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In this paper, we investigate the tree-dominated �B∗
u,d,s,c ⟶Vℓ−�νℓ (V =D∗

u,d ,D∗
s , J/ψ and ℓ = e, μ, τ) decays in the Standard Model

with the relevant form factors obtained in the light-front quark model. These decays involve much more helicity states relative to
the corresponding �B∗

⟶ Pℓ−�νℓ and �B⟶ Vℓ−�νℓ decays, and moreover, the contribution of longitudinal polarization mode (V
meson) is relatively small, ~ 30%, compared with the corresponding B meson decays. We have also computed the branching
fraction, lepton spin asymmetry, forward-backward asymmetry, and ratio R∗ðLÞ

V ≡Bð�B∗
⟶Vτ−�ντÞ/Bð�B∗

⟶ Vℓ′−�νℓ′Þðℓ′ = e,
μÞ. Numerically, the branching fractions of �B∗

⟶ Vℓ′−�νℓ′ decays are at the level of Oð10−7Þ and are hopeful to be observed by
LHC and Belle-II experiments. The ratios R∗ðLÞ

D∗ ,D∗
s ,J/ψ

have relatively small theoretical uncertainties and are close to each other,

R∗ðLÞ
D∗ ≃ R∗ðLÞ

D∗
s

≃ R∗ðLÞ
J/ψ ≃ ½0:26,0:27�ð½0:27,0:29�Þ, which are a bit different from the predictions in some previous works. The future

measurements are expected to make tests on these predictions.

1. Introduction

In the past years, a large amount of B�B events have been accu-
mulated by Babar, Belle, Tevatron and LHCb experiments,
and most of B-meson decays having branching fractions ≳O
ð10−7Þ have been measured [1]. Moreover, some deviations
between the standard model (SM) predictions and the exper-
imental data have been observed, for instance, the angular
observable P5′ of B⟶ K∗μ+μ− decay with 2:6σ discrepancy
[2–6], the differential branching fraction of Bs ⟶ ϕμ+μ−

decay with 3:3σ discrepancy [7, 8], and the well-known
“πK CP puzzle” [9, 10]. Besides the flavor-changing-neu-
tral-current precesses mentioned above, the B-meson semi-
leptonic decays induced by b⟶ cℓ�νℓ transition also play
an important role in testing the SM and probing the hints
of possible new physics (NP). For instance, the well-known
“RD∗ anomaly” reported by BaBar [11, 12], Belle [13–15],
and LHCb [16, 17] collaborations exhibits a significant devi-
ation between the SM prediction and experimental data [1,
18, 19]. Many studies have been done within the model-
independent frameworks [20–27], as well as in some specific

NP models, for instance Refs. [28–48]. One can refer to Refs.
[49, 50] for recent reviews.

The spin-triplet vector B∗
q meson with a quantum num-

ber of n2s+1LJ = 13S1 and JP = 1− [51–54] has the same flavor
components as the spin-singlet pseudoscalar Bq (q = u, d, s
and c) meson and can also decay through the b⟶ cℓ�νℓ tran-
sition at quark-level; therefore, its b⟶ c-induced semilep-
tonic decays can play a similar role as B meson decays for
testing the SM and probing possible hints of NP.

The B∗
q meson is an unstable particle, it cannot decay via

strong interaction due to that mB∗
q
−mBq

:≤50 MeV<mπ [55];
B∗
q meson decay is dominated by the radiative process [55],

B∗
q ⟶ Bqγ; the weak decay modes via the bottom-changing

transition (for instance, the b⟶ c induced semileptonic
B∗
q decays considered in this work) are generally very rare,

and their branching fractions are expected to be very small
within the SM. Until now, there is no experimental infor-
mation and few theoretical works concentrating on the B∗

q

weak decays. Fortunately, thanks to the high luminosity
and large production cross section at the running LHC
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and SuperKEKB/Belle-II experiments, a huge amount of the
B∗
q meson data samples would be accumulated. At Belle-II

experiment, the B∗ and B∗
s mesons are produced mainly via

Yð5SÞ decays. With the target annual integrated luminosity,
~ 13ab−1 [56], and the cross section of Yð5SÞ production in
e+e− collisions, σðe+e− ⟶ Yð5SÞÞ = ð0:301 ± 0:002 ± 0:039Þ
nb [57], it is expected that about 4 × 109 Yð5SÞ samples could
be produced per year by Belle-II. Further considering that
Yð5SÞ meson mainly decays to final states with a pair of

Bð∗Þ
ðsÞ mesons and using the branching fractions of Yð5SÞ

decays given by PDG [55], it can be estimated that about N
ðB∗ + �B∗Þ/year ~ 4 × 109 and NðB∗

s + �B∗
s Þ/year ~ 2 × 109

samples can be accumulated by Belle-II per year. Unfortu-
nately, the B∗

c meson and its decays are out of the scope of
Belle-II experiment. In addition, a lot of B∗

q samples can also
be produced via pp collision and be accumulated in the future
by LHC with high collision energy, high luminosity and
rather large production cross section [58–60], and some B∗

q

weak decays are hopeful to be observed, such as the leptonic
B∗
s ⟶ ℓ+ℓ− decay with branching fraction ~Oð10−11Þ [61].
Encouraged by the abundant B∗

q data samples at future
heavy-flavor experiments, some interesting theoretical stud-
ies for the B∗

q weak decays have been made within the SM,

for instance, the pure leptonic �B∗
s ⟶ ℓ+ℓ− and �B∗

u,c ⟶ ℓ−

�νℓ decays [61, 62], the impact of �B∗
s,d ⟶ μ+μ− on �Bs,d ⟶

μ+μ− decays [63], the studies of the semileptonic B∗
c decays

within the QCD sum rules [64–66], the semileptonic B∗
u,d,c,s

⟶ ðP, VÞℓ−�νℓ with P =D,Ds, ηc, V =D∗,D∗
s , J/ψ decays

within the Bethe-Salpeter (BS) method [67], and an approach
under the assumption of heavy quark symmetry (HQS) [68],
�B∗

⟶ Pℓ−�νℓ with P =D,Ds, π, K [69] and the nonleptonic
�B∗0
d,s ⟶D+

d,sM
− (M = π, K , ρ and K∗) [70, 71], �B∗

d,s ⟶Dd,s
V [72], B∗

c ⟶ Bu,d,sV , Bu,d,sP [73], B∗
c ⟶ ηcV [74], B∗

⟶ �DD [75], and B∗
c ⟶ ψð1S, 2SÞP, ηcð1S, 2SÞP [76]

decays. Moreover, the NP effects on the semileptonic �B∗

⟶ Pℓ−�νℓ with P =D,Ds, π, K decays have been investigated
in a model-independent scheme [77] and the vector lepto-
quark model [78]. In this paper, we pay our attention to the
CKM-favored and tree-dominated semileptonic �B∗

u,d,s,c ⟶

Vℓ�νℓðV =D∗
u,d ,D∗

s , J/ψÞ weak decays, which are generally
much more complicated than the corresponding B decay
modes because they involve much more allowed helicity
states.

Our paper is organized as follows. In Section 2, the heli-
city amplitudes and observables of �B∗

⟶Vℓ�νℓ decays are
calculated. Section 3 is devoted to the numerical results and
discussions, and the �B∗

⟶V transition form factors
obtained within the covariant light-front quark model are
used in the computation. Finally, we give our summary in
Section 4.

2. Theoretical Framework and Results

2.1. Effective Lagrangian and Amplitude. In the SM, �B∗
u,d,s,c

⟶Vℓ�νℓ ðV =D∗
u,d ,D∗

s , J/ψÞ decays are induced by b⟶ c

ℓ�νℓ transition at quark level via W-exchange and can be
described by the effective Lagrangian

Leff = −2
ffiffiffi
2

p
GFVcb�cLγ

μbL�ℓLγμνL + h:c:, ð1Þ

at low energy scale μ =OðmbÞ, where GF is the Fermi cou-
pling constant and Vcb denotes the CKM matrix element.
Using Eq. (1), the amplitude of �B∗

⟶Vℓ�νℓ decay can be
written as the product of the hadronic matrix element and
leptonic current. Then, in terms of leptonic (Lμν) and
hadronic ðHμνÞ tensors built from the respective products
of the leptonic and hadronic currents, the square amplitude
can be expressed as

M �B∗
⟶Vℓ−�νℓ

� ��� ��2 = Vℓ−�νℓ Leffj j�B∗� ��� ��2 = G2
F Vcbj j2
2

LμνH
μν:

ð2Þ

Inserting the completeness relation of the polarization
vector of virtual W∗ boson,

〠
m,n

�εμ mð Þ�ε∗ν nð Þgmn = gμν, ð3Þ

the product of Lμν and Hμν can be rewritten as

LμνH
μν = 〠

m,m′ ,n,n′
L m, nð ÞH m′, n′

� 	
gmm′gnn′ , ð4Þ

where Lðm, nÞ ≡ Lμν�εμðmÞ�ε∗νðnÞ and Hðm, nÞ ≡Hμν�ε∗μðmÞ�εν
ðnÞ are Lorentz invariant and therefore can be evaluated
in different reference frames. In our following evaluation,
Hðm, nÞ and Lðm, nÞ will be calculated in the B∗-meson rest
frame and the ℓ − �νℓ center-of-mass frame, respectively.

2.2. Kinematics. In the rest frame of B∗ meson, assuming the
final state V-meson moving along with positive z-direction,
the momenta of B∗, V , and W∗ could be written as

pμB∗ = mB∗ , 0, 0, 0ð Þ,
pμV = EV , 0, 0, p

!��� ���� 	
,

qμ = q0, 0, 0,− p
!��� ���� 	

,

ð5Þ

respectively, where q0 = ðm2
B∗ −m2

V + q2Þ/2mB∗ and jp!j = λ1/2

ðm2
B∗ ,m2

V , q2Þ/2mB∗ , with λða, b, cÞ≡a2 +b2 +c2−2ðab + bc +
caÞ and q2 = ðpB∗ − pVÞ2 being the momentum transfer
squared, are the energy and momentum of virtual W∗. The
polarization vectors of the initial B∗-meson and daughter V
-meson, εμ1ð0, ±Þ and ε

μ
2ð0, ±Þ, can be written as
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ε
μ
1 0ð Þ = 0, 0, 0, 1ð Þ,

ε
μ
1 ±ð Þ = 1ffiffiffi

2
p 0,∓1,−i, 0ð Þ ;

ε
μ
2 0ð Þ = 1

mV
p
!��� ���, 0, 0, EV

� 	
,

ε
μ
2 ±ð Þ = 1ffiffiffi

2
p 0,∓1,−i, 0ð Þ,

ð6Þ

respectively. For the four polarization vectors of virtual W∗,
�εμðt, 0,±Þ, one can conveniently choose [79, 80]

�εμ tð Þ = 1ffiffiffiffiffi
q2

p q0, 0, 0,− p
!��� ���� 	

,

�εμ 0ð Þ = 1ffiffiffiffiffi
q2

p p
!��� ���, 0, 0,−q0� 	

,

�εμ ±ð Þ = 1ffiffiffi
2

p 0,±1,−i, 0ð Þ,

ð7Þ

in which, λW∗ = t has to be understood as λW∗ = 0 and J = 0.
Turning to the ℓ − �νℓ center-of-mass frame, the four-

momenta of lepton and antineutrino are given as

pμℓ = Eℓ, p
!
ℓ

��� ��� sin θ, 0, p
!

ℓ

��� ��� cos θ� 	
,

pμνℓ = p
!

ℓ

��� ���,− p
!

ℓ

��� ��� sin θ, 0,− p
!
ℓ

��� ��� cos θ� 	
,

ð8Þ

where Eℓ = ðq2 +m2
ℓÞ/2

ffiffiffiffiffi
q2

p
, jp!ℓj = ðq2 −m2

ℓÞ/2
ffiffiffiffiffi
q2

p
, and θ is

the angle between V and ℓ three-momenta. In this frame, the
polarization vectors �εμðλW∗Þ have the form

�εμ tð Þ = 1, 0, 0, 0ð Þ, ð9Þ

�εμ 0ð Þ = 0, 0, 0, 1ð Þ, ð10Þ

�εμ ±ð Þ = 1ffiffiffi
2

p 0,∓1,−i, 0ð Þ: ð11Þ

2.3. Hadronic Helicity Amplitudes. For hadronic part, one has
to calculate the hadronic helicity amplitudes HλW∗λB∗λV

of
�B∗

⟶Vℓ−�νℓ decay defined by

HλW∗λB∗λV
q2
� �

= V pV , λVð Þ ∣�cγμ 1ð
D
− γ5Þb ∣ �B∗ pB∗ , λB∗ð Þ

E
�ε∗μ λW∗ð Þ,

ð12Þ

which describes the decay of three helicity states of B∗ meson
into the three helicity states of daughter V meson and the
four helicity states of virtualW∗. For the B∗ ⟶ V transition,
the matrix elements hVðpV , λVÞ ∣�cγμð1 − γ5Þb ∣ �B∗ðpB∗ , λB∗Þi
can be factorized in terms of ten form factors V1,2,3,4,5,6ðq2Þ
and A1,2,3,4ðq2Þ as [81, 82]

V ε2, pVð Þ ∣�cγμb ∣ �B∗
ε1, pB∗ð Þ

D E
= ε1 · ε∗2ð Þ −Pμ V1 q2

� �
+ qμ V2 q2

� �h i
+

ε1 · qð Þ ε∗2 · qð Þ
m2

B∗ −m2
V

Pμ V3 q2
� �

− qμ V4 q2
� �h i

− ε1 · qð Þ ε∗2μ V5 q2
� �

+ ε∗2 · qð Þ ε1μ V6 q2
� �

,

V ε2, pVð Þ ∣�cγ5γμb ∣ �B∗
ε1, pB∗ð Þ

D E
= −iεμναβε

α
1ε

∗β
2 Pν A1 q2

� �
− qν A2 q2

� �
 �
−

iε∗2 · q
m2

B∗ −m2
V

εμναβε
ν
1P

αqβ A3 q2
� �

+
iε1 · q

m2
B∗ −m2

V

εμναβε
∗ν
2 PαqβA4 q2

� �
ð13Þ

with the sign convention ε0123 = −1.
Then, by contracting these hadronic matrix elements

with the polarization vector of virtual W∗ boson, we can
finally obtain the nonvanishing hadronic helicity amplitudes,
HλW∗λB∗λV

, given as

H0++ q2
� �

= −
m2

B∗ −m2
Vffiffiffiffiffi

q2
p A1 q2

� �
+

ffiffiffiffiffi
q2

p
A2 q2

� �
+
2mB∗ p

!��� ���ffiffiffiffiffi
q2

p V1 q2
� �

,

Ht++ q2
� �

= −
2mB∗ p

!��� ���ffiffiffiffiffi
q2

p A1 q2
� �

+
m2

B∗ −m2
Vffiffiffiffiffi

q2
p V1 q2

� �
−

ffiffiffiffiffi
q2

p
V2 q2

� �
,

H−+0 q2
� �

= −
m2

B∗ + 3m2
V − q2

2mV
A1 q2

� �
+

m2
B∗ −m2

V − q2
� �

2mV
A2 q2

� �

−
2m2

B∗ p
!��� ���2

mV m2
B∗ −m2

V

� �A3 q2
� �

−
mB∗ p

!��� ���
mV

V6 q2
� �

,

H0−− q2
� �

=
m2

B∗ −m2
Vffiffiffiffiffi

q2
p A1 q2

� �
−

ffiffiffiffiffi
q2

p
A2 q2

� �
+
2mB∗ p

!��� ���ffiffiffiffiffi
q2

p V1 q2
� �

,

Ht−− q2
� �

=
2mB∗ p

!��� ���ffiffiffiffiffi
q2

p A1 q2
� �

+
m2

B∗ −m2
Vffiffiffiffiffi

q2
p V1 q2

� �
−

ffiffiffiffiffi
q2

p
V2 q2

� �
,

H+−0 q2
� �

=
m2

B∗ + 3m2
V − q2

2mV
A1 q2

� �
−

m2
B∗ −m2

V − q2
� �

2mV
A2 q2

� �

+
2m2

B∗ p
!��� ���2

mV m2
B∗ −m2

V

� �A3 q2
� �

−
mB∗ p

!��� ���
mV

V6 q2
� �

,

H+0+ q2
� �

=
3m2

B∗ +m2
V − q2

2mB∗
A1 q2

� �
−

m2
B∗ −m2

V + q2
� �

2mB∗
A2 q2

� �

+
2mB∗ p

!��� ���2
m2

B∗ −m2
V

A4 q2
� �

− p
!��� ���V5 q2

� �
,
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H−0− q2
� �

= −
3m2

B∗ +m2
V − q2

2mB∗
A1 q2

� �
+

m2
B∗ −m2

V + q2
� �

2mB∗
A2 q2

� �

−
2mB∗ p

!��� ���2
m2

B∗ −m2
V

A4 q2
� �

− p
!��� ���V5 q2

� �
,

H000 q2
� �

=
p
!��� ��� m2

B∗ +m2
V − q2

� �
ffiffiffiffiffi
q2

p
mV

V1 q2
� �

+
2m2

B∗ p
!��� ���3ffiffiffiffiffi

q2
p

mV m2
B∗ −m2

V

� �V3 q2
� �

−
p
!��� ��� m2

B∗ −m2
V − q2

� �
2

ffiffiffiffiffi
q2

p
mV

V5 q2
� �

+
p
!��� ��� m2

B∗ −m2
V + q2

� �
2

ffiffiffiffiffi
q2

p
mV

V6 q2
� �

,

Ht00 q2
� �

=
m2

B∗ −m2
V

� �
m2

B∗ +m2
V − q2

� �
2

ffiffiffiffiffi
q2

p
mB∗mV

V1 q2
� �

−
ffiffiffiffiffi
q2

p
m2

B∗ +m2
V − q2

� �
2mB∗mV

V2 q2
� �

+
mB∗ p

!��� ���2ffiffiffiffiffi
q2

p
mV

V3 q2
� �

−
mB∗ p

!��� ���2 ffiffiffiffiffi
q2

p
mV m2

B∗ −m2
V

� �V4 q2
� �

−
mB∗ p

!��� ���2ffiffiffiffiffi
q2

p
mV

V5 q2
� �

+
mB∗ p

!��� ���2ffiffiffiffiffi
q2

p
mV

V6 q2
� �

:

ð14Þ

Obviously, only the amplitudes with λB∗ = λV − λW∗ sur-
vive due to the helicity conservation.

2.4. Helicity Amplitudes and Observables. For the leptonic
part, the leptonic tensor could be expanded in terms of
a complete set of Wigner's dJ-functions, which have been
widely used in the study of hadron semileptonic [79, 83,
84]. As a result, LμνH

μν can be reduced to a very com-
pact form

LμνH
μν =

1
8

〠
λℓ ,λ�νℓ ,J ′ ,J
λW∗ ,λW∗ ′

−1ð ÞJ+J ′ hλℓ ,λ�νℓ
��� ���2δλB∗ ,λV−λW∗ δλB∗ ,λV−λ′W∗

× dJ
λW∗ ,λℓ−1/2

dJ
λ′W∗ ,λℓ−1/2

′ HλW∗λB∗λV
Hλ′W∗λB∗λV

ð15Þ

where J and J ′ run over 1 and 0, λðW∗′Þ, and λℓ run over
their components. For the standard expression of dJ func-
tion, we take their value from PDG [55]. The leptonic helicity
amplitude hλℓ ,λ�νℓ

in Eq. (15) defined as

hλℓ ,λ�νℓ
= �uℓ λℓð Þγμ 1 − γ5ð Þν�ν

1
2

� 
�εμ λW∗ð Þ, ð16Þ

Taking the exact forms of spinors and W∗ polarization
vectors given in Eq. (11), we obtain

h−1/2,1
2

��� ���2 = 8 q2 −m2
ℓ

� �
,

h1/2,1/2
�� ��2 = 8

m2
ℓ

2q2
q2 −m2

ℓ

� �
,

ð17Þ

which are the same as the results obtained in semileptonic B
and hyperon decays [83, 84].

Using the amplitudes obtained above, we can then fur-
ther evaluate the observables of �B∗

⟶Vℓ−�νℓ decays. The
double differential decay rate is written as

d2Γ
dq2d cos θ

=
G2

F Vcbj j2
2πð Þ3

p
!��� ���

8m2
B∗

1
3

1 −
m2

ℓ

q2

� 
LμνH

μν, ð18Þ

where the factor 1/3 is caused by averaging over the spins of
initial �B∗ meson. The double differential decay rate with a
given helicity state of lepton (λℓ = ±1/2) is written as

d2Γ λℓ = −1/2½ �
dq2d cos θ

=
G2

F Vcbj j2 p
!��� ���

256π3m2
B∗

1
3
q2 1 −

m2
ℓ

q2

� 2

× 1 − cos θð Þ2 H2
+0++H

2
+−0

� �h
+ 1 + cos θð Þ2 H2

−0−+H
2
−+0

� �
+ 2sin2 θ H2

0++ +H2
0−− +H2

000
� �i

,

ð19Þ

d2Γ λℓ = 1/2½ �
dq2d cos θ

=
G2

F Vcbj j2 p
!��� ���

256π3m2
B∗

1
3
q2 1 −

m2
ℓ

q2

� 2 m2
ℓ

q2

� sin2 θ H2
+0++H

2
+−0 +H2

−0−+H
2
−+0

� �

+ 2 Ht++ − cos θH0++ð Þ2
+ 2 Ht−− − cos θH0−−ð Þ2
+ 2 Ht00 − cos θH000ð Þ2�:

ð20Þ

Integrating over cos θ and summing over the lepton heli-
city, we can obtain the differential decay rate written as

dΓ
dq2

=
G2

F Vcbj j2 p
!��� ���

96π3m2
B∗

1
3
q2 1 −

m2
ℓ

q2

� 2

×
3m2

ℓ

2q2
H2

t++ +H2
t−− +H2

t00
� �

+ H2
+0++H

2
+−0

�"

+H2
−0−+H

2
−+0 +H2

000 +H2
0−− +H2

0++Þ 1 +
m2

ℓ

2q2

� #
,

ð21Þ
where the three nondiagonal interference terms in Eq. (20)
vanish. In addition, paying attention to the polarization
states of V meson, one can obtain the longitudinal differen-
tial decay width dΓL/dq2 by picking out H2

t00, H
2
+−0, H

2
−+0,

and H2
000 terms in Eq. (21).

Using Eqs. (19) and (20) given above, we can also con-
struct some useful observables as follows. The q2-dependent
ratios is defined as

R∗ Lð Þ
V q2

� �
≡

dΓ Lð Þ �B∗
⟶Vτ−�ντ

� �
/dq2

dΓ Lð Þ �B∗
⟶Vℓ′−�νℓ′

� 	
/dq2

, ð22Þ
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where ℓ′ denotes the light leptons μ and e (in the following
calculations, we take me,μ = 0). The lepton spin asymmetry
and forward-backward asymmetry are defined as

A∗V
λ q2
� �

=
dΓ λℓ = −1/2½ �/dq2 − dΓ λℓ = 1/2½ �/dq2
dΓ λℓ = −1/2½ �/dq2 + dΓ λℓ = 1/2½ �/dq2 , ð23Þ

and

A∗V
θ q2
� �

=
Ð 0
−1d cos θ d2Γ/dq2d cos θ

� �
−
Ð 1
0d cos θ d2Γ/dq2d cos θ

� �
dΓ/dq2

,

ð24Þ

respectively. These observables are independent of the CKM
matrix elements, and the hadronic uncertainties canceled to a
large extent, therefore, they can be predicted with a rather
high accuracy.

3. Numerical Results and Discussions

In our numerical calculation, for the well-known Fermi cou-
pling constant GF and the masses of mesons and τ, we take
their central values given by PDG [55]. For the CKM ele-
ment, we take jVcbj = 41:80+0:28−0:60 × 10−3 given by CKMFitter
Group [85]. In order to evaluate the branching fractions,
the total decay widths (or lifetimes), ΓtotðB∗

u,d,s,cÞ, are also
essential inputs. However, there is no available experimental
or theoretical information until now. While, due to the fact
that the electromagnetic processes B∗ ⟶ Bγ dominates B∗

decays, we can take the approximation ΓtotðB∗Þ ≃ ΓðB∗ ⟶
BγÞ. In the light-front quark model (LFQM), the decay width
of B∗ ⟶ Bγ decay is given by [86]

Γ B∗ ⟶ Bγð Þ = α

3
e1I m1,m2, 0ð Þ + e2 I m2,m1, 0ð Þ½ �2 κ3γ,

I m1,m2, q2
� �

=
ð1
0

dx
8π3

ð
d2k⊥

ψ x, k′⊥
� 	

ψ x, k⊥ð Þ
x ~M0 ~M′0

× A +
2
M0

k2⊥ −
k⊥ · q⊥ð Þ2
q2⊥

" #( )
,

ð25Þ

where A = �xm1 + xm2 with �x = 1 − x, M0 =M0 +m1 +m2
with M0 being the invariant mass of bound-state, α is the
fine-structure constant, κγ = ðm2

B∗ −m2
BÞ2/2mB∗ is the kine-

matically allowed energy of the outgoing photon. The radial
wavefunction (WF) ψðx, k⊥Þ of bound-state is responsible
for describing the momentum distribution of the constituent
quarks. In this paper, we shall use the Gaussian-type WF

ψ x, k⊥ð Þ = 4
π3/4

β3/2

ffiffiffiffiffiffiffi
∂kz
∂x

r
exp −

k2z + k2⊥
2β2

" #
, ð26Þ

where kz is the relative momentum in z-direction and has the
form kz = ðx − 1/2ÞM0 +m2

2 −m2
1/2M0. One can refer to Ref.

[86] for more details. Using the constituent quark masses and
the Gaussian parameter β given in Table 1, we obtain the
numerical results for ΓðB∗ ⟶ BγÞ as follows,

Γtot B
∗+ð Þ ≃ Γ B∗+ ⟶ B+γð Þ = 349 ± 18ð ÞeV , ð27Þ

Γtot B∗0� �
≃ Γ B∗0 ⟶ B0γ

� �
= 116 ± 6ð Þ eV , ð28Þ

Γtot B
∗0
s

� �
≃ Γ B∗0

s ⟶ B0
s γ

� �
= 84+11−9
� �

eV , ð29Þ

Γtot B
∗+
cð Þ ≃ Γ B∗+

c ⟶ B0
cγ

� �
= 49+28−21
� �

eV : ð30Þ
These theoretical predictions are generally in agreement

with the ones obtained in the previous work based on differ-
ent theoretical models [86–92].

Besides the inputs given above, the B∗ ⟶V transition
form factors are also crucial inputs for evaluating observ-
ables, especially for the branching fraction. In this work, we
adopt the covariant light-front quark model (CLFQM) [93–
95] to evaluate their values. The theoretical formulas for the
form factors of V ′⟶ V ′′ have been given in our previous
work (see Eqs. (39–48) in the appendix of Ref. [96]). These
theoretical results are obtained within Drell-Yan-West
frame, q+ = 0, which implies that the form factors are known
only for space-like momentum transfer, q2 = −q2⊥0, and the
ones in the physical time-like region need an additional
q2 extrapolation. Following the strategy employed in Refs.
[82, 93–95], one can parameterize the form factors as
functions of q2 by using dipole model in the space-like
region and then extend them to the whole physical region
0 ≤ q2 ≤ ðmB∗ −mVÞ2. The form factors in the dipole model
have the form

F q2
� �

=
F 0ð Þ

1 − a q2/m2
B∗

� �
+ b q2/m2

B∗

� �2 , ð31Þ

where F denotes A1−4 and V1−6. Using the inputs given in
Table 1, we then present our theoretical prediction for the
form factors of �B∗

⟶D∗, �B∗
s ⟶D∗

s , and �B∗
c ⟶ J/ψ

transitions in Table 2. Their q2 dependences are shown
in Figure 1.

Using the formulas given in the last section and inputs
given above, we then present our numerical results for the
q2-integrated observables of �B∗

⟶Vℓ−�νℓ decays in
Tables 3 and 4. For the branching fractions, the three errors
in Table 3 are caused by the uncertainties of form factors,
Vcb and ΓtotðB∗Þ, respectively. For the other observables
listed in Table 4, the theoretical uncertainties are caused only
by the form factors. Besides, the q2 dependence of differential

decay rates dΓðLÞ/q2 and A∗V
λ,θ , R

∗ðLÞ
V are shown in Figures 2

and 3. The following are some analyses and discussions:

(1) From Table 3, one can find a clear relation ð�B∗−

⟶D∗0ℓ−�νℓÞ: Bð�B∗0
⟶D∗+ℓ−�νℓÞ: Bð�B∗0

s ⟶D∗+
s ℓ−

�νℓÞ: Bð�B∗−
c ⟶ J/ψℓ−�νℓÞ ≈ 1 : 3 : 4 : 6, which is

caused mainly by their total decay widths ΓtotðB∗Þ
illustrated by Eqs. (27), (28), (29), and (30).
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In Table 3, the previous predictions based on the Bethe-
Salpeter (BS) method [67] and the assumption of heavy
quark symmetry (HQS) [68] are also listed for comparison.
It can be found that the results based on the BS method
and the assumption of HQS are a little bit smaller and larger
respectively than our results, but they are also in agreement
in the order of magnitude. These b⟶ cℓ−�νℓ induced B∗

weak decays have the branching fractions of the order Oð1
0−8 − 10−7Þ > 10−9, and therefore are in the scope of Belle-II
or LHC experiments. In addtion, due to the fact that Vub/
Vcb ≈ 0:088, the b⟶ uℓ−�νℓ induced B∗ weak decays should
have much smaller branching fractions, which are at the level
of Oð10−10 − 10−9Þ, and thus are hard to be observed in the
near future.

(2) Deviations from the SM predictions in �B⟶Dð∗Þℓ�νℓ
decay modes have been observed by the BaBar [11,
12], Belle [13–15], and LHCb [16, 17] collaborations
in the ratios RDð∗Þ ≡Bð�B⟶Dð∗Þτ−�ντÞ/Bð�B⟶

Dð∗Þℓ′−�νℓ′Þðℓ′ = μ, eÞ. The combination of these
measurements performed by the Heavy Flavour
Averaging Group (HFLAV) [1] reads

RHFLAV
D = 0:407 ± 0:039 ± 0:024, RHFLAV

D∗

= 0:306 ± 0:013 ± 0:007,
ð32Þ

which show tensions of about 2 and 4σ, respectively, with the
SM predictions [97]. Very recent measurement of RD∗ by
Belle [98] results in values more compatible with the SM
and yields a downward shift in the average. However, even
though such measurement is included in the global average,
the deviation is still larger than 3σ [97]. If this “RD∗ anomaly”
is the truth, it possibly exists also in the b⟶ c induced �B∗

⟶Vℓ�νℓ decays, which therefore can provide another use-
ful test on the lepton flavor universality and the various
method based on the SM and NP for resolving “RD∗ anom-

aly.” Our numerical results for R∗ðLÞ
V are summarized in

Table 4, and the q2-spectra of R∗ðLÞ
V are shown in Figure 3.

It can be found that

R∗ Lð Þ
D∗ ≃ R∗ Lð Þ

D∗
s

≃ R∗ Lð Þ
J
ψ

, ð33Þ

within theoretical uncertainties. Moreover, their q2-spectra
almost overlap with each other as shown in Figures 3(a)

Table 1: The values of constituent quark masses and Gaussian parameters (in units of MeV) obtained by fitting to the data of decay constants
[101, 102], where q = u, d.

mq = 250, ms = 450, mc = 1400, mb = 4640;
βb�q = 540:7 ± 9:6, βb�s = 601:9 ± 7:4, βb�c = 933:9 ± 11:1, for P-meson

βc�q = 413:0 ± 12:0, βc�s = 514:1 ± 18:5, βc�c = 684:4 ± 6:7,
βb�q = 504:4 ± 14:2, βb�s = 556:4 ± 10:1, βb�c = 863:4 ± 32:8, for V-meson

Table 2: The numerical results of form factors for �B∗
⟶D∗, �B∗

s ⟶D∗
s , and �B∗

c ⟶ J/ψ transitions within the CLFQM. The uncertainties
are caused by the Gaussian parameters listed in Table 1.

�B∗
⟶D∗

A1 A2 A3 A4 V1 V2 V3 V4 V5 V6

F 0ð Þ 0:66+0:01−0:01 0:36+0:00−0:00 0:07+0:00−0:00 0:08+0:00−0:00 0:67+0:01−0:01 0:36+0:00−0:00 0:13+0:00−0:00 0:00+0:00−0:00 1:17+0:01−0:01 0:48+0:01−0:01

a 1:31+0:02−0:02 1:32+0:02−0:02 1:79+0:02−0:02 1:81+0:02−0:02 1:30+0:02−0:02 1:32+0:02−0:02 1:72+0:02−0:02 −0:09+0:45−0:40 1:30+0:02−0:02 1:29+0:02−0:02

b 0:42+0:02−0:02 0:42+0:02−0:02 1:10+0:03−0:03 1:15+0:04−0:04 0:43+0:02−0:02 0:42+0:02−0:02 1:01+0:03−0:04 1:27+0:38−0:28 0:41+0:02−0:02 0:40+0:02−0:02

�B∗
s ⟶D∗

s

F 0ð Þ 0:65+0:01−0:01 0:38+0:01−0:01 0:10+0:00−0:00 0:09+0:00−0:00 0:66+0:01−0:01 0:38+0:01−0:01 0:15+0:00−0:00 −0:02+0:00−0:00 1:19+0:02−0:02 0:53+0:01−0:01

a 1:42+0:03−0:04 1:47+0:03−0:03 1:89+0:03−0:03 1:88+0:02−0:03 1:43+0:03−0:04 1:48+0:03−0:03 1:79+0:03−0:03 2:22+0:04−0:03 1:41+0:03−0:03 1:35+0:04−0:04

b 0:64+0:04−0:05 0:67+0:04−0:04 1:33+0:05−0:06 1:36+0:09−0:07 0:64+0:04−0:05 0:67+0:04−0:05 1:20+0:06−0:06 1:92+0:08−0:12 0:61+0:04−0:05 0:56+0:04−0:05

�B∗
c ⟶ J/ψ

F 0ð Þ 0:55+0:01−0:01 0:35+0:00−0:00 0:14+0:00−0:00 0:15+0:01−0:01 0:57+0:01−0:01 0:35+0:00−0:00 0:21+0:00−0:01 −0:01+0:01−0:01 1:19+0:02−0:02 0:64+0:01−0:01

a 2:48+0:07−0:07 2:65+0:08−0:08 2:88+0:09−0:09 2:88+0:08−0:08 2:48+0:07−0:07 2:56+0:08−0:08 2:75+0:08−0:09 3:58+0:17−0:12 2:42+0:07−0:07 2:32+0:06−0:06

b 2:71+0:20−0:22 2:87+0:23−0:26 3:88+0:31−0:34 3:90+0:30−0:33 2:73+0:20−0:22 2:88+0:23−0:26 3:51+0:29−0:32 6:37+0:23−0:13 2:54+0:20−0:22 2:33+0:17−0:19
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Figure 1: The q2-dependences of form factors for �B∗
⟶D∗, �B∗

s ⟶D∗
s , and �B∗

c ⟶ J/ψ transitions.

Table 3: The SM predictions for the branching fractions of �B∗
⟶Vℓ−�νℓ decays.

Decay mode This work BS method [67] HQS [68]

�B∗−
⟶D∗0ℓ′−�νℓ′ 8:42+0:23−0:24

+0:11
−0:24

+0:45
−0:42 × 10−8 1:26 × 10−7 6:41 × 10−8

�B∗−
⟶D∗0τ−�ντ 2:26+0:08−0:08

+0:03
−0:06

+0:12
−0:11 × 10−8 2:74 × 10−8 1:29 × 10−8

�B∗0
⟶D∗+ℓ′−�νℓ′ 2:51+0:08−0:07

+0:03
−0:07

+0:13
−0:12 × 10−7 − 1:92 × 10−7

�B∗0
⟶D∗+τ−�ντ 6:73+0:24−0:25

+0:09
−0:19

+0:35
−0:32 × 10−8 − 3:88 × 10−8

�B∗0
s ⟶D∗+

s ℓ′−�νℓ′ 3:46+0:17−0:17
+0:05
−0:10

+0:41
−0:41 × 10−7 4:63 × 10−7 2:53 × 10−7

�B∗0
s ⟶D∗+

s τ−�ντ 9:10+0:60−0:59
+0:12
−0:26

+1:07
−1:07 × 10−8 1:05 × 10−7 5:05 × 10−8

�B∗−
c ⟶ J/ψℓ′−�νℓ′ 5:44+0:33−0:33

+0:07
−0:16

+4:06
−2:00 × 10−7 5:37 × 10−7 2:91 × 10−7

�B∗−
c ⟶ J/ψτ−�ντ 1:43+0:13−0:12

+0:02
−0:04

+1:07
−0:52 × 10−7 1:49 × 10−7 5:65 × 10−8
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and 3(b). Using the results summarized in Table 3, we can
also obtain the predictions based on the BSmethod and HQS,

R∗
D∗ = 0:217,

R∗
D∗
s
= 0:227,

R∗
J/ψ = 0:277, BSmethod

R∗
D∗ = 0:202,

R∗
D∗
s
= 0:200,

R∗
J/ψ = 0:194:HQS

ð34Þ

It can be found that these results are different from our
predictions more or less because different models and
parameterizations are used for evaluating form factors, which

has been observed in the case of RD∗ [18]. Future measure-
ment will make a judgement on these results.

(3) Besides, the lepton spin asymmetry and the forward-
backward asymmetry are also important observables
for testing the SM and NP scenarios, for instance,
two-Higgs-doublet models, and R-parity violating
supersymmetry models [42–47], because their theo-
retical uncertainties can be well controlled and the
zero-crossing points of their q2-spectra are sensitive
to the NP effects [42]. Our numerical results for
q2-integrated A∗V

λ and A∗V
θ are collected in Table 4,

and the q2 dependences of A∗V
λ ðq2Þ and A∗V

θ are
shown by Figures 3(c) and 3(d). One can easily find

that A∗D∗

λ,θ ≃ A∗D∗
s

λ,θ ≃ A∗J/ψ
λ,θ . Moreover, the q2-spectra

of A∗V
λ are almost overlapping with each other as

Table 4: Predictions for q2-integrated observables A∗V
λ,θðℓ = τÞ, R∗ðLÞ

V , and F∗V
L .

Obs. Prediction Obs. Prediction Obs. Prediction

A∗D∗

λ 0:237+0:017−0:016 A∗D∗
s

λ
0:231+0:029−0:030 A∗J/ψ

λ 0:214+0:043−0:040

A∗D∗

θ 0:070+0:007−0:006 A∗D∗
s

θ
0:071+0:011−0:011 A∗J/ψ

θ 0:078+0:014−0:013

R∗
D∗ 0:269+0:003−0:003 R∗

D∗
s

0:263+0:005−0:005 R∗
J/ψ 0:262+0:009−0:007

R∗L
D∗ 0:285+0:004−0:003 R∗L

D∗
s

0:277+0:006−0:007 R∗L
J/ψ 0:278+0:009−0:009

F∗D∗

L 0:304+0:003−0:004 F∗D∗
s

L 0:306+0:005−0:006 F∗J/ψ
L 0:303+0:006−0:007
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Figure 2: The q2-dependences of differential decay rates dΓ/dq2 (solid lines) and dΓL/dq2 (dashed lines).
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shown in Figure 3(c), and the case of A∗V
θ is similar

except that the q2-spectrum of A∗J/ψ
θ deviates from

the ones of A∗D∗

θ and A∗D∗
s

θ at large q2. In addition,
A∗V
λ crosses the zero point at q2 ≈ 5GeV2, however,

A∗V
θ does not have the zero point in all q2 region.

(4) The D∗ longitudinal polarization fraction in semi-
leptonic B0⟶D∗−τ+ντ decay, defined as FD∗

L =
ΓλD∗=0ðB0⟶D∗−τ+ντÞ/ΓðB0⟶D∗−τ+ντÞ, has been
measured by Belle experiment with FD∗

L = 0:60 ±
0:08ðstat:Þ ± 0:04ðsyst:Þ [99], which deviates from
the SM prediction ðFD∗

L ÞSM = 0:457 ± 0:010 [100] by
1:6σ. Similarly, we can define the longitudinal polar-
ization fraction

F∗V
L =

ΓλD∗=0
�B∗

⟶ Vτ−�ντ
� �

Γ �B∗
⟶Vτ−�ντ

� � ð35Þ

for �B∗
⟶Vτ−�ντ decay modes. From the numerical results

given in the last row of Table 4, one can easily find that

F∗D∗

L ≃ F∗D∗
s

L ≃ F∗J/ψ
L ≃ 30%, ð36Þ

which implies that �B∗
⟶ Vτ−�ντ decay is dominated by the

transverse polarization. It is obviously different from the cor-

responding �B⟶Vτ−�ντ decay mode, which is dominated by
the longitudinal polarization state.

4. Summary

In this paper, motivated by abundant B∗ data samples at
high-luminosity heavy-flavor experiments in the future, we
have studied the b⟶ c induced �B∗

u,d,s,c ⟶Vℓ−�νℓðV =D∗
u,d ,

D∗
s , ðJ/ψÞand ℓ = e, μ, τÞ decays within the SM. The helicity

amplitudes are investigated in detail, and the form factors
of �B∗

⟶V transitions are computed within the covariant
light-front quark model. After that, we present our predic-
tions for the observables including branching fraction (decay
width), leptonic spin asymmetry, forward-backward asym-

metry, ratio R∗ðLÞ
V , and longitudinal polarization fraction in

Tables 3 and 4 and Figures 2 and 3. It is found that all these
semileptonic B∗ decays have relatively large branching
fractions of Oð10−8Þ ~Oð10−7Þ, in which Bð�B∗

c ⟶ J/ψℓ′−

�νℓ′Þ ~ 5 × 10−7 is the largest one, and are hopeful to be
observed at running LHC and SuperKEKB/Belle-II experi-
ments; in addition, for the �B∗

⟶ Vτ−�ντ decay, the longitu-
dinal polarization state of V meson presents only about 30%
contribution to the integrated decay width, which is obvi-
ously different from the corresponding �B⟶Vτ−�ντ decay.
All of results and findings in this paper are waiting for the
experimental test in the future.
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Figure 3: The q2-dependences of R∗ðLÞ
V ðq2Þ, A∗V

θ ðq2Þ, and A∗V
θ ðq2Þ.
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