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In this study, analytical examination of effects of internal heat generation, thermal radiation, and buoyancy force on flow and heat
transfer in the Blasius flow over flat plate has been presented. The governing nonlinear partial differential equations of the problem
are transformed into a set of coupled nonlinear third-order ordinary differential equations by the similarity variable method and
have been systematically solved using the optimal homotopy asymptotic method. The main aim of the present study is to
inspect the effects of various physical parameters in the flow model on velocity and heat transfer in steady two-dimensional
laminar boundary layer flow with convective boundary conditions. The influences of the Grashof number, internal heat
generation, the Biot number, radiation parameter, and the Prandtl number on the skin-friction coefficient, the fluid velocity
profile, and temperature distribution have been determined and discussed in detail through several plots. The finding revealed
that the fluid velocity and temperature delivery upsurge with snowballing in the values of the Biot number and internal heat
generation parameters. The temperature profile of the fluid declines contrary to the value of the Grashof number and the
Prandtl number but increases with thermal radiation. Moreover, it is found that the skin-friction coefficient and the rate of heat
intensify with the Grashof number, internal heat generation, the Biot number, and thermal radiation parameter. The obtained
result is likened with the previously published numerical results in a limited case of the problem and shows an excellent agreement.

1. Introduction

The term boundary layer flow refers to a type of flow in a
comparatively narrow region nearby a solid surface where
the influence of viscosity is considerable. The study of bound-
ary layer flow and its applications are important for develop-
ment in the field of applied science, engineering, and
technology. The Blasius boundary layer designates an incom-
pressible 2D laminar boundary layer that forms on a semi-
infinite plate apprehended in parallel to a continuous omni-
directional flow. Flow of incompressible viscous fluid and
heat transfer phenomena over stretching sheets has plentiful
practical application in the field of science and engineering,
in the chemical and manufacturing process like aerodynam-
ics, extrusion of plastic sheets, continuous casting of metals,
glass fibers, and paper production. Blasius [1] was the first
investigator who studied boundary layer flow regarding a sta-

tionary plate. He applied a similarity transformation tech-
nique in order to reduce the Navier Stoke equation for the
viscid incompressible steady laminar flow from PDE to
ODE and introduces the laminar boundary layer equation
known as the Blasius equation. Blasius solved the famous
boundary layer equation for a flat moving plate problem
and found a power series solution of the model. Afterward,
it has been expanded by many researchers [2–5] to explore
the similar solutions for the thermal physical phenomenon
flows over a flat plate under different flow configurations
and boundary conditions. Abussita [6] studied the solution
of the Blasius equation for the mixing layers of fluid past a flat
plate and establish the existence of a solution. Falkner and
Skan [7] generalized the Blasius problem by considering the
physical phenomenon flow over a wedge inclined at a specific
angle. Wang [8] used the Adomian decomposition method
for the approximate solution of the classical Blasius problem.
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Reddy et al. [9] develop a mathematical model of heat trans-
fer augmentation in the Blasius-Rayleigh-Stokes flow
through a heated moving plate by implementing the Catta-
neo–Christov heat flux model and transitive magnetic field.
They used similarity transformation to convert dimensional
quantity into a dimensionless form to solve the problem
numerically and discuss the influence of embedded parame-
ters on velocity and temperature of the fluid.

Heat transfer is a dynamic process in which internal
energy is transferred naturally from one material to another.
It is very vital to study the impact of heat transfer in various
materials and boundary layer flows over stretching sheet
because of their substantial applications in numerous biolog-
ical phenomena, engineering, and industrial process like
paper production, metal extrusion, fermentation, bubble
absorption, evaporators, condensers, and air conditioning
systems [10]. The key concern of heat transfer study is to
avert the heat loss in important industrial processes. Heat
transfer in the laminar boundary layer flow over a stretching
sheet with thermal radiation effect has several industrial
applications, including combustion, furnace design, nuclear
reactor safety, fluidized bed heat exchangers, solar collectors,
turbid water bodies, and photochemical reactors [11]. Ther-
mal radiation can be used to attain the required heat transfer
rate accompanied by the temperature distribution in the
boundary layer region. For this reason, the effects of radiation
are very important in various application areas like soil phys-
ics, geothermal energy extraction, chemical engineering,
glass production, furnace design, space technology applica-
tion, power generation systems, fight aerodynamics, and
plasma physics which operate at extremely high temperature.
In view of these applications, recently, many authors [12, 13]
studied the effect of various pertinent physical parameters on
flow and heat transfer of Newtonian and non-Newtonian
fluids flow over a surface as well as a disk by considering var-
ious flow situations and boundary conditions and achieved
very essential results.

Mabood and Waqar [14] studied the consequences of
radiation on heat transfer from a horizontal plane in an
exceedingly two-dimensional, incompressible steady, and
viscous flow using OHAM. Reddy et al. [15] examined the
Darcy-Forchheimer two-dimensional carbon nanotubes flow
in light of a melting surface with warm nonlinear radiation,
Cattaneo–Christov heat flux, and slip condition. They inves-
tigated the impacts of various constraints on various profiles,
and they found that velocity and corresponding thickness of
the boundary layer declines for rising values of the Forchheimer
parameter and porosity parameter. Moreover, inclined values of
melting parameter display a diminishing pattern for the tem-
perature field. Kuo [16] has provided the solution of thermal
boundary layer problems for flow past flat plates using the dif-
ferential transform method. Sakiadis [17] investigated the
boundary layer flow over a continuously moving rigid surface
with a continuing speed. Crane [18] investigated the boundary
layer flow due to a stretching surface and discovered the precise
solutions of the boundary layer equations.

Convective heat transfer with radiation study is incredi-
bly essential with the process involving high temperatures
like atomic power plants, gas turbines, and thermal energy

storage. In light of those numerous applications, Hossain
and Takhar [19] studied the effect of thermal radiation using
the Rosseland diffusion approximation on mixed convection
together with a vertical plate with surface temperature and
uniform free stream velocity. Furthermore, numerical solution
for the collective consequences of thermal radiation and con-
vective surface heat transfer on the laminar physical phenom-
enon in a few flat plate in a very uniform stream of fluid and a
few moving plate in an exceedingly quiescent ambient fluid
has been studied by Bataller [20]. Moreover, Olanrewaju
et al. [21] studied convective surface condition for the radia-
tion and viscous dissipation influences for the Blasius and
Sakiadis flows. Aziz [22, 23] investigated a similarity solution
for the laminar thermal boundary layer over a flat plate with
a convective surface boundary condition and studied hydro-
dynamic with thermal slip boundary layer flow over a flat plate
with a constant heat flux boundary condition. Garg et al. [24]
studied a similarity solution for the laminar thermal boundary
layer over a flat plate with internal heat generation and a con-
vective surface boundary condition.

However, to the best of authors’ knowledge, no analytical
study has been previously reported on the analysis of effect of
thermal radiation, buoyancy, and internal heat generation on
flow and heat transfer in the Blasius flow over a plate with con-
vective surface boundary conditions. In consideration of this
and its significance in various technological applications, engi-
neering, and numerous production processes, the authors of
the present paper aim to examine the effect of various relevant
parameters in the flow model like thermal radiation, the
Prandtl number, internal heat generation, the Grashof num-
ber, and the Biot number on flow and heat transfer in the Blas-
ius flow by the use of the optimal homotopy asymptotic
method (OHAM). The effectiveness, generalization, and reli-
ability of the proposed method have been proved in many
research papers and several authors [25–29] who obtained
solutions of currently important applications in science and
engineering by using this method. In OHAM, the control
and adjustment of the convergence region are provided in an
expedient way. Moreover, OHAM is parameter-free and pro-
vides better accuracy over the approximate analytical methods
at the identical order of approximation.

2. Basic Principles of the Optimal Homotopy
Asymptotic Method (OHAM)

We review the fundamental principles of OHAM as
expanded by Marinca et al. [30] and other researchers. Con-
sider the subsequent differential equation:

L z xð Þð Þ + r xð Þ +N z xð Þð Þ = 0, x ∈Ω, ð1Þ

with boundary condition:

B x, dz
dx

� �
= 0, ð2Þ

where Ω is problem domain, L and N are linear and nonlin-
ear operators, zðxÞ is an unknown function, and rðxÞ could
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be a known function. An optimal homotopy equation (also
called deformation equation) is made as

1 − pð Þ L ϕ x ; pð Þ + a xð Þð½ �
= h pð Þ L ϕ x ; pð Þð Þ + a xð Þ +N ϕ x ; pð Þð Þ + a xð Þ½ �, ð3Þ

where 0 ≤ p ≤ 1 is an embedding parameter.
hðpÞ =∑m

k=1p
kck is an auxiliary function on which the

convergence of the answer relies. The auxiliary function hðpÞ
helps to regulate the convergence domain moreover on con-
trol the convergence region. If the function ϕðx ; p, cjÞ is
expanded in Taylor’s series about p, the subsequent approxi-
mate solution is obtained:

ϕ x ; p, cj
� �

= z0 xð Þ + 〠
∞

k= 1
zk x, cj
� �

pk, j = 1, 2, 3⋯ : ð4Þ

It has been observed by many researchers that the conver-
gence of the series Eq. (4) depends upon the values of cj,ðj =
1, 2, 3,⋯mÞ. Hence, if it is convergent, then

z
∼ = z0 xð Þ + 〠

m

k=1
zk x ; cj
� �

: ð5Þ

Using Eq. (5) in Eq. (1) leads to the subsequent residual:

R x ; cj
� �

= L z
∼
x ; cj
� �� �

+ r xð Þ +N z
∼
x ; cj
� �� �

: ð6Þ

If Rðx ; cjÞ = 0, then z∼ is the precise solution, but this is
not the case usually in nonlinear problems. The values of cj,ð
j = 1, 2, 3,⋯mÞ will be optimally identified via various
methods like colocation method, methods of least square,
Galerkin’s method, the Ritz method, and the Kantorovich
method which are often utilized. Finally, substituting these
convergence control parameters in Eq. (5), one can get the
approximate solution of thematter. During this study, we used
the tactic of least square to search out the optimal values of the
convergence control parameters.

3. Mathematical Formation

Consider a two-dimensional steady incompressible fluid flow
with heat transfer by convection over a vertical plate. A stream
of cold fluid at temperature T∞ moved over the right surface
of the plate with unvarying velocity U∞ whilst the left surface
of the plate was heated by convection from a hot fluid at tem-
perature T f which provided a heat transfer coefficient hf . The
density variation as a result of buoyancy force effects was taken
under consideration with the momentum equation, and also,
the thermal radiation and the inner heat generation effects
were taken into account within the energy equation. Thus,
the equations describing the flow are as follows [22, 31]:

Continuity equation:

∂u
∂x

+ ∂v
∂y

= 0: ð7Þ

Momentum equation:

u
∂u
∂x

+ v
∂u
∂y

= υ
∂2u
∂y2

+ gβ T − T∞ð Þ − δ

ρ
B2
0u: ð8Þ

Energy equation:

u
∂T
∂x

+ v
∂T
∂y

= k
ρcp

∂2T
∂y2

−
1
ρcp

∂qr
∂y

+ Qo

ρcp
T − T∞ð Þ, ð9Þ

where u and v are the speed components along the flow
direction (x-direction) and normal to flow direction (y
-direction), υ is the kinematic viscosity, k is the thermal
conductivity, δ is the electrical conductivity of the base fluid,
cp is that the specific heat of the fluid at constant pressure, ρ is
the density, qr is the radiative heat flux in the y-direction, Qo
is the heat released per unit mass, T is the temperature of the
fluid inside the thermal physical phenomenon, g is the grav-
itational acceleration, β is the thermal volumetric expansion
coefficient, B0 is imposed flux, and T∞ is the constant tem-
perature of the ambient fluid. It is assumed that the viscous
dissipation is neglected, the physical properties of the fluid
are constant, and therefore, the Boussinesq and boundary
layer approximation is also adopted for steady streamline
flow. The fluid is taken into account to be gray, absorbing-
emitting radiation but nonscatter medium.

The velocity boundary conditions at the plate and far-off
from the plate are

u x, 0ð Þ = v x, 0ð Þ = 0, u x,∞ð Þ⟶ u∞: ð10Þ

The thermal boundary conditions are expressed as

−k
∂T
∂y

x, 0ð Þ = hf T f − T x, 0ð Þ� 	
, T x,∞ð Þ = T∞, ð11Þ

where u∞ is a constant free stream velocity and hf is the heat
transfer coefficient. The radiative heat flux qr is described by
the Rosseland approximation such that

qr = −
4σ∗

3k′
∂T4

∂y
, ð12Þ

where k′ and σ∗ are the mean absorption coefficient and the
Stefan-Boltzmann constant, respectively. We undertake that
the temperature alterations inside the flow are very small,
so that T4 can be expressed as linear function once the Taylor
series was used to expand T4 about the streamline tempera-
ture T∞, and neglecting higher order terms results the subse-
quent approximation:

T4 ≅ 4T3
∞T − 3T4

∞: ð13Þ

By using Eqs. (12) and (13), we obtain

qr =
−16σ∗T3

∞

3k′
∂T
∂y

: ð14Þ
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Plugging Eq. (14) in to Eq. (9), we get

u
∂T
∂x

+ v
∂T
∂y

= α + 16σ∗T3
∞

3k′
:
α

k

� �
∂2T
∂y2

+ α

k
Qo T − T∞ð Þ,

ð15Þ

where α = k/ρcp is the thermal diffusivity.

If we take Ra = kk′/ð4σ∗T3
∞Þ as the radiation parameter

in Eq. (15), we get

u
∂T
∂x

+ v
∂T
∂y

= α

ko
:
∂2T
∂y2

+ α

k
Qo T − T∞ð Þ, ð16Þ

where ko = 3Ra/ð3Ra + 4Þ.
To achieve the similarity solution of the problem, we

define similarity variable η and stream function f ðηÞ, and
the nondimensional form of the temperature θðηÞ is

η = y

ffiffiffiffiffiffiffi
u∞
υx

r
, u
u∞

= f ′, v = 1
2

ffiffiffiffiffiffiffiffiffi
u∞υ

x

r
ηf ′ − f

� �
, θ ηð Þ = T − T∞

Tw − T∞
,

ð17Þ

where f ′ = df /dη, u∞ is an unceasing free stream velocity,
and Tw is a constant temperature of the wall. From Eq.
(17), we obtain

∂u
∂x

= −
u∞ f ′′η
2x , ∂v

∂y
= u∞ηf ″

2x , ∂
2u
∂y2

= u2∞
υx

f ′′′: ð18Þ

Equations (7) and (18) demonstrate the equation of con-
tinuity that holds.

Using Eqs. (8), (17), and (18), we obtain

f ′′′ + 1
2 f f

′′ +Grxθ −Mf ′ = 0, ð19Þ

where

Grx =
gβ Tw − T∞ð Þx

u2∞
andM = δB2

0x
ρu∞

, ð20Þ

in which Grx andM, respectively, represent the local Grashof
number and the magnetic field parameter.

From Eq. (17), we can also obtain

∂T
∂x

= −θ′η
2x Tw − T∞ð Þ, ∂T∂y = θ′

ffiffiffiffiffiffiffi
u∞
υx

r
Tw − T∞ð Þ , ∂

2T
∂y2

= θ′′ u∞
υx

Tw − T∞ð Þ:

ð21Þ

Substituting Eqs. (17), (18), and (21) in to Eq. (16), we get

θ′′ + ko Pr
1
2 f θ

′ + λθ

� �
= 0, ð22Þ

where Pr = υ/α is the Prandtl number and λx =Qox/ðu∞ρcpÞ
is the internal heat generation.

Using Eqs. (10), (11), and (17), we get the transformed
boundary conditions, and they are as follows:

f 0ð Þ = f ′ 0ð Þ = 0, θ′ 0ð Þ = −Bi 1 − θ 0ð Þ½ �,
f ′ ∞ð Þ = 1, θ ∞ð Þ = 0:

)
ð23Þ

For the momentum and energy equations to have a sim-
ilarity solution, the parameters Gr, λ, and M must be con-
stants, not functioning as variable x as expressed above [20,
32]. This circumstance can be met if the imposed magnetic
field B0 is proportional to x−1/2 and the heat released/unit
mass Qo, and the thermal expansion coefficient β is propor-
tional to x−1. We therefore take

B0 = cx
−1
2 ,

β =mx−1,
Q0 = sx−1,

ð24Þ

where c, m, and s are constants. With these assumptions, we
have

Gr = mgυ Tw − T∞ð Þ
u2∞

,

M = c2δ
ρu∞

,

λ = s
u∞ρcp

:

ð25Þ

4. Solution of the Problem by the
Proposed Method

Applying OHAM on the nonlinear ordinary differential Eqs.
(19) and (22), we develop a family of equations:

1 − pð Þ f ′′′
� �

− h1 pð Þ f ′′′ + 1
2 f f

′′ + Grθ −Mf ′
� �

= 0

1 − pð Þ θ′′
� �

− h2 pð Þ θ′′ + ko Pr
1
2 f θ

′ + λθ

� �� �
= 0,

9>>>=
>>>;
ð26Þ

where p ∈ ½0, 1� and the primes indicate differentiation of the
function f with respect to η.

We consider f , θ, h1ðpÞ, and h2ðpÞ as follows:

f = f0 + pf 1 + p2 f2 + p3 f3, θ = θ0 + pθ1 + p2θ2 + p3θ3,
h1 pð Þ = pc1 + p2c2 + p3c3, h2 pð Þ = pc4 + p2c5 + p3c6:

ð27Þ

Plugging Eq. (27) into Eq. (26) and simplifying, rearran-
ging, and collecting terms with common powers of p, we
obtain the following zero-, first-, second-, and third-order
problems with regard to their boundary conditions.
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Zero-order problems:

f 0′′′ ηð Þ = 0, θ0′′ ηð Þ = 0: ð28Þ

Subject to the boundary conditions:

f0 0ð Þ = f0 ′ 0ð Þ = 0, f0 ′ ∞ð Þ = 1,
θ0 ′ 0ð Þ = −Bi 1 − θ 0ð Þð Þ, θ0 ∞ð Þ = 0:

)
ð29Þ

And its solution is

f0 ηð Þ = 1
2n η

2

θ0 ηð Þ = Bi 1 − θ 0ð Þð Þ n − ηð Þ:

9=
; ð30Þ

The first-order problems:

f 1′′′ η, c1ð Þ = c1
1
2 f0 f 0

′′ +Grxθ0 −Mf 0′
� �

θ1′′ η, c1ð Þ = c4pr
1
2 k0 f0θ0

′ + λk0θ0

� �
,

9>>>=
>>>;

ð31Þ

with boundary conditions:

f1 0ð Þ = f1 ′ 0ð Þ = f1 ′ ∞ð Þ = 0,
θ1 ′ 0ð Þ = θ1 ∞ð Þ = 0:

)
ð32Þ

Its solution is

f1 η, c1ð Þ = c1
1
48

η5

5n2 −
nη2

2

� �
+ Grxn

6 a 1 − θ 0ð Þð Þ η3 −
η4

4n − nη2
� �

−
M
12

η4

2n − nη2
� �� �

θ1 η, c4ð Þ = c4prn
3a 1 − θ 0ð Þð Þ −k0

48
η4

n4
− 1

� �
+ k0λ

η2

2n2 −
η3

6n3 −
1
3

� �� �
:

9>>>=
>>>;

ð33Þ

The second-order problems:

f 2′′′ η, c1,c2ð Þ = 1 + c1ð Þf 1′′′ + c1
1
2 f0 f 1

′′ + 1
2 f1 f 0

′′ +Grxθ1 −Mf 1′
� �

+ c2
1
2 f0 f 0

′′ +Grxθ0 −Mf 0′
� �

θ2′′ η, c4, c5ð Þ = 1 + c4ð Þθ1′′ +
1
2 k0pr c4θ1′ + c5θ0′

� �
f0 + c4θ0′ f1

h i
+ prλk0 c4θ1 + c5θ0ð Þ:

9>>=
>>;

ð34Þ

Subject to the boundary conditions:

f2 0ð Þ = f 2′ 0ð Þ = f 2′ ∞ð Þ,
θ2′ 0ð Þ = 0, θ2 ∞ð Þ = 0:

)
ð35Þ

Its solution is

f2 η, c1,c2ð Þ = 1 + c1ð Þc1
1
48

η5

5n2 −
nη2

2

� �
+ GrxnBi 1 − θ 0ð Þð Þ η3

6 −
η4

24n −
nη2

6

� �
−
M
12

η4

2n − nη2
� �� �

+ c1

c1
24

1
8

η8

84n3 −
η5

60 −
n3η2

168

� �
+GrxBi 1 − θ 0ð Þð Þ η6

20 −
η7

70n −
nη5

30 −
n4η2

60

� �
−M

η7

70n2 −
η5

60 −
n3η2

120

� �� �

+ 1
12 c1

1
8

η8

1680n3 −
η5

120 + 31n3η2
1680

� �
+ GrxBi 1 − θ 0ð Þð Þ η6

120 −
η7

840n −
nη5

60 + n4η2

48

� �
−
M
2

η7

420n2 −
η5

60 + n3η2

30

� �� �

+Grxc4prBi 1 − θ 0ð Þð Þ k0
48

n3η3

6 −
η7

210n −
7n4η2
30

� �
+ λ

nη5

120 −
η6

720 −
n3η3

18 + n4η2

15

� �� �

−Mc1
6

1
8

η7

210n2 −
nη4

24 + n3η2

15

� �
+GrxBi 1 − θ 0ð Þð Þ nη5

20 −
η6

120 −
n2η4

12 + n4η2

15

� �
−M

η6

120n −
nη4

24 + 7n3η2
120

� �� �

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

+ c2
1
48

η5

5n2 −
nη2

2

� �
+ GrxnBi 1 − θ 0ð Þð Þ η3

6 −
η4

24n −
nη2

6

� �
−
M
6

η4

4n −
nη2

2

� �� �
:

θ2 η, c4, c5ð Þ = prn3Bi 1 − θ 0ð Þð Þ

1 + c4ð Þc4
k0
48 1 − η4

n4

� �
+ λ

η2

2n2 −
η3

6n3 −
1
3

� �� �

+ 1
4 k0

c4
2prn2

k0
504 1 − η7

n7

� �
+ λ

η5

20n5 −
η6

60n6 −
1
30

� �� �
−

c5
12 1 − η4

n4

� �

−c1c4n
2

1
24

η7

210n7 −
η4

24n4 + 31
840

� �

+Grxna 1 − θ 0ð Þð Þ
3

η5

20n5 −
η6

120n6 −
η4

12n4 + 5
120

� �
−
M
6

η6

60n6 −
η4

12n4 + 1
15

� �
2
6664

3
7775

0
BBBBBBBBB@

1
CCCCCCCCCA

+λ c5
η2

2n2 −
η3

6n3 −
1
3

� �
+ c4

2prn2
k0
48

η2

2n2 −
η6

30n6 −
7
15

� �
+ λ

η4

24n4 −
η5

120n5 −
η2

6n2 + 2
15

� �� �� �

2
66666666666666666664

3
77777777777777777775

: ð36Þ
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Third-order problems:

Subject to boundary conditions:

f3 0ð Þ = f3 ′ 0ð Þ = f3 ′ ∞ð Þ,
θ3 ′ 0ð Þ = θ3 ∞ð Þ = 0:

)
ð38Þ

Also, the solution for Eq. (37) subject to Eq. (38) is found
in the same way, but they are too large expressions to be
included in this paper. Adding up the solution components
the four-term solution obtained by OHAM, for p = 1, is

f
∼
η, c1, c2ð Þ = f0 ηð Þ + f1 η, c1ð Þ + f2 η, c1, c2ð Þ + f3 η, c1, c2, c3ð Þ

θ
∼
η, c4, c5ð Þ = θ0 ηð Þ + θ1 η, c4ð Þ + θ2 η, c4, c5ð Þ + θ3 η, c4, c5, c6ð Þ:

8<
:

ð39Þ

In order to determine the values of convergence control
parameters in Eq. (36), we used the least square method
for Pr = 0:72, Gr = Ra =M = λ = 0:1, and we get c1 =
0:031077 ; c2 = −0:134380 ; c3 = −0:006856 ; c4 = −0:074109 ;
c5 = 0:003043 ; c6 = 2:236272:.

5. Result and Discussion

The governing PDEs are converted into a system of nonlinear
ODEs (Eqs. (19) and (22)) with boundary conditions (Eq.
(23)) by a suitable similarity transformation technique, and
these transformed equations are solved systematically by
the use of optimal homotopy asymptotic method. Analytical
approximate solutions for the velocity and fluid temperature
have been obtained for diverse embedded parameters in the
flow model controlling the liquid flow within the flow frame-
work. The impact of various relevant parameters in the gov-
erning equations of the flow model on the velocity and
temperature of the liquid has been displayed for different
values of the Prandtl number Pr, internal heat generation λ,
the Biot number Bi, radiation parameter Ra, and the Grashof
number Gr. The outcomes have been compared with the
result of other researchers for limited case and displayed in
tables and figures for specific parameters.

5.1. Comparative Analysis. To confirm the accuracy and
appropriateness of the method, we have compared the value
of the skin-friction coefficient f ′′ð0Þ and the temperature
gradient at the wall −θ′ð0Þ obtained by the present method
with the results reported by previous studies under limiting
conditions [13, 21, 22, and 22]. The comparison of the

obtained result is presented in Tables 1 and 2, which illus-
trates an excellent agreement. Hence, we are confident that
the method is suitable for examination of the problem.
Table 1 displays the comparison of values of the nearby Nus-
selt number −θ′ð0Þ and the skin-friction coefficient f ′′ð0Þ
obtained by utilizing the OHAM with the numerical result
reported by Olanrewaju et al. [21] for diverse values of
inserted parameters within the flow model, and it shows an
excellent agreement. It is evident from the table that the rate
of heat exchange at the plate surface −θ′ð0Þ and the skin-
friction coefficient f ′′ð0Þ intensifies with increasing values
of the Grashof number Gr, internal heat generation parame-
ter λ, convective heat transfer parameter Bi, and thermal
radiation parameter Ra. However, an increment in the fluid
Prandtl number diminishes the skin-friction but upsurges
the rate of heat transfer at the plate surface. In Table 2, com-
parison of the results of the Nusselt number and surface tem-
perature of the fluid for different value of Biot number with
the previously reported data in the cited literature is pre-
sented. As it is observed in Table 2, the results are in good
agreement with the results reported by Solomon and Mitiku
[13], Olanrewaju et al. [21], and Aziz [22]. From the table, it
is also obvious that both the Nusselt number and surface
temperature rise with the Biot number.

In Figures 1–5, the effects of various parameters on the
nondimensional velocity profiles inside the boundary layer
have been displayed. For the most part, the fluid speed is zero
at the plate surface and expanded gradually away from the
plate towards the free stream value satisfying the boundary
condition. Figures 1–3 show that an increase in the value of
the Prandtl number, thermal radiation, and internal heat
generation parameter has an immaterial impact on the fluid
velocity even if the velocity profile shows a bit decreasing
trend as the esteem of Pr increased and shows a little increas-
ing tendency as the values of thermal radiation and internal
heat generation parameters increased. Actually, fluid viscos-
ity has a tendency to increase with increasing resistance to
distortion which leads to a reduction within the velocity pro-
file as the Prandtl number increases, but it has a trend to
decrease as internal heat generation and thermal radiation
increase.

The impact of the Grashof number on the velocity pro-
files is exhibited in Figure 4. It is seen from the figure that
an increment within the buoyancy force causes to increase
in the velocity profile. Physically, an increase inGr adds more
thermal energy into the fluid molecules and loosens up inter-
molecular forces within the fluid particles which means the

f 3′′′ η, c1, c2, c3ð Þ = 1 + c1ð Þf 2′′′ + c2 f 1′′′ +
1
2 c1 f1 f 1′′ + f0 f 2′′ + f 0′′ f2

� �
+ 1
2 c2 f0 f 1′′ + f 0′′ f1

� �
+ 1
2 c3 f0 f 0

′′ +Grx c1θ2 + c2θ1 + c3θ0ð Þ + c3 f 0′′′ −M c1 f 2′ + c2 f 1′ + c3 f 0′
� �

θ3′′ η, c4, c5, c6ð Þ = 1 + c4ð Þθ2′′ + c5θ1′′ +
1
2 Prk0 c4θ2′ + c5θ1′ + c6θ0′

� �
f0 + c4θ1′ + c5θ0′

� �
f1 + c4θ0′ f2

h i
+ Prλk0 c4θ2 + c5θ1 + c6θ0ð Þ:

9>>=
>>;

ð37Þ
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Table 1: Comparison of value of the skin-friction coefficient and the Nusselt number obtained by OHAM with numerical solutions reported
by other researchers for various parameters.

Pr Gr Bi λ Ra
By Olanrewaju et al. [21] Present result
f ′′ 0ð Þ −θ′ 0ð Þ f ′′ 0ð Þ −θ′ 0ð Þ

0.72 0.1 0.1 0.1 0.1 0.386316 0.066810 0.386325 0.066809

0.72 0.1 1 0.1 0.1 0.460825 0.176790 0.460827 0.176789

0.72 0.1 10 0.1 0.1 0.483261 0.213880 0.483259 0.213878

0.72 0.5 0.1 0.1 0.1 0.557241 0.069730 0.557250 0.069732

0.72 1 0.1 0.1 0.1 0.723310 0.071736 0.723308 0.071737

0.72 0.1 0.1 0.5 0.1 0.280070 0.110631 0.280069 0.110629

0.72 0.1 0.1 0.6 0.1 0.298365 0.102052 0.298367 0.102048

0.72 0.1 0.1 0.1 0.5 0.392337 0.065305 0.392336 0.065312

0.72 0.1 0.1 0.1 1 0.398724 0.063698 0.398719 0.0636987

0.72 0.1 0.1 0.1 2 0.408879 0.061177 0.408881 0.061169

3.00 0.1 0.1 0.1 0.1 -0.074540 0.231312 -0.074538 0.231315

7.10 0.1 0.1 0.1 0.1 -0.015860 0.261733 -0.015858 0.261729

Table 2: Comparison of the results of the Nusselt number and surface temperature for different values of Bi with results reported by Solomon
and Mitiku [13], Olanrewaju et al. [21], and Aziz [22].

Bi
Present result

Solomon and Mitiku
[13]

Olanrewaju et al. [21] Aziz [22]

–θ’ 0ð Þ θ 0ð Þ –θ’ 0ð Þ θ 0ð Þ –θ’ 0ð Þ θ 0ð Þ –θ’ 0ð Þ θ 0ð Þ
0.05 0.0427638 0.144652 0.042764 0.14464 0.042767 0.14466 0.0428 0.1447

0.10 0.0747231 0.252749 0.074722 0.25272 0.074724 0.25275 0.0747 0.2528

0.20 0.11929589 0.403534 0.119296 0.40351 0.119295 0.40352 0.1193 0.4035

0.40 0.1699937 0.575009 0.169993 0.57501 0.169994 0.57501 0.1700 0.5750

0.60 0.1980488 0.669908 0.198049 0.66990 0.198051 0.66991 0.1981 0.6699

0.80 0.2158631 0.730177 0.215862 0.73015 0.215864 0.73016 0.2159 0.7302

1.00 0.2281776 0.771786 0.228176 0.77179 0.228178 0.77181 0.2282 0.7718

5.00 0.2791322 0.944155 0.279129 0.94415 0.279131 0.94417 0.2791 0.9441

10.00 0.2871457 0.971278 0.287145 0.97127 0.287146 0.97128 0.2871 0.9713

20.00 0.2913293 0.985429 0.291331 0.98541 0.291329 0.98543 0.2913 0.9854

30.00 0.2927542 0.990237 0.292752 0.99023 0.292754 0.99024 — —
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Figure 1: Velocity profiles for varied values of Pr once Gr = λ =M
= Bi = Ra = 0:1.
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Figure 2: Velocity profiles for unlike values of Ra once Pr = 0:72,
Gr = 0:1, M = 0:1, λ = 0:1, and Bi = 0:1.
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fluid is less viscous due to an increase in temperature. Thus,
the force resists the motion, viscous force reduces, and buoy-
ancy drive acts as a pressure gradient to advance the stream.
Hence, the velocity of the fluid and local heat transfer boosts
with increasing in the value of Gr because Gr is the ratio of
the buoyant to viscous force acting on a fluid in the velocity

boundary layer. In Figure 5, the impact of the Biot number
on the fluid velocity profile is revealed. It is observed that
the fluid velocity increased with the Biot number. This hap-
pens because the plate surface is convectively heated and
the flow gets to be speedier. In reality, when fluids are heated
their density reduces and buoyancy increases. The increment
in bouncy force is responsible to the momentum boundary
layer thickness become elongated and results in the boosting
of the fluid velocity.

In Figures 6–10, the effects of various physical parameters
in the flow model on the fluid temperature inside the bound-
ary layer are displayed. The figures illustrated that the fluid
temperature is a peak at the plate surface and exponentially
reduced to zero at a distance far away from the plate satisfy-
ing boundary conditions. From Figure 6, we noticed that
snowballing in the values of the Prandtl number leads to
dropping the fluid temperature profile and the thermal
boundary layer thickness. The reason behind this phenome-
non is that thermal diffusivity decreases against the Prandtl
number as they have inverse relation and leads to a lessening
in the fluid temperature. Physically, an increment in the
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f
′(𝜂

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

𝜂

Figure 3: Velocity profiles for altered values of λ once Pr = 0:72,
Gr =M = Bi = Ra = 0:1.
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Figure 4: Velocity profiles for altered values of Gr once Pr = 0:72,
λ =M = Bi = Ra = 0:1.
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Figure 5: Velocity profiles for altered values of Bi once Pr = 0:72,
Gr = λ =M = Ra = Bi = 0:1.
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Figure 6: Temperature profiles for sundry values of Pr once λ =
M = Gr = Ra = Bi = 0:1.
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Figure 7: Temperature profiles for sundry values of Gr once Pr =
0:72, λ =M = Ra = Bi = 0:1.
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Prandtl number implies an increase in fluid viscosity which
in turn causes a reduction in the temperature distribution.
The effect of the Grashof number on the temperature profile
is presented in Figure 7. It is observed that raising the values
of the Grashof number diminishes the fluid temperature pro-
file. This happens because when Gr increases, the fluid parti-
cle gathers more momentum which causes additional heat
flow to the surrounding and thereby reduces the temperature
profile.

In Figure 8, we found out that the temperature profile
increased with the increased values of Ra which shows that
the thermal boundary layer thickness enlarges with the
increase in the thermal radiation. Physically, radiation is con-
sidered a process of energy transfer which extracts energy by
moving particles, which upsurges the thermal conductivity of
moving liquid. Therefore, higher radiation parameter results
in a greater heat production in the flow which in turn leads to
an increase in temperature profile of the fluid. As illustrated
in Figure 9, the fluid temperature increases with snowballing
the values of the Biot number, and the thermal boundary
layer becomes thicker due to the convective heat transfer
from the warm fluid on the left surface of the plate to the
freezing fluid on the right surface. This then causes the fluid
to heat up so increasing the fluid temperature deliveries.
From the mathematical point of view, increasing the values
of the Biot number means the convective heat transfer extent
increases, thereby enhancing additional heat transfer from
the surface which results in temperature distribution of the
flow to rise. From Figure 10, we have seen that the tempera-
ture profile increases with internal heat generation. This
illustrates the presence of an exponentially decaying internal
heat generation within the flow system brings to reinforce the
thermal boundary layer thickness.

6. Conclusion

In this work, a two-dimensional steady incompressible fluid
flow with heat transfer by convection over a vertical plate is
considered. A stream of cold fluid at temperature T∞ moved
over the right surface of the plate with constant velocity U∞
whilst the left surface of the plate was heated by convection
from a hot fluid at temperature T f which provided a heat
transfer coefficient hf . The density variation as a result of
buoyancy force effects was taken under consideration with
the momentum equation, and also, the thermal radiation
and the inner heat generation effects were taken into account
within the energy equation. The nonlinear partial differential
equation describing the flow problem is transformed into
equivalent nonlinear ODEs using similarity variable transfor-
mation system and then solved analytically by the use of the
OHAM. The impact of the combined effects of thermal radi-
ation, internal heat generation, and buoyancy on tempera-
ture and velocity profile is analysed. To confirm the
applicability and accuracy of the method, the obtained result
is verified with some successful and available theoretical data
in the literature. The comparative outcomes show an excel-
lent agreement with the current computational analysis. We
have taken into consideration the effects of radiation

𝜃(
𝜂)

Ra = 0.1
Ra = 0.5

Ra = 1.0
Ra = 1.5

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

𝜂

Figure 8: Temperature profiles for sundry values of Ra once Pr =
0:72, λ =M = Bi =Gr = 0:1.
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0:72, λ =M = Gr = Ra = 0:1.
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parameter, internal heat generation, the Prandtl number Pr,
Grashof number Gr, and Biot number Bi on speed and tem-
perature profile of the fluid. From the result of the present
study, the subsequent significant conclusions have been
drawn:

(1) The temperature profile reduces with an increase in
the value of the Prandtl number. Hence, higher Pr
value causes a thinner thermal boundary layer. How-
ever, a significant impact is not determined on the
fluid velocity with varying Pr even though it shows
reduced tendency

(2) With an increase in the value of the Biot number,
both the velocity and temperature profile of the fluid
increase

(3) With the rise in value of the Grashof number, the
fluid velocity increases; however, the fluid tempera-
ture profile diminishes

(4) The temperature profile of the fluid increases with
increasing values of thermal radiation parameter,
but significant effect is not ascertained in its velocity
profile

(5) The temperature distribution of the fluid increase
once the values of internal heat generation increases,
but the variation in velocity profile is insignificant
though slightly increasing tendency is ascertained.
So, a higher value of internal heat generation causes
thickening of the thermal boundary layer

(6) The skin-friction coefficient and the Nusselt number
intensify with the Grashof number, internal heat gen-
eration, Biot number, and thermal radiation
parameter

(7) With an increment in the Prandtl number, the skin-
friction diminishes and the rate of heat transfer at
the plate surface upsurges.

Nomenclature

T∞: Constant temperature of the ambient fluid
T : Temperature of the fluid
Tw: Constant temperature of the wall
g: Gravitational acceleration
Gr: Grashof number
Pr: Prandtl number
qr : Radiative heat flux
u∞: Constant free stream velocity
u: Stream wise velocity
v: Normal velocity
k: Thermal conductivity
cp: Specific heat at constant pressure
Qo: Heat released per unit mass
B0: Imposed flux
hf : Heat transfer coefficient
υ: Kinematic viscosity
β: Thermal volumetric expansion coefficient

δ: Density of the fluid
σ∗: Stefan-Boltzmann constant
α: The thermal diffusivity
η: Similarity variable
θ: Nondimensional temperature
λ: Internal heat generation
x: Steamwise coordinate axis
y: Normal coordinate axis
k′: Mean absorption coefficient
f : Stream function
M: Magnetic field parameter
Bi: Biot number
Ra: Thermal radiation parameter.
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