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In this paper, our leading objective is to relate the fractional integral operator known as Pδ-transform with the p�-extended Mathieu
series. We show that the Pδ-transform turns to the classical Laplace transform; then, we get the integral relating the Laplace
transform stated in corollaries. As corollaries and consequences, many interesting outcomes are exposed to follow from our
main results. Also, in this paper, we have converted the Pδ-transform into a classical Laplace transform by changing the variable
ððln ½ðδ − 1Þs + 1�Þ/ðδ − 1ÞÞ⟶ s; then, we get the integral involving the Laplace transform.

1. Introduction

Fractional calculus is a fast-growing field of mathematics that
shows the relations of fractional-order derivatives and
integrals. Fractional calculus is an effectual subject to study
many complex real-world systems. In recent years, many
researchers have calculated the properties, applications, and
extensions of fractional integral and differential operators
involving the various special functions.

Fernandez and Baleanu [1] showed that many other
named models of fractional calculus can fit within the class
of operators defined by Prabhakar and that this class contains
both singular and nonsingular operators together. They also
characterized completely the cases in which these operators
are singular or nonsingular and the cases in which they can
be written as finite or infinite sums of Riemann–Liouville
differ integrals, to obtain finally a catalogue of subclasses with
different types of properties.

Atangana and Baleanu [2] proposed a new fractional
derivative with nonlocal and nonsingular kernel. They pre-
sented some useful properties of the new derivative and
applied it to solve the fractional heat transfer model.

Atangana and Koca [3] presented relationship of deriva-
tives with some integral transform operators. New results are

presented. They applied the derivative to a simple nonlinear
system. They showed in detail the existence and uniqueness
of the system solutions of the fractional system. They
obtained a chaotic behavior which was not obtained by local
derivative.

Atangana and Baleanu [4] extended the model of the
movement of subsurface water via the geological formation
called aquifer using a newly proposed derivative with frac-
tional order. An alternative derivative to that of Caputo-
Fabrizio with fractional order was presented. The relation-
ship between both derivatives was presented. The new
equation was solved analytically using some integral trans-
forms. The exact solution is therefore compared to experi-
mental data obtained from the settlement of the University
of the Free State in South Africa. The numerical simulation
shows the agreement of the experimental data with an analyt-
ical solution for some values of fractional order.

Manzoor et al. [5] used a Beta operator with Caputo
(MSM) fractional differentiation of extended Mittag-Leffler
function in terms of Beta function. They applied the Beta
operator on the right-sided MSM fractional differential
operator and on the left-sided MSM fractional differential
operator. They also applied the Beta operator on the right-
sided MSM fractional differential operator with Mittag-
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Leffler function and the left-sidedMSM fractional differential
operator with Mittag-Leffler function.

Yavuz [6] investigated the novel solutions of fractional-
order option pricing models and their fundamental mathe-
matical analyses. The main novelties of this paper are the
analysis of the existence and uniqueness of European-type
option pricing models providing to give fundamental solu-
tions to them and a discussion of the related analyses by
considering both the classical and generalized Mittag-Leffler
kernels. Yavuz and Abdeljawad [7] presented a fundamental
solution method for nonlinear fractional regularized long-
wave (RLW) models. Since analytical methods cannot be
applied easily to solve such models, numerical or semia-
nalytical methods have been extensively considered in
the literature.

Jena et al. [8] applied two-hybrid techniques, namely, q-
homotopy analysis Elzaki transform method (q-HAETM)
and iterative Elzaki transform method (IETM) to obtain the
numerical solutions of time-fractional Navier-Stokes equa-
tions in polar coordinate described in the Caputo sense. q-
HAETM is the combination of the homotopy analysis
method and Elzaki transform method, and IETM is the com-
bination of two reliable methods, i.e., iterative method and
Elzaki transform method.

Yavuz and Sene [9] address the solution of the incom-
pressible second-grade fluid models. Fundamental qualita-
tive properties of the solution are primarily studied for
proving the adequacy of the physical interpretations of
the proposed model. They used the Liouville-Caputo frac-
tional derivative with its generalized version that gives
more comprehensive physical results in the analysis and
investigations.

Yavuz [10] analyzed the behaviors of two different
fractional derivative operators defined in the last decade.
One of them is defined with the normalized sinc function
(NSF) and the other one is defined with the Mittag-Leffler
function (MLF). Both of them have a nonsingular kernel.
Yavuz and Bonyah [11] examined the schistosomiasis
fractional-order dynamic model via exponential law kernel
sense and Mittag-Leffler kernel in Liouville–Caputo sense.
Some special solutions for two operators are obtained
using the iterative scheme through Laplace transform and
Sumudu–Picard integration technique. The uniqueness
and existence of solution for both operators are established.
The numerical solutions for both operators approve that
the desirable results can be obtained when the alpha value
is less than one.

Yang [12] addressed a class of the fractional derivatives of
constant and variable orders for the first time. Fractional-
order relaxation equations of constants and variable orders
in the sense of Caputo type are modeled from a mathematical
point of view. The comparative results of the anomalous
relaxation among the various fractional derivatives are also
given. Yang [13] proposed the general Riemann-Liouville
and Caputo-Liouville fractional derivatives with nonsingular
power-law kernels, for the first time. New general laws of
deformation within the framework of the general fractional
derivatives are considered in detail. The creep and relaxation
behaviors of the general fractional-order Voigt and Maxwell

models are also obtained with the use of the Laplace
transform.

The series

S zð Þ = 〠
∞

m=1

2m
m2 + z2ð Þ2

ð1Þ

is known as the Mathieu series. The first person to present
such a sequence was Mathieu [14]. Emersleben [15] in
elegant form gives an essential meaning of the integral
demonstration

S zð Þ =
ð∞
0

x sin zxð Þ
ex − 1 dx: ð2Þ

The above series is also written in the expressions of
Riemann-Zeta function by Choi and Srivastava [16] as
given below:

S zð Þ = 2 〠
∞

m=1
−1ð Þmz2m m + 1ð Þζ 2m + 3ð Þ, ð3Þ

where ∣z ∣ <1 and ζðuÞ =∑∞
m=1m

−u, u > 1.
The generalized form of the Mathieu series by Cerone

and Lenard [17] is given below as we have

Sλ zð Þ = 〠
∞

m=1

2m
m2 + z2ð Þλ+1

, ð4Þ

where λ > 0 and z > 0; also, it can be written in the expression
of Riemann-Zeta function by Pogány et al. [18] as given
below:

Sλ zð Þ = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζ 2λ + 2m + 1ð Þ, ð5Þ

where λ > 0 and z > 0.
Taking the above equation in mind, let the p�-extended

Mathieu series by Pogany and Parmar [19] be well-defined as

Sλ,p zð Þ = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ, ð6Þ

where p ≥ 0, λ > 0, jzj < 1, and ζp stands for the p�-extended
Riemann zeta function by Chaudhry et al. [20] which is
defined as

ζp uð Þ = 1
Γ βð Þ

ð∞
0

uβ−1e− p/uð Þ

eu − 1 dx, ð7Þ

where RðpÞ > 0 and R ðβÞ > 0.
Shah et al. [21] studied a compartmental mathemati-

cal model for the transmission dynamics of the novel
coronavirus-19 under Caputo fractional order derivative.
By using the fixed-point theory of Schauder and Banach, they
established some necessary conditions for existence of at least
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one solution to model under investigation and its unique-
ness. After the existence, a general numerical algorithm based
on the Haar collocation method is established to compute the
approximate solution of the model.

Sher et al. [22] studied the novel coronavirus (2019-
nCoV or COVID-19) which is a threat to the whole world
nowadays. They considered a fractional-order epidemic
model which describes the dynamics of COVID-19 under
nonsingular kernel type of fractional derivative. An attempt
is made to discuss the existence of the model using the
fixed-point theorem of Banach and Krasnoselskii type.

Definition 1. As indicated in Pohlen [23], let gðzÞ =∑∞
m=0xm

zm and hðzÞ =∑∞
m=0ymz

m be two power series; then, the
Hadamard product of power series is defined as

g ∗ hð Þ zð Þ = 〠
∞

m=0
xmymz

m = h:gð Þ zð Þ ; zj j < Rð Þ, ð8Þ

where

R = lim
m→∞

xmym
xm+1ym+1

����
���� lim

k→∞

xm
xm+1

����
����

� �
⋅ lim

m→∞

ym
ym+1

����
����

� �
= Rg ⋅ Rh,

ð9Þ

where Rg and Rh stand for radius of convergence of the above
series gðzÞ and hðzÞ, respectively. Therefore, in general, it is
to be noted that if the one power series is the analytical func-
tion, then the series of Hadamard products is also the same as
an analytical function.

Definition 2. The Gaussian hypergeometric function or ordi-
nary hypergeometric function by Rainville [24] well-defined
like 2F1ða, b ; c ; xÞ is the special function which is repre-
sented by the hypergeometric series

2F1 a, b ; c ; xð Þ = 〠
∞

m=0

að Þm bð Þm
cð Þm

xm

m!
, ð10Þ

for “c” neither zero nor a negative integer; then, the above
notation ðaÞm is

að Þm = a a + 1ð Þ a + 2ð Þ⋯ a +m − 1ð Þ, m ≥ 1: ð11Þ

Also, ðaÞ0 = 1 and a ≠ 0.

Definition 3. The Laplace transform of the function f ðxÞ on
interval ½0,∞Þ by Sneddon [25] is defined as

L f xð Þ ; s½ � =
ð∞
0
e−sx f xð Þdx = F sð Þ, ð12Þ

where s ∈ C and x ≥ 0.

Definition 4. The Elzaki transform for the function of expo-
nential order by Elzaki [26] is considered the function in
the set Y ; we get

Y = f xð Þ: ∃W, n1, n2 > 0 f xð Þj j <We xj j/nj , x ∈ −1ð ÞjA 0,∞½ Þ
n o

:

ð13Þ

For the function which is constant in set Y ,W, it must be
a finite number, so maybe n1 and n2 are finite or infinite at
that time the Elzaki transform denoted through operator E
as given below:

E f xð Þ½ � = T uð Þ = u
ð∞
0
f xð Þex/udx, ð14Þ

where n1 ≤ u ≤ n2.

Definition 5. Let the function f ðxÞ be integrable with a finite
interval, ðn1, n2Þ, ðn1 < x < n2Þ ; if there exists a real number
“r,” then each of the following statements holds true, so,
asn1 > 0,

Ð n1
ƛ j f ðxÞjdx approaches to a finite limit like ƛ⟶

0 + ; also, here, n2 > 0, Ð ℏn2e−rx f ðxÞdx approaches to a finite

limit like ℏ⟶∞; then, the Pδ-transform,

GPδ
sð Þ = Pδ f xð Þ ; s½ � =

ð∞
0

δ − 1ð Þs + 1½ �x/δ−1 f xð Þdx, δ > 1,

ð15Þ

exists whenever Rðln ½1 + ðδ − 1Þs�/ðδ − 1ÞÞ > r, s ∈ C.
The power function of the transform by Kumar [27] and

Nadir and Khan [28] is given below:

Pδ xη−1 ; s
� �

= δ − 1
ln 1 + δ − 1ð Þs½ �
� �η

Γ ηð Þ, R ηð Þ > 0, δ > 0:

ð16Þ

2. The Pδ-Transform Associated with the
p�-Extended Mathieu Series

Here, we have evaluated the Pδ-transform associated with the
p�-extendedMathieu series and some of its certain cases in the
form of corollaries.

Theorem 6. Let the p�-extended Mathieu series be given in
(6) as

Sλ,p zð Þ = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ,

ð17Þ

where p ≥ 0, λ > 0, and jzj < 1 and ζp is known as the p�-
extended Riemann zeta function. Now, by applying the Pδ-
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transform on the p�-extended Mathieu series, we want to show
that

Pδ tσ−1Sλ,p z, tð Þ ; s� �
= Γ σð Þ

φ δ, sð Þ½ �σ Sλ,p
4z2

φ δ, sð Þ½ �2
 !

∗ F2
0

σ

2
, σ + 1

2
; 4z2

φ δ,sð Þ½ �2
−;

2
64

3
75,

ð18Þ

where min fR ðsÞ,R ðσÞg > 0, ½φðδ, sÞ� = ln ½ðδ − 1Þs + 1�/
ðδ − 1Þ, jzj < 1, δ > 1, and F2

0 is the Gaussian hypergeo-
metric function as defined in the book of special function
by Rainville [24].

Proof. Consider

L:H:S = Pδ tσ−1Sλ,p z, tð Þ ; s� �
=
ð∞
0
tσ−1 δ − 1ð Þs + 1½ �−t/δ−1Sλ,p z, tð Þdt

=
ð∞
0
tσ−1 δ − 1ð Þs + 1½ �−t/δ−12

� 〠
∞

m=1
−1ð Þm zð Þ2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þdt:

ð19Þ

Due to uniform convergence, we have changed the order
of integration and summation:

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ zð Þ2m

�
ð∞
0
tσ−1 δ − 1ð Þs + 1½ �−t/δ−1:

ð20Þ

Now, changing σ by σ + 2m, we get

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ zð Þ2m

×
ð∞
0
tσ+2m−1eln δ−1ð Þs+1½ �−t/δ−1dt:

ð21Þ

Here, by using equation (16), we get

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ zð Þ2m

� δ − 1
ln δ − 1ð Þ + 1½ �s
� �σ+2m

Γ σ + 2mð Þ:
ð22Þ

Also, using (18), we have

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ zð Þ2m

� 1
φ δ, s½ �
� �σ+2m

Γ σ + 2mð Þ:
ð23Þ

By Rainville [24], we have

L:H:S = Γ σð Þ
φ δ, sð Þ½ �σ 2 〠

∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

× z
φ δ, sð Þ½ �

� �2m
22m σ

2
� �

m

σ + 1
2

� �
m

:

ð24Þ

Now, by using (6) and (10), we have

L:H:S = Γ σð Þ
φ δ, sð Þ½ �σ Sλ,p

4z2
φ δ, sð Þ½ �2

 !

∗ F2
0

σ

2 ,
σ + 1
2 ; 4z2

φ δ,sð Þ½ �2
−;

2
64

3
75:

ð25Þ

So, here, we have proved

Pδ tσ−1Sλ,p z, tð Þ ; s� �
= Γ σð Þ

φ δ, sð Þ½ �σ Sλ,p
4z2

φ δ, sð Þ½ �2
 !

∗ F2
0

σ

2 ,
σ + 1
2 ; 4z2

φ δ,sð Þ½ �2
−;

2
64

3
75,

ð26Þ

where min fR ðsÞ,R ðσÞg > 0, ½φðδ, sÞ� = ln ½ðδ − 1Þs + 1�/
ðδ − 1Þ, jzj < 1, δ > 1, and F2

0 is the Gaussian hypergeometric
function.

Corollary 7. Let p = 0, λ > 0, and jzj < 1; then, the following
relation holds true; we have

Pδ tσ−1Sλ z, tð Þ ; s� �
= Γ σð Þ

φ δ, sð Þ½ �σ Sλ
4z2

φ δ, sð Þ½ �2
 !

∗ F2
0

σ

2
, σ + 1

2
; 4z2

φ δ,sð Þ½ �2
−;

2
64

3
75,

ð27Þ

where min fR ðsÞ,R ðσÞg > 0, ½φðδ, sÞ� = ln ½ðδ − 1Þs + 1�/
ðδ − 1Þ, δ > 1, and F2

0 is the Gaussian hypergeometric
function.
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Corollary 8. Let p = 0, λ = 1, and jzj < 1; then, the following
relation also holds true:

Pδ tσ−1S z, tð Þ ; s� �
= Γ σð Þ

φ δ, sð Þ½ �σ S
4z2

φ δ, sð Þ½ �2
 !

∗ F2
0

σ

2
, σ + 1

2
; 4z2

φ δ,sð Þ½ �2
−;

2
64

3
75,

ð28Þ

where min fR ðsÞ,R ðσÞg > 0, ½φðδ, sÞ� = ln ½ðδ − 1Þs + 1�/
ðδ − 1Þ, δ > 1, and F2

0 is the Gaussian hypergeometric
function.

Remark 9. It is to be noted that

Sλ,p zð Þ = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

ð29Þ

reduces to

Sλ zð Þ = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζ 2λ + 2m + 1ð Þ, ð30Þ

when p = 0, further for λ = 1; in the above equations, we have
the following relation, SðzÞ = 2∑∞

m=1ð−1Þmz2mðm + 1Þζð2m
+ 3Þ. So, here, we have seen that the Pδ-transform holds true
for the p�-extended Mathieu series, the generalized Mathieu
series, and also for the Mathieu series.

3. Special Cases

Here, we have converted the Pδ-transform into a classical
Laplace transform by changing the variable ðln ½ðδ − 1Þs + 1�/
ðδ − 1ÞÞ⟶ s; then, we get integral involving Laplace trans-
form as given below.

Corollary 10. Let p ≥ 0, λ > 0, jzj < 1, and RðsÞ > 0; then, the
Laplace transform formula holds true and establishes the
following result:

L tσ−1Sλ,p z, tð Þ ; s� �
= Γ σð Þ

sσ
Sλ,p

4z2

s2

� �
∗ F2

0

σ

2
, σ + 1

2
; 4z

2

s2
−;

2
4

3
5:

ð31Þ

Proof.

L:H:S =L tσ−1Sλ,p z, tð Þ ; s� �

=
ð∞
0
tσ−1 ⋅ e−st 2 〠

∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

 !
dt:

ð32Þ

Due to uniform convergence, we have changed the order
of integration and summation:

L:H:S = 2 〠
∞

m=1
−1ð Þmz2m

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

 !

�
ð∞
0
tσ−1e−stdt:

ð33Þ

Now, by changing σ to σ + 2m, we get

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þz2m

 !

�
ð∞
0
tσ+2m−1e−stdt:

ð34Þ

Using equation (16), we get

L:H:S = 2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

 !

� z2m Γ σ + 2mð Þ
sσ+2m

:

ð35Þ

Now, by Rainville [24], we get

L:H:S = Γ σð Þ
sσ

2 〠
∞

m=1
−1ð Þm

λ +m

m

 !
ζp 2λ + 2m + 1ð Þ

 !

� z
s

� �2m
22m σ

2
� �

m

σ + 1
2

� �
m

:

ð36Þ

Using (6) and (10), we obtained

L:H:S = Γ σð Þ
sσ

Sλ,p
4z2
s2

� �
∗ F2

0

σ

2 ,
σ + 1
2 ; 4z

2

s2
−;

2
4

3
5: ð37Þ

Hence, we arrived at the required result

L tσ−1Sλ,p z, tð Þ ; s� �
= Γ σð Þ

sσ
Sλ,p

4z2
s2

� �
∗ F2

0

σ

2 ,
σ + 1
2 ; 4z

2

s2
−;

2
4

3
5,

ð38Þ

where p ≥ 0, λ > 0, and jzj < 1, and RðsÞ > 0.
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Corollary 11. Let p = 0, λ > 0, jzj < 1, and RðsÞ > 0; then, the
Laplace transform formula holds true and we have

L tσ−1Sλ z, tð Þ ; s� �
= Γ σð Þ

sσ
Sλ

4z2

s2

� �
∗ F2

0

σ

2
, σ + 1

2
; 4z

2

s2

−;

2
4

3
5:
ð39Þ

Corollary 12. Let p = 0, λ = 1, jzj < 1, and RðsÞ > 0; then, the
Laplace transform formula holds true as

L tσ−1S z, tð Þ ; s� �
= Γ σð Þ

sσ
S

4z2

s2

� �
∗ F2

0

σ

2
, σ + 1

2
; 4z

2

s2

−;

2
4

3
5:
ð40Þ

Remark 13. Thus, it is to be prominent that the Pδ-transform
is immediately reduced to the Elzaki transform by shifting
the variable ln ½ðδ − 1Þs + 1�/ðδ − 1Þ into s.

4. Conclusion

It is noted that the p�-extended Mathieu series is more general
in nature and various generalized types of Mathieu series
defined in literature can easily be derived through the
extended form. Similarly, the Pδ-transform defined by
Kumar’s [27] fractional integral operator assists us in con-
verting the table of the Laplace transform and the Elzaki
transform into the corresponding transform and vice versa.
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