weinberger Model [16], is the oldest method to
quantify winter chill that is still widely used. It considers all hours, from the start of the
dormancy season, with temperatures between 0 and 7.2 ◦C as equally effective for chilling
accumulation.

The Utah Model [17] contains a weighting function assigning different chilling efficien-
cies to different temperature ranges, including negative contributions by high temperatures
on winter chill accumulation. This model assigns no physiological effects to temperatures
below 1.4 ◦C, a weight of 0.5 for temperatures between 1.4 and 2.4 ◦C and between 9.1
and 12.4 ◦C, a weight of 1 for temperatures between 2.4 and 9.1 ◦C and between 12.4 and
15.9 ◦C, and negative weights of −0.5 for temperatures between 15.9 and 18 ◦C and of −1
for temperatures above 18 ◦C.

One modified version of the Utah Model which performs well in regions with a warm
climate is the Positive Utah Model [18]. In this model, the negative contributions of warm
temperatures to accumulated chilling are removed from the original equation of the Utah
Model. Consequently, it assigns no physiological effects to temperatures below 1.4 ◦C,
a weight of 0.5 for temperatures between 1.4 and 2.4 ◦C and between 9.1 and 12.4 ◦C, a
weight of 1 for temperatures between 2.4 and 9.1 ◦C, and also no physiological effects to
temperatures above 12.4 ◦C.

Climate change has led to a decrease in the accumulation of winter chilling during
recent years, particularly in areas with a Mediterranean climate [19,20]. In this sense,
Baldocchi and Wong [8] indicated that the suitability of different cultivars will be com-
promised in some areas of California because of the decreasing amount of chilling hours,
taking into account some future climate scenarios. Recently, Rodríguez et al. [21] reported
a projected winter chill decrease for the near future over peninsular Spain and the Balearic
Islands, using data from the 1976–2005 period.

Considering the aforementioned models to measure the accumulation of winter chill-
ing, the objectives of this study were to: (1) provide a study considering the most recent
years about the accumulated winter chilling throughout mainland Spain; (2) generate
accurate maps of the winter chilling accumulation calculated with three different chilling
models and based on a multivariate geostatistical algorithm; and (3) analyze the potential
areas of Spain in which some common sweet cherry cultivars could be grown successfully.

2. Materials and Methods

Daily meteorological observations at 72 georeferenced weather stations (Figure 1), all
of them belonging to the Meteorology Agency of the Spanish Government, were obtained.
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A period of 40 years, from 1975 to 2015, was used in this work, which is much more
than the optimal length for a series (30 years) recommended by the World Meteorological
Organization with the aim of obtaining reliable climate data to make predictions [22].
The raw spatial database for all weather stations contained their geographic coordinates
(referenced at UTM coordinates), elevation, and daily temperature (mean, maximum, and
minimum) for the period 1975–2015.

Figure 1. Digital elevation model of mainland Spain and weather stations used in this study, indicated
as points.

Since chill models require hourly input data, such data were calculated from daily
minimum and maximum temperatures using the methodology proposed by Baldocchi
and Wong [8]. Winter chill hours were summed between November 1 and February
28. On a daily basis, the number of chill hours was computed taking into account the
aforementioned constraints of each model.

Consequently, winter chill was computed using the Chilling Hours Model, the Utah
Model, and the Positive Utah Model. Their units are Chilling Hours (CH) for the Chilling
Hours Model, Utah Chill Units (UCU) for the Utah Model, and Positive Chill Units (UCU+)
for the Positive Utah Model. The values of these three chilling models (CH, UCU, UCU+)
were incorporated in the final database together with the aforementioned initial data. Later,
a geographic information system (GIS), specifically ArcGIS (version 10; ESRI, Redlands,
CA, USA), was used to visualize and analyze the information.

With the aim of estimating at any location, geostatistical algorithms were used. In
this section, regression-kriging (the estimator used in the case study) is briefly introduced.
More information about it can be found in, for instance, Hengl et al. [23].

In regression-kriging, instead of directly estimating the considered variable (CH, UCU,
and UCU+ in this study), the interpolation is performed in two steps: estimation of the
trend and then kriging of residuals. These two components are added back together to
give the final prediction. A simple linear regression analysis is performed in the first step
between the observed value of the variable and the auxiliary variable (elevation) at all
sampling locations. Later, residuals are computed as the difference between the observed
or measured value of the variable and the estimate by the trend. Residuals retain the spatial
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variability of the variable and they can be estimated by ordinary kriging at any location.
In consequence, any variable at a new unsampled point, x, is estimated, Z∗

RK(x), using
regression-kriging as follows:

Z∗
RK(x) =

p

∑
j=0

cj · vj(x) +
n

∑
i=1

wi(x) · r(xi) (1)

v0(x) = 1 (2)

where cj are the coefficients of the estimated trend model; vj(x) is the jth predictor at
location x (for j = 0, the term represents the value where the linear regression intercepts the
ordinate axis); p is the number of predictors; wi(x), are the weights determined by solving
the ordinary kriging system of the regression residuals, r(xi), for the n sample points.

More accurate estimates can be generated by a regression-kriging algorithm when the
auxiliary data are available at all locations [24], as occurs with some geographical properties
such as elevation, which can be extracted from a digital elevation model (DEM), in raster
format at 1000 × 1000 m2 resolution, for mainland Spain. In consequence, from data at
sampling locations, i.e., weather stations, estimates at any other unsampled location can
be obtained. Thus, a continuous surface over all of mainland Spain can be produced and
values for each chilling model for every one of the resolution unit can be determined. Three
digital models, one for each chilling index, in raster format at 1000 × 1000 m2 resolution,
were initially generated. All operations were performed in ArcGIS v.10.3 and geostatistical
analysis was conducted with its extension Geostatistical Analyst.

3. Results

Initially, data distribution was described using some descriptive statistics (Table 1).
The median and mean values were similar for the three chilling models in mainland Spain
and the skewness values were low, which was indicative of data coming from a normal
distribution. Moreover, the wide difference between minimum and maximum values
and the high coefficients of variation for the three chilling models denote the existence of
high climatic spatial variability as was expected because of the locations of the different
meteorological stations (Figure 1).

Table 1. Descriptive statistics of the data for each chilling model from 1975 to 2015 and considering 72 meteorological
stations in mainland Spain. SD, standard deviation; CV, coefficient of variation; CH, Chilling hours; UCU, Utah chilling
units; UCU+, Positive Utah chilling units.

Mean Median SD Min Max CV (%) Skewness Kurtosis

CH 831.8 720.5 505.6 18.9 1710.3 60.8 0.1 1.7
UCU 1352.8 1530.1 506.2 20.4 2023.3 37.4 −0.8 2.7

UCU+ 1384.1 1551.1 472.3 25.9 2026.1 34.1 −0.8 2.8

Table 2 shows that the values of the winter chill obtained with the three chilling models
are highly correlated across Spain. A similar correlation between CH and UCU was ob-
tained by Luedeling and Brown [25] in a worldwide study. The level of linearity of the differ-
ent relationships and, in consequence, the level of similarity between the different chilling
models is apparent, denoting that the three chilling models are functionally very similar,
i.e., each model depicts similar spatial climate characteristics. As Luedeling et al. [20]
indicated, deciding which model is most effective is difficult without extensive experimen-
tal model comparisons or analyses of phenological records, since the biological processes
underlying the breaking of dormancy and the influence of temperature on these processes
are poorly understood. Consequently, all of these chilling models are merely proxies of
winter chill, relying entirely on empirical evidence. Moreover, although the mean values
of the chilling models are highly correlated, with colder conditions expected in higher
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elevations, each model has a different theoretical interpretation, so they are not directly
comparable.

Table 2. Correlation matrix between winter chill values, elevation, longitude, and latitude at 72 meteorological stations in
mainland Spain. CH, Chilling hours; UCU, Utah chilling units; UCU+, Positive Utah chilling units.

Elevation Latitude Longitude CH UCU UCU+

Elevation 1
Latitude 0.27 1

Longitude −0.23 −0.13 1
CH 0.67 0.50 0.02 1

UCU 0.52 0.66 0.01 0.89 1
UCU+ 0.51 0.66 0.02 0.89 0.90 1

It is also shown in Table 2 that relationships between elevation, latitude, and each
chilling model are apparent, as could be expected. Alburquerque et al. [11] reported
similar good correlation between UCU and elevation in Murcia, a region in southeastern
Spain. In consequence, elevation and altitude seem to be the auxiliary variables used
to estimate the chilling hours throughout mainland Spain using the regression-kriging
algorithm. The results of the stepwise regression (ordinary least square estimation) analysis
showed that the coefficient of determination was 0.41 when elevation was the unique
auxiliary variable. When elevation and latitude were considered, the coefficient of multiple
determination was 0.53 and the correlation was significant. The linear regression function
was: CH = −2812.601 + 0.001 Y + 0.898 h, where h is the elevation (m) and Y is the latitude
(UTM coordinate). Other auxiliary variables, such as longitude and distance to water
bodies, did not significantly contribute to improve the multiple linear regression since the
coefficient of multiple determination was, in any case, lower or close to 0.53.

A multivariate geostatistical work was performed to estimate CH at any location
in Spain. The regression-kriging algorithm, in which the linear regression was the one
previously indicated, used as initial data for the main variable, CH, all values measured
at each meteorological station. CH showed a clear spatial dependence (Figure 2); the
experimental variogram was calculated and a theoretical spherical variogram was fitted
to their points. Analysis of spatial correlation of residuals showed that the range of the
variogram was smaller and the sill was bounded (Figure 2). This indicated that the drift
had been removed. The spatial correlation structure described with the spherical variogram
of residuals was integrated in the ordinary kriging algorithm to estimate CH residuals
throughout Spain.

Figure 2. Digital experimental variograms (points; crosses are averaged values) and theoretical spherical variograms (lines)
for the measures of winter chilling hours (a) and their residuals (b).
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The accuracy of the kriged CH map was determined with a cross-validation process.
The mean error, which evaluated the true prediction accuracy and was computed as the
difference between estimated values and actual observations at each meteorological station,
was 7.62. Moreover, the root mean square error, which evaluated the accuracy of the
prediction, was 79.6. As the mean CH value was 831.8 (Table 1), the root mean square error
was lower than 9.5% of the mean value. Furthermore, when the observed CH values versus
the predicted values were plotted, the points fell close to the 45-degree line (Figure 3).
Consequently, the CH map represents very closely the real spatial distribution of the winter
chilling hours. This is in accordance with Hengl et al. [26] who found that the accuracy of a
model is higher when kriging of the residuals is incorporated in the prediction algorithm.

Figure 3. Observed versus predicted chilling hours at each meteorological station and correlation
coefficient considering the 45-degree line.

As was shown, the RK algorithm was used to directly estimate CH throughout Spain.
However, another alternative was checked; temperature values were also interpolated and
then computed CH. However, the mean error and the root mean square error were higher
with this second alternative (13.87 and 257.63, respectively). In consequence, it was less
effective and this option was not considered.

Finally, the map of kriged estimates provided a visual representation of the distribution
of the CH in Spain (Figure 4). A digital CH map, in raster format at 1000 × 1000 m2

resolution, was finally generated. As correlations between CH, UCU, and UCU+ are very
high, digital maps for UCU and UCU+ throughout mainland Spain were also obtained
in raster format at the same resolution (1000 × 1000 m2) after applying map algebra
techniques. The linear relationships considered to perform the mathematical operations
are shown in Table 3. Both final digital maps for UCU and UCU+ in Spain are shown in
Figure 4.
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Figure 4. Observed maps of winter chill, calculated with the Chilling Hours model, the Utah model, and the Positive Utah
model, for mainland Spain. Black areas are zones in which elevation is higher than 1000 m.

Table 3. Linear relationships (Y = aX + b) between Chilling Hours (X) and Utah Chill Units (UCU) or
Positive Utah Chill Units (UCU+) (Y).

Y a b R2

UCU 615.71 0.89 0.79
UCU+ 696.74 0.83 0.79

Comparison of data at each location versus predicted values was also performed with
the aim of providing an idea about the reliability of the final digital maps. Thus, it was
revealed that predictions were reasonably accurate, since the correlation coefficients with
respect to the straight line, y = x, were 0.81 and 0.82, for UCU and UCU+, respectively.

If quantile statistics for the three chilling models are calculated, that is, winter chill-
ing measurements are divided into intervals with equal probabilities, considering each
meteorological station and the 40 annual values, and they are related to the mean values,
linear regressions with high coefficients of determination are expected. In this case study,
all coefficients of determination were around 0.99, when the 25% and 75% quantiles were
correlated with mean values. From the digital maps of mean values (Figure 4), new 75%
and 25% quantile maps (Figures 5 and 6) were computed by using map algebra procedures.
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Figure 5. 75% quantile maps of winter chill, calculated with the Chilling Hours model, the Utah model, and the Positive
Utah model, for mainland Spain. Black areas are zones in which elevation is higher than 1000 m.

Table 4 shows the percentage of the territory of mainland Spain, excluding the zones
with an elevation higher than 1000 m, within each interval defined in Figure 4. Mean CH
are mainly in the higher intervals, above 900 CH, with more than 75% of the territory. If
the quantile maps are considered, this percentage varies until around 66% and 81% for the
25% and 75% quantiles, respectively. The same was apparent when the UCU was taken
into account. Mean UCU values above 1600 comprise around 59% of the territory, and
around 48% and 70% for the 25% and 75% quantile maps, respectively. For UCU+ values,
the distributions were also similar, being around 60% of the territory for values above 1600,
and around 48% and 72% for the 25% and 75% quantile maps.
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Figure 6. 25% quantile maps of winter chill, calculated with the Chilling Hours model, the Utah model, and the Positive
Utah model, for mainland Spain. Black areas are zones in which elevation is higher than 1000 m.

Table 4. Percentage of mainland Spain within each interval for chilling hours (CH), Utah chill units (UCU), and positive
Utah chill units (UCU+). Mean, 25%, and 75% quantiles are considered.

Interval CH UCU UCU+

25% Mean 75% 25% Mean 75% 25% Mean 75%

1 13.5 8.9 6.0 8.9 4.3 0.7 6.8 2.8 0.3
2 8.8 6.3 4.6 17.1 12.1 8.7 16.8 11.6 8.0
3 10.9 9.4 7.1 26.4 24.4 20.0 28.1 24.8 19.9
4 25.3 24.2 20.1 27.9 28.6 29.1 30.1 30.9 30.4
5 25.7 25.7 24.2 19.7 30.6 41.5 18.2 29.9 41.4
6 15.8 25.5 37.1 - - - - - -

Correspondence between the numbers and intervals are shown in Figure 2, with 1 for the lower interval and 6, for CH, or 5, for UCU and
UCU+, for the higher interval.

4. Discussion

The geographic location of each area has a decisive influence on the temperature
and the chill accumulation that can be recorded. Moreover, it is important to denote how
the use of single climate stations to represent the climate within a region is not adequate
because they cannot accurately characterize the level of spatial variability. Consequently,
it is necessary to use adequate interpolation algorithms to properly perform the analysis
about the spatial patterns of the studied climatic variables. Luedeling and Brown [25]
compared some winter chill models for fruit and nut trees throughout the world, with
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a poor coverage in many areas worldwide. However, the resolution of the maps they
provided was not sufficient to accurately delineate chilling hours at national or regional
levels. For instance, the distribution of chilling hours in Spain was too general, with only
two or three classes throughout its territory.

Using the multivariate geostatistical algorithm, as regression-kriging, and considering
elevation and latitude as the auxiliary variables because of their good correlation with the
amounts of winter chilling, the spatial distributions of CH, UCU, and UCU+ have been
accurately delimited in the mainland Spain.

Growers of fruit trees in temperate climates have to select tree cultivars with the correct
chilling requirements for a particular zone. Thus, for an economically viable production,
cultivars of the different fruit tree species, such as, for instance, cherry, peach, plum,
apple, pear, almond, or walnut, have their specific chilling requirements and, consequently,
winters in the production zone must be sufficiently long and cold to satisfy the required
winter chill. In this sense, the quantile maps are particularly useful tools to estimate
different areas with similar accumulation of winter chill with a confidence level. For
example, if a 25% quantile map is considered, areas in which the estimates are performed
will have that accumulation of winter chill with a high probability during at least the 75%
of the years.

Alburquerque et al. [11] analyzed the probability of satisfying the chilling requirements
at different elevations for some cherry cultivars, but without showing the potential spatial
distribution of them in the studied region. To illustrate the usefulness of the high-resolution
digital maps to delineate and visualize the adequate areas in which different cultivars can
satisfy their chilling requirements, the same particular case of some sweet cherry cultivars
is utilized, since Spain is an important producing area, with around 33,000 ha [5]. The sweet
cherry cultivars used in the Spanish regions are very different because of new cultivars
which have been introduced from other countries and their different chilling requirements.

Considering the values of the CH reported by Alburquerque et al. [11] and Azizi
Gannouni et al. [27], the potential spatial distribution of three cherry cultivars (“Burlat”,
“Marvin”, and “Sunburst”) growing in Spain is shown in Figure 7. The earliest flowering
cultivar is “Burlat”, which requires around 620 CH; the Californian cultivar “Marvin”
requires around 790 CH and “Sunburst” is a cultivar with a higher chilling requirement at
around 1040 CH.

Taking into account the CH kriged map shown in Figure 7, obtained after considering
mean CH values, “Burlat” could be potentially cultivated in almost every location of
mainland Spain, except on the Mediterranean coast, close to the sea, and in the south,
in the Guadalquivir valley and the area close to the Atlantic Ocean, where the chilling
requirements would not be satisfied. Consequently, 71.2% of the total area of mainland
Spain (zones higher than 1000 m are excluded) are potentially suitable for “Burlat”. The
potential spatial distribution of “Marvin” would be smaller (Figure 7); due to the high
mean elevation of the Iberian Peninsula, it is around 63.4% of the Spanish territory under
1000 m. The higher chilling requirement of “Sunburst” determines that around 45.6% of the
area of Spain under 1000 m is potentially suitable for this cultivar, which is an important
percentage of the considered territory (Figure 7). The three cultivars could be grown in this
last percentage of the territory of mainland Spain, above an elevation around 460 m, where
their chilling requirements would be guaranteed. Furthermore, the wide central plateau
(Meseta Central) in Spain, with a mean elevation around 660 m, where winters are very
cold, also guarantees a great number of chilling hours in a considerable area.
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Figure 7. Potential spatial distribution of the indicated sweet cherry cultivars in mainland Spain, according to their winter
chilling requirements. Black areas are zones in which elevation is higher than 1000 m.

If a higher probability of satisfying the chilling requirements is desired, the 25%
quantile map can be used to delineate the potential distribution of the sweet cherry cultivars
(Figure 8), as it is likely that during 75% of the years, the requirements of winter chilling is
achieved, that is, this metric defines the minimum amount of winter chill that growers can
expect in 75% of all years. Thus, 66.3%, 55.8%, and 35.5% of the total area of mainland Spain,
excluding the zones higher than 1000 m, are potentially suitable for “Burlat”, “Marvin”,
and “Sunburst”, respectively.

These maps are important tools to accurately delineate the areas in which different
cultivars could be grown successfully. Particularly, those cultivars with low or medium
chilling requirements are of great interest because they produce early harvests and fruit of
higher quality without cracking problems, which are generated in areas with abundant
rains [28].
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Figure 8. Potential spatial distribution of the indicated sweet cherry cultivars in mainland Spain, according to their winter
chilling requirements and considering the 25% quantile maps. Black areas are zones in which elevation is higher than
1000 m.

5. Conclusions

Climate information is usually related to individual stations, which is not represen-
tative of the true spatial climate patterns of a region. However, the accurate delineation
of the spatial distribution of the main climate variables constitutes an important tool for
decision making. In this work, the amount of winter chilling (based on three different
models to measure its accumulation) throughout mainland Spain has been mapped using
a GIS-based procedure.

Since accumulated chilling is mainly affected by the elevation at each location, this was
utilized as an auxiliary variable to define different linear relationships between elevation
and each chilling model. One of the novel aspects of this work is the use of a regression-
kriging algorithm to estimate the chilling hours at any location, which could be performed
by the significant linear relationships previously indicated.

Knowledge of the spatial distribution of the accumulated winter chilling is of great
interest when deciding which different fruit tree species and cultivars are more suitable in
a given area. Moreover, the probability of satisfying the chilling requirements can also be
considered to delineate the appropriate zones.

One important characteristic of the present work is that it is based on data from the
most recent time period—from 1975 to 2015. Furthermore, as far as we know, there is no
similar work worldwide in which this broad and up-to-date temporal series has been used
for zoning of a region or country considering the accumulation of winter chilling.
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Further work could involve the application of these maps to analyze the potential
spatial distribution of the most important fruit trees and cultivars across mainland Spain,
completing our knowledge of the adaptability of different species where their culture has
not been traditional.
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