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Motor learning is based on the correct repetition of specific movements for

their permanent storage in the central nervous system (CNS). Rehabilitation

relies heavily on the repetition of specific movements, and game scenarios

are ideal environments to build routines of repetitive exercises that

have entertaining characteristics. In this respect, the gamification of the

rehabilitation program, through the introduction of game-specific techniques

and design concepts, has gained attention as a complementary or alternative

to routine rehabilitation programs. A gamified rehabilitation program promises

to gain the patient’s attention, to reduce the monotony of the process

and preserve motivation to attend, and to create virtual incentives through

the game, toward maintaining compliance to the “prescribed” program.

This is often achieved through goal-oriented tasks and real-time feedback

in the form of points and other in-game rewards. This paper describes

MILORD rehabilitation platform, an a�ordable technological solution, which

aims to support health professionals and enable remote rehabilitation, while

maintaining health service characteristics and monitoring. MILORD is an

end-to-end platform that consists of an interactive computer game, utilizing

a leap motion sensor, a centralized user management system, an analysis

platform that processes the data generated by the game, and an analysis

dashboard presenting a set of meaningful features that describe upper limb

movement. Our solution facilitates themonitoring of the patients’ progress and

provides an alternative way to analyze handmovement. The systemwas tested

with normal subjects and patients and experts to record user’s experience,

receive feedback, identify any problems, and understand the system’s value

in monitoring and support motion defect and progress. This small-scale study

indicated the capacity of the analysis to quantify themovement in ameaningful

way and express the di�erences between normal and pathological movement,

and the user experience was positive with both patients and normal subjects.
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Introduction

Motor control is a complex process or a set of sub-processes

that involves the coordination of muscles and limbs to perform

a motor skill either voluntary or as a reflex. From birth,

humans are trained in motor control by integrating sensory-

motor information, a procedure called motor-learning. First,

through observation and following via repetition, movements

are consolidated in the central nervous system (CNS). Certain

pathologies or injuries affect the CNS resulting in the loss of

cognitive functions of the brain. This may impact several motor

functions and cause partial or complete loss. Rehabilitation

programs aim to detect motor deficits and help patients regain

control of their movements through motor learning. The

standard rehabilitation procedure entails the repetitive training

of the correct form of isolated movements. Although effective,

the monotony of the standard procedure often requires expert

supervision to ensure compliance with the protocol.

The focus of this paper is to present MILORD, an end-to-

end platform for remote upper limb rehabilitation. MILORD

consists of a 3D interactive computer game and an analysis

platform based on a novel set of movement-related features,

which can be used for a detailed upper limb movement

characterization. MILORD aims to optimize the motor control

and learning processes by providing an engaging way for

rehabilitation exercise execution along with a set of statistical

tools that quantitatively evaluate the patient’s upper limbmotion

and overall performance. The quantitative analysis establishes a

baseline that can distinguish between healthy and pathological

movement and additionally quantifies the patient’s rehabilitation

progress and improvement.

This work presents the complete platform, in terms of a

rehabilitation game in virtual 3D CGI environment, a secure

data management and automatic analysis system, and an

application for the physician to moderate access, configure the

game, and explore the results, along with evaluation results.

Related work

There has been an increasing number of studies regarding

the assistance of physical rehabilitation and conventional

treatment methods via technology (Ang and Guan, 2013; Meijer

et al., 2018). This interest in technology-based rehabilitation

has led to the development of an emerging domain that

combines exergames, gamification mechanisms, and traditional

rehabilitation methodologies (Smeddinck et al., 2015). These

novel treatment methodologies combine software and hardware

to facilitate the process of motor learning, by introducing an

efficient (Veerbeek et al., 2017) and more rewarding way of

performing a series of repetitive and functional movements,

which are required for the rehabilitation of patients with

motor deficits.

Most of the existing research works on the gamification of

conventional treatment methods refer to the development of VR

games (3D simulations of the real world) in conjunction with

a set of sensors or one sensor that is capable of mapping and

capturing the hand motion (Koutsiana et al., 2020). One of the

most recent studies (Ma et al., 2018) presents the VR simulation

of a bowling game with the use of Kinect and Vicon sensors.

The target of this system is to restore hand and wrist motion in

people that have previously experienced stroke. Another recent

work (Ghassemi et al., 2019) also focused on stroke survivors

using an EMG sensor to rehabilitate the fine motor skills of the

wrist and fingers. The scenarios of the game were to move on a

tiled screen and reveal images or to move inside a maze.

The hand-tracking sensor leap motion has attracted the

interest of the research community because of its ability to

accurately capture hand motion. Its tracking ability led to its

use for the transposition of a subject’s hand movement in 3D

virtual worlds and serious games that try to imitate conventional

treatment methods. Dias et al. (2019) presented a system that

used leap motion in combination with Oculus Rift VR Headset

focusing on post-stroke hand rehabilitation. In the work of

Afyouni et al. (2017), leap motion was used for a system that

aimed at the rehabilitation of various hand parts. The game-

based system instructed the users to follow various trajectories

in a 3D world.

While most of the existing studies proceed in the validation

of their system via large- or small-scale experiments and the

analysis of the extracted data, few go as far as to develop a

complete monitoring and analysis platform accessible at any

time by the therapist. Huber et al. (2010) presented a Web-

based interface where the therapist could configure the settings

of the game and monitor the stored clinical data from patient’s

sessions in real-time, though no further analysis on acquired

data was presented. Halic et al. (2014) implemented a cloud

storage and computing service for their hand rehabilitation

system. However, the system not only lacked a user interface

(UI) for monitoring patients’ progress, but also did not include

an analysis methodology for the collected clinical data.

MILORD is a multi-component rehabilitation platform that

can be used as a tool for the medical treatment of patients with

physical impairments of the upper limbs (Chytas et al., 2020)

using a leap motion controller. It supports the idea of “gaming

as a health service” (GaaHS) and addresses the above gaps via,

• Secure and moderated services that allow users to play

personalized games, configured by their physician based on

their condition and the intended outcome,

• Data that are safely and automatically collected,

• Support for local (supervised) and remote (unsupervised)

execution of the rehabilitation program,

• Automatic, sophisticated, data analysis, and meaningful

presentation of the results.
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FIGURE 1

MILORD design approach.

Materials and methods

The rationale for developing MILORD as a GaaHS platform

stems from the need to support the rehabilitation process of

people who suffer physical impairments of the upper limbs,

regardless of the cause of their pathology as a remotely provided

service that is moderated and monitored by the physician

without the need of visit-based rehabilitation sessions. The

platform is aimed to be a multifaceted tool that will alleviate

some of the physician’s workload and provide him/her with an

overview and insights about the patient’s condition, and provide

a gaming interface for the patient to help him/her conduct

his/her rehabilitation program less monotonously and more

efficiently. Currently, the platform has one main game scenario

with configurable variations that allow different gameplays, and

one side game that is not a part of the data analysis and serves

currently as an enhancement of the patient’s gaming experience.

In an iterative procedure, the platform’s design requirements

were defined engaging domain experts from both the clinical

and technological aspects (Figure 1). The main requirements are

summarized below:

• Interaction with the game: The main actions

in the rehabilitation game should be performed

with the motion controller, to have better results

for the restoration/improvement of the patient’s

physical movements.

• The movement associated with rehabilitation protocol and

motivation: The game process should be parameterized

to cover each patient’s rehabilitation needs. The

games of the platform should be engaging and

provide feedback to the user, to improve his/her

therapeutic experience and help them adhere to the

medical protocol.

• Support of supervised and unsupervised use: Initial

requirements were aimed at deployment in a controlled

environment. Revisions of the requirements led to

deployment as a GaaHS which allows moderated but

unsupervised use in a patient’s own environment.

• Low-cost infrastructure: The system should be built and

rely on low-cost hardware and software.

• Graphical user interface: The implemented games of

the platform should operate through the specified

motion controller. The interface should be visually and

conceptually clear. Also, the navigation inside the game

should be intuitive and should not require specific training

to use. Finally, the graphics of the game should be simple to

avoid the mental overload of the user, yet elegant to evoke

his/her interest.

• Monitoring of patient progress via stored activity data: The

platform’s service should record, store, and automatically

synchronize all game data, so they can be analyzed.

Analysis and visualization of the data should be performed

automatically and unobtrusively after each patient’s therapy

session. The analysis should present not only results

per session but also combined results and progress after

several sessions.

Rehabilitation game

Hand movements and exercises

The primary aim of the game platform is to support the

patient in a rehabilitation session, by helping him/her to perform

a high number of repetitions of the therapy exercises, while

making the entire process at the same time more engaging

in comparison with the standard procedure. This is feasible

by emulating the hand movement in physiotherapy exercises

and making them part of a game paradigm. The movement of

the hand, across the horizontal and vertical plane, corresponds

to these pairs of exercise movements: flexion/extension and

adduction/abduction. There is also pronation and supination

of the forearm, which is mapped to the rotation of the

hand (Figure 2).
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FIGURE 2

(A) Adduction and abduction of the hand, (B) flexion and extension of the hand, and (C) pronation and supination of the forearm. Arrow shows

direction of movement.

Game development tools

The motion controller selected for the interaction of the

user with the virtual world of the game is leap motion1. Leap

motion is a widely used sensor that captures the movement of

the hand accurately, does not need markers to enable tracking,

and is non-intrusive. The device performs image analysis of the

frames captured by its twi infrared cameras and provides the

3D locations of various elements in the scene (e.g., center of

the hand/palm, fingertips, and finger joints) through its API. Its

sampling rate is on average 60 frames per second (fps) and can

theoretically reach 120 fps, which is adequate for the purposes of

this platform.

The software of the game platform was developed on the 3D

graphics engine, Unity 3D, and C# was used as the programming

language. Unity was selected because of its shallow learning

curve and because of leap motion’s provided SDK, which allows

the connection of the device with the unity platform and

facilitates rapid game development.

Games description

The user (word user here) denotes a general user that

is using/testing the platform, a patient, a healthy individual,

or physician performs the rehabilitation exercises inside the

main game of the game platform. The scenario is a flying

1 https://www.ultraleap.com/product/leap-motion-controller/

simulation. An airplane-like object is presented at the middle

of the screen which mimics or corresponds to the patient’s

hand movement on the X (left–right) and the Y (up–down)

axis of the 3D space [image of 3D system]. The illusion of the

airplane’s movement is achieved by moving all the presented

scene’s objects apart from the airplane that stays still in the

middle bottom area of the computer screen. Movement on the

Z-axis is not considered since the movement is analyzed on the

XY plane.

The purpose of the game is to guide the airplane through

orthogonal objects, called “gates,” that come toward the user

one at a time. The gates are positioned in a preconfigured 3x3

grid, so each one can appear at 1 of the 9 possible positions.

This configuration emerged as a necessity to collect consistent

data and make the analysis results more reliable. At the center

of each gate there is a rotating coin (game object), which can

be collected by the user if he collides with it. This feature has

multiple purposes: (a) it serves as amark to the center of the gate,

giving the user a sub-target, besides the main one, the gate, (b)

can be a primary analysis feature, which indicates how accurate

is the user’s movement when he aims for the center of the gate,

and (c) it acts also as a motivation for the user, thus enhancing

engagement (Figure 3).

The order of display of the gates is random and is handled

by a pseudo-random algorithm, with a modification introduced

in it, which ensures that each gate will emerge at least once in

a game session, given that the overall number of gates will be

N ≥ 9. Randomness is an important factor in the rehabilitation

scenario. It prevents the patient from memorizing the order in
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FIGURE 3

(A) Game scene of the main game version and (B) explanatory scene of the game objects in the main scene.

which the gates appear on the screen and completing a game

session by memory. Therefore, the results we obtain from the

analysis are unbiased in this respect.

The termination condition for the game is either a time

limit or a limit on the number of gates that are generated in

a game session. The termination conditions are a subset of

the system’s parameters that are configured by the supervising

physician. The other parameters include the configuration of

the game’s difficulty and the selection of gameplay variant. The

game difficulty setting has four levels, namely, “easy,” “medium,”

“hard,” and “very hard” and is regulated through two variables:

• The speed that the gates move toward the user.

• The distance (perceived as depth) that the gates have in-

between them on the Z-axis.

The group of parameters for the gameplay consists of

the following:

• Rotation of the hand (pronation–supination).

• Camera view (the point of user’s view—first/third person).

• Part of upper limb (hand-wrist/finger) used to control

the game.

The resulting game variants are displayed below.

Variant 1

The physician can choose from the game settings to

enable the rotation of the hand. This results in including

the pronation/supination of the hand and forearm in the set

of exercise movements of a therapy protocol. This pair of

movements is not standard exercise for all patients, since those

who suffer from severe upper limb impairments have a limited

range of motion. In the game, a part of the set of gates is rotated,

at 45 and −45◦ to signal the user to add a rotation to his/her

handmovement. Although the hand of the user can rotate freely,

the result in the virtual world of the game is a fixed rotation

of the airplane at 45 and −45◦, mimicking that of the gates. It

was implemented this way, because some patients exhibited a

limited range of rotation that did not add up to the overall game

feel (Figure 4).

Variant 2

Through the settings menu, the user can change the

perspective of the camera from which he experiences the game.

The game is played from a third-person perspective, meaning

that the camera of the scene stands at a short distance behind

and above the airplane. The first-person camera option allows

the user to play the game from inside the cockpit of the airplane,

i.e., he/she will be viewing the scene from the pilot’s position, and

he/she will not be able to see the airplane’s body (Figure 5).

Variant 3

Another game modality of the platform allows to perform

rehabilitation exercises with the isolated movement of the index

finger and the wrist. This modality is suitable for patients with

heavy impairments in the upper extremity. Although the game

scenario remains the same, the user moves only his/her index

and wrist to guide the airplane through the gates (Figure 6).

Mini game

Apart from the main rehabilitation game and its variants,

an additional fundamentally different mini-game was developed

to motivate the patient and add to the entertainment aspect

of the platform. Also, the mini-game may serve in the

future as another standalone game scenario that offers various

kinds of data such as data from simultaneous movement of

both hands.

The scenario of this game is that there are 6 static “stations”

in the scene - 3 at the left and 3 at the right. These two groups

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.932342
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Fotopoulos et al. 10.3389/fcomp.2022.932342

FIGURE 4

Variant 1 of the game. The user rotates his hand, and the avatar rotates accordingly in the game scene.

FIGURE 5

Variant 2 of the game. The user is “transferred” inside the virtual airplane, to immerse the user and make him feel that his hand is the virtual

airplane.

of stations can be either banana trees or monkeys. In each

round, a banana appears on one of the trees and the user must

collect it with his/her one hand (the one closest to that side)

and bring it to the center of the screen, where his/her other

hand will take it and “feed” it to one of the monkeys residing

in the opposite side. A complete round is when a banana reaches

a monkey. After each round, the stations switch sides, for the

user to alternate hands and not get accustomed to a single

side. There is no time limit for this game. At this phase, it is

a side game for the user to relax from his/her therapy routine

and keep him/her engaged, but there are plans to include it in

the therapy protocol for patients that need to perform bilateral

exercises (Figure 7).

Initially, the program included supervised treatment during

the hospitalization of the patients diagnosed with a stroke.

After this period, the physician judged and selected some of

the patients that were able to perform some sessions at home

based on their ability to follow the therapy guidelines. The

therapist contacted the patients by phone on a regular basis,

to be informed about the patient’s progress regarding these

treatments. In addition, quantitative data about the treatments

were recorded on the server and the physician could monitor

the patient’s progress using the dashboard component of the

Milord platform. Moreover, an assistant carer was frequently

visiting to check whether the guidelines were followed or any

problems occurred. Finally, if necessary, the informal carers

(family members) of the patients were also trained to use the

program to help the patients.

Regarding user training, therapy guidelines included the

description of the game’s objectives and instructions on how

to play. All recruited patients were instructed on how to put

their hand over the sensor to capture each move. The hand
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FIGURE 6

Variant 3 of the game. The user can perform the rehabilitation exercises with the movement of his wrist and finger.

FIGURE 7

Mini-game. The user collects the banana with his left hand from the top left tree and brings it to the middle, where he passes it on to his right

hand to give it to the bottom right monkey that is making a dance. After a successful try, trees and monkeys switch sides.

should have specific posture defined by the physician. The

game scenario and objectives were explained. After that, the

patients were instructed to navigate the airplane from gate to

gate with the movement of their hand, trying to pass through

as many gates as they can and collect the coins that appear in

the center of each gate if possible. The hand movement should

be smooth and as steady as possible to align with the scope of

the therapy.
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Data management and system’s overall
architecture

The diagram in Figure 8 shows the architecture of MILORD

system as well as the flow of the data. Specifically, the parts of

MILORD’s system are as follows:

• The patient’s computer on which the game is installed. A

leap motion controller is connected to this computer and

the patient can complete the assigned gaming sessions. The

platform is responsible not only for the data collection, but

also for the definition of the user’s alias, the activation of the

profile, the verification of the personal identification key of

the specific user, and the data synchronization on the secure

storage server using the personal identification key.

• The therapist’s computer: The therapist, using just a

web browser, gains access to the analysis service after

its accreditation via the authentication and authorization

server. Moreover, via a user management interface, the

therapist can register new users, personalize the game

setting for each user remotely, and examine the analysis

results and the patient’s progress.

• The authentication and authorization server manages the

issuance and validation of personal identification keys and

thus moderates access to the game and the analysis service.

• The secure storage server stores the raw data files from the

game and provides them (securely and upon request) to the

analysis service. The communication in both cases is not

only encrypted (via HTTPS protocol), but also certified as

a valid personal identification key is required.

• The therapist’s analysis and user management

dashboards server: The server hosts the analysis and

user management dashboards and communicates with

both the authentication and authorization server to obtain

the appropriate JWT and the storage server to receive the

files to be analyzed.

All communications presented are encrypted via HTTPS

protocol, whereas for some connections, user authentication is

also required. Only certified and authorized users of the system

can complete these connections successfully. The sessions’ data

are uploaded to the server and analyzed at regular intervals.

The data collected by the rehabilitation game are divided

into motion and game data. The motion data consist of the

3D position vectors of the hand palm and their respective

timestamps and at what angle is the hand rotated. The game

data consist of the position and rotation of the gates in the grid

system, the time signature that the airplane passed it (either from

inside or outside), and if the coin inside them was collected.

Both kinds are used during the analysis phase and are stored in

csv format.

Data analysis is performed periodically, when new data are

available in the storage, and the calculated features are stored

in a structured manner in an SQL database, to be available for

selection and presentation, as well as further use. The database

consists of three interconnected tables:

• Subjects: stores the nicknames of the patients.

• Games: stores each game’s id, properties, and settings.

• Analysis results: stores the features extracted from the

analysis procedure for each game.

More details on the data analysis part are presented in the

next section.

Data analysis service

Among the features that strengthen the value of MILORD

as a GaaHS is the analysis of the data produced by the game

sessions for decision support. This is an automated analysis that

aims to provide the physicians with a quantified view of patient’s

game response, including not only game usage and scores, but

alsomotion analysis features, as described in detail in Subsection

Motion features.

The physician canmonitor the patient’s progress via the data

analysis dashboard. The main components of the data analysis

dashboard are as follows:

• The presentation of feature tables for all the users that have

analyzed data.

• The visualization and descriptive analysis of the

motion features.

• Interactive interface provided to the physician to adjust

the data presentation and descriptive analysis to various

monitoring time windows.

Motion features

The raw data point acquisition rate is tied to the frame

rate at which the game runs. Although the frame rate for

the game was capped at 60 fps, it can occasionally drop

below 60, an occurrence more common in systems with low

computational capabilities.

Another issue was the artifacts that occurred when the leap

sensor failed momentarily to correctly identify the subject’s

hand, typically other objects interrupting the sensor’s field of

view or nearby light sources causing interferences. The abrupt

changes in the hand trajectory were identified using a high

pass filter, followed by an evaluation of the neighboring area

to determine which part of the movement was the artifact
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FIGURE 8

System’s overall architecture diagram.

(if any). The data points that were deemed as artifacts were

subsequently removed. Firstly, time windows that had more

than 25% of the expected samples missing were removed during

the analysis.

As a next step, to address both the above issues

and to facilitate an analysis that supports exploration

in the frequency domain, the time series of the hand

coordinates was interpolated at a steady rate equivalent to

60 fps.

The gameplay can be distinguished into parts. Each part

corresponds to the period between two consecutive gates (time

window Wi). The gates (Gi) are moving toward the avatar at a

controlled pace. Therefore, all the time windows have the same

duration, except for the first gate, which appears a few moments

after the start, to provide the user ample time to get accustomed

to the game.

Each time window (Wi) is further distinguished into

three different sub-periods (Figure 9). Those periods

were detected by examining the velocity on X and Y

axes, considering the direction and the proximity to the

target gate.

1. Response (DT1: t0-t1): it refers to the time period starting

when the user has reached the Gi gate until they become

aware of the upcoming gate Gi+1, and they begin to move

toward it. This is characterized as a steady state (orange).

2. Movement (DT2: t1-t2): it refers to the time period during

which the user is moving from Gi toward the upcoming

gate Gi+1. This is a movement state (green).

3. Stabilization (DT3: t2-t3): it refers to the time period

from the time point that the user has arrived at the X, Y

coordinates that correspond to the Gi+1 gate and is waiting

to reach it (plane pass through the gate) until the time the

avatar crosses the gate. This is a steady state (red).

Specifically, t0, t1, t2, and t3 are defined as follows:

• t0: the time there was contact with the previous window (or

went through a corresponding z in case it did not catch up).

• t1: the time that we observe a continuousmovement toward

the target in a period of 170ms.

• t2: the time (>t1) at which we observe the shortest total

movement length in a period of 350ms.
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FIGURE 9

Movement from gate Gi-1 to Gi. The Si,j represents the hand position on each j frame for every i window (Wi). Ideal movement vector is defined

as the minimum distance between two consecutive gates (or points). This distance is used for analysis purposes as a benchmark (to observe the

extent of hand movement deviations in comparison to an objective reference). It is not defined as the desired movement pattern (Chytas et al.,

2021).

• t3: the time when there was contact with the current

window (or went through a corresponding z in case it did

not catch up.

t0 and t3 are recorded in the file of results generated.

For the first window, t0 is considered the start of the

game (t0 = 0).

The algorithm for the calculation of t1 is as follows:

Define the periods in which the hand moves.

1) Calculate the instantaneous speed Vi,j (the speed in the

frame j of the Wi window).

2) Calculate the moving average (length of 15 samples) of the

instantaneous speed.

3) Calculate the distribution of the instantaneous speeds in

the Wi window.

4) The hand is considered to move if the moving average of

the momentary speed is above the 75th percentile.

Define when the handmoves toward the upcomingGi target,

1) Calculate the Si,j position vector between two consecutive

points (Si1 to Si2, Si2 to Si3, etc.).

2) Compare each vector Si,j in the vector defined with starting

point of Si1 (Xi1, Yi1) and end point of Gi1+1 (Xi1+1,

Yi1+1) and calculate the angle difference <Si1G i1+1.

3) Calculate the moving average of the cyclic

phase difference.

4) t1 is defined as the first point at which the circular angle

difference was found below a certain limit (10◦) or as the

first time it was found below the 5th percentile.

The time t2 is defined as the first time after t1 when the

instantaneous speed is greatly reduced while at the same time,

the plane location has X, Y coordinates with values close to the

coordinates of the next Gi gate (in case the user has achieved the

upcoming gate).

The validity of the times t1, t2, and t3 calculation was tested

against data experts that were presented with motion trajectories

diagram and were given the instruction to annotate the above

times on the diagram.

The features currently examined involve the description

of the movement in the time domain (velocity, acceleration,

trajectory, jitter, etc.) The distance and the metrics that

derive from it (velocity and acceleration) are measured in in-

game units.
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• Durations of DT1/DT2/DT3 in milliseconds.

• Mean/SD Velocity DT1/DT2/DT3 X/Y/both:

Mean/Standard deviation of the hand velocity on

parts on respective axis X/Y or both.

• Mean Velocity DT2 starts calculated during the first 0.25 s

of the DT2 part.

• Mean/SD Acceleration DT1/DT2/DT3 X/Y/both:

Mean/Standard deviation of the hand acceleration on

respective time segments on axis X/Y/ both axes.

• Distances total traveled per time window and total, ratio of

minimum movement required to actual.

• Total Distance/ Total Distance DT1/DT2/DT3:

actual distance traveled during the whole Wi, on

parts DT1/DT2/DT3, respectively.

Minimum distance (final): minimum distance

from the center of the gate during the whole Wi

movement/ during the final 0.5 s of the Wi movement.

This amounted to a total of 28 features that were

subsequently examined.

The granularity of analysis goes down to gate-to-gate

movement, which inherently includes the direction/angle of

movement, namely, horizontal, vertical, and diagonal. Features

are calculated in each gate-to-gate movement. In terms of

descriptive analysis, the physician can apply various filters on

gates to observe deviations or burdens on specific directions.

In terms of extended features and classification, the features

are related to velocities, accelerations, distances, and time

durations. We also analyze and extract features for the

movement on X and Y planes. The X/Y mean velocities

and accelerations and their standard deviations are just

numbers that refer to one specific gate-to-gate transition.

However, the combined information provided by these features

formulates a complete picture of the patient’s actual movement

and difficulties.

The trajectory of hand movement is highlighted by

distance features such as totalDistanceT1, totalDistanceT2,

totalDistanceT3, distance From Previous H and,

etc. by calculating their relation to the reference

distance, i.e., the minimum distance from gate to gate

(distanceFromWindow2Window feature or ideal movement

vector). The aforementioned features help the physician to

identify deviations and investigate their cause (indifference to

guidelines or actual difficulties during the navigation).

The analysis results are stored in files on the same server

on which the analysis service is located. The analysis service

is scheduled to be executed every 5min. It is responsible

for the synchronization and the analysis of the stored data

that are located on the server. The service checks for

unanalyzed data and then executes the analysis pipeline

for them. The SQL-based analysis database is updated with

the analysis results, which are the motion features of the

analyzed data.

Descriptive analysis and visualization
dashboard

In this section, the analysis dashboard is presented. The

dashboard was developed to facilitate healthcare professionals in

monitoring the progress of their patients during rehabilitation

therapy. It consists of three basic levels of information display.

The healthcare professionals have access to this information

(regarding their patients) via a dedicated username and

password. The displayed information at each dashboard screen

can be downloaded in csv format.

The first level of information display is presented in

Figure 10. Here, the therapist can see brief statistics and

movement characteristics for all patients for each game type

(hand-wrist/finger), such as number of games, duration of

treatment, number of gates, etc.

At the second level (Figure 11), the therapist can observe

information about the successful or failed attempts per

game/session or for multiple sessions. The 3x3 table where each

element corresponds to each one of the 9-gates grid of the game

shows how many gates appeared per position and how many

were those that were passed successfully by the patient. The

adjacent Sankey diagram depicts the start gates on the left and

the end gates on the right. The thickness of the lines joining them

is proportional to the number of failed attempts. The therapist

can adjust the time period for the displayed information to

inspect the patient’s progress.

At the third and final level (Figures 12, 13), the therapist can

examine the motion characteristics that have emerged through

the analysis. The user of the platform selects 1 or 2 movement

characteristics and the desired time window. Then, he/she can

observe the progress of the features vs. time. Moreover, the

platform provides the option to select a second time period to

compare the characteristics e.g., at the beginning and at the end

of the patient’s sessions. Through the menu at the top of the

screen, the user can also select the combinations of gates to be

depicted. Finally, there is a comparison window that presents

the results of the Kruskal–Wallis rank sum test and some basic

statistical visualizations of the compared variables.

O	ine predictive analysis—Exploring
feature’s value in decision making

To assess the value of the proposed features and how

informative they are with regard to patient upper limb motion

state, a quantitative methodology was developed. The primary

target was to show which features distinguish healthy motion.

The focus of the analysis was to explore whether the

proposed movement features differ among healthy subjects and

patients, and whether it reflects the changes over time during

patient rehabilitation. Regarding the classification of movement
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FIGURE 10

Brief statistics table for the complete set of monitored patients.

FIGURE 11

Success rate per gate and Sankey diagram.

as healthy or pathologic, a two-phase procedure was followed.

In Phase 1, we examined whether the creation of such classifiers

is feasible using a dataset consisting of healthy subjects and

patients. In Phase 2, we used external data to verify the results.

Experiments and data collection for model
validation

For this analysis, we collected data from 13 subjects,

either healthy individuals or patients undergoing rehabilitation.
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FIGURE 12

Progress of variables vs. time.

FIGURE 13

Comparison statistics for the two variables.

The data acquisition protocol was approved by the Bioethics

Committee at the Aristotle University of Thessaloniki (AUTH).

Healthy individuals

Data were collected from 10 (H1-10) healthy individuals not

diagnosed with a related motor control/central neural system

disorder. Healthy subjects were of ages 25–38 with five of them

being women (50%). The healthy subjects were using their

dominant hand (10% were left-handed). Half of them (H1–5)

were collected during the first phase of data collection and the

rest (H6–10) during the second phase. The data acquisition

for the healthy subjects lasted 2 weeks. The healthy subjects

performed two sessions per week for 2 weeks (four sessions

total). The first week’s sessions were performed in “normal”

difficulty settings whereas the second week’s, in “very hard.”

During the first phase of data acquisition (H1-5), each session

consisted of 10 games and each game had a duration of 90 s,

while during the second phase (H6-10), each session consisted
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of 15 games and each game had a duration of 90 s. The difficulty

settings affect the avatar’s constant movement rate on the Z-

axis, substantially reducing the time required for the avatar

to move from one gate to another. Of note, according to

all healthy subjects’ feedback, the normal settings were more

bothersome than the “very hard” ones since the subjects had

already positioned the avatar where it would pass through a gate,

and they had to hold their hand steady for a longer period until

the gate arrived.

During the first phase of data acquisition, each healthy

subject (H1–5) had four gaming sessions, 40 games, and 800

gates. The percentages of gates the subjects H1–5 successfully

navigated throughwere 1, 0.942, 0.985, 0.995, and 1, respectively.

During the second phase of data acquisition, each healthy

subject (H6–10) had four gaming sessions, 80 games, and 1,700

gates. In total, 20 out of 80 games refer to the latest version of the

game. The percentages of gates the subjects H6–10 successfully

navigated through were 0.910, 0.917, 0.918, 0.902, and 0.848,

respectively, for the initial version of the game and 0.885, 0.873,

0.861, 0.828, and 0.841, respectively.

Patient data

Data were collected from 3 (P1–3) patients undergoing

rehabilitation. The patients performed the games using the

hand in need of physiotherapy (right hand in both cases). The

gaming sessions were in addition to the routinely prescribed

physiotherapy treatment the patients were receiving at that time.

The physician modifies the settings of the game and the intervals

in which the therapy should take place based on the patients’

condition and their overall progress.

Their data have been collected in a span of 9 (P1) and 6

months (P2 and P3) accordingly. Specifically, P1 had 39 gaming

sessions, 652 games played, and went through 19,033 gates, P2

had 24 gaming sessions, 378 games, and 10,300 gates, and P3

corresponding statistics are 16 gaming sessions, 184 games, and

2,107 gates. The difficulty settings were gradually changed from

“normal” to “hard,” and eventually to “very hard” in the span

of their treatment for P1 and P2. For P3, the difficulty settings

remained normal. The percentages of successful gates for the

patients P1–3 were 0.946, 0.969, and 0.718, respectively.

Description of analysis steps

The gates were grouped based on the type of movement,

vertical, horizontal, diagonal, and direction. Right to Left (r2l)

Left to Right (l2r), Up to Bottom (u2d), Bottom to Up (d2u)

Top Left to Bottom Right (dg1) Top Right to Bottom Left (dg2),

Bottom Left to Top Right (dg3), and Bottom Right to Top

Left (dg4).

The analysis was focused on the subject’s performance

during the traversal from one gate to another. For each subject,

all the calculated movement features were grouped together

without the distinction of individual games or sessions. The

order in which each gate was traversed was kept intact and as

such, we were able to examine the subject’s progress through

time. In more detail, the analysis consists of the following steps:

1. In each cross-validation round, split the dataset into two

parts: (a) Train: one patient (19,033 or 10,300 gates),

four healthy subjects (3,200 gates), (b) Test: one patient

(19,033 or 10,300 gates), one healthy subject (800 gates).

2. Use one direction at a time (this reduces the number of

gates used for the training and testing, e.g., out of the

19,033 gates P1 has, 2,203 belong in the u2d category).

3. On the training dataset, for each feature, detect the values

that are outside the range of four times the standard

deviation. A single out-of-bound value would cause that

gate to be excluded. This further addresses the artifact

problem during data acquisition.

4. Test the features for normality using the Shapiro–Wilk

test (Shapiro and Wilk, 2015).

5. If the variables were normally distributed, the analysis of

variation (AOV) was used; otherwise, the Kruskal–Wallis

H-test was preferred (Kruskal and Wallis, 1952).

6. Adjust the p-values derived from the above tests using the

Bonferroni correction (Alt, 2006).

7. Select the statistically significant (p < 0.05) features.

8. Check those features for correlation using the Pearson

formula (Chen and Popovich, 2011).

9. Features that had a high degree of correlation (0.8)

were further examined and the worst performing features

were removed.

10. Utilize the training dataset with the remaining features

and train a neural network model (Kalchbrenner et al.,

2014; these models yielded the best results in the type of

data that were used) using internal k-fold cross-validation

with one hidden layer and an adjustable size (range 3–15).

11. Extract the final classifiers per movement after having

checked the hypothesis that the movement patterns with

the calculated characteristics can successfully distinguish

a movement as pathological or not.

Implementation details

The programming language R 3.6.3 and R-shiny package

was used for the development of the analysis platform, in

conjunction with HTML5, Javascript, and CSS. The analysis

server is running on Ubuntu 18.04 software whereas the analysis

database was implemented in SQL 5.7. The automated scheduled

tasks are carried out via the implementation of Cron software.

Results

In this section, results extracted during the system’s

evaluation procedure are summarized.
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FIGURE 14

Feature selection rate, defined as the number of times each feature is selected in the model, during the training phase with di�erent training sets.

With regards to the overall system deployment, it was tested

in real-life settings with healthcare professionals and patients,

for a period of 18 months. Synchronization of data took place

without problems. The synchronization procedure requires an

internet connection and is completed after the end of the

game. In case of a lost internet connection or no internet

connection, the synchronization takes place right when the

connection is restored. The system was stable, without reporting

problems regarding the interconnection and communication

between its components. For software debugging or updating

purposes, a standard procedure for modifying and updating

the platform was followed to keep up with the physician’s

and patient’s needs. With regards to the analysis features, the

recalculation of features was possible since raw data were

permanently stored.

The offline predictive analysis was conducted based on

the methodology presented in Subsection Description of

analysis steps. First, the validation of features for disease

characterization is presented (Figure 14). The purpose of

the validation was to explore whether patients’ and healthy

subjects’ pattern movements can be distinguished. After the

validation, classification models are extracted and presented

underlining the value of the motion features in a physician’s

decision-making.

Moreover, hands-on user experience on the analysis

dashboard was explored via questionnaires. Finally, a

preliminary clinical evaluation is presented, based on the

observations made during clinical practice in conjunction with

the use of the MILORD platform.

Validation of features for disease
characterization

The model that was created using data from five subjects

(four healthy subjects, one patient) was tested using the

remaining two subjects (one healthy subject, one patient). The

leave-one-out (a healthy subject and a patient) cross-validation

approach was preferred over the k-fold cross-validation with

train and test samples mixed from all using those seven subjects,

as this method is less biased, i.e., the hypothesis that patients

and healthy subjects differ in their movement patterns can be

examined without any bias that is inserted by utilizing the same

subjects for testing and training.

After testing the validity of our hypothesis that the

movement patterns differ among healthy subjects and that

pathological patterns can be identified using classifiers, we

created a final set of eight models, one for each direction. These

models were trained with the dataset initially used in Phase

1 (P1, P2, and H1–5). These classifiers were afterward used

in Phase 2 on H6–10’s and P3’s data as external validation.

To observe the patients’ progress during their treatment, the

data points of each feature were aligned in chronological order.
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TABLE 1 The details of the best performing models.

Mov. type Test data Balanced acc Sense Spec Truth table

u2d P1 – H4 0.979 0.979 0.979 2,157 2

46 96

dg1 P1 – H4 0.978 0.980 0.976 1,016 1

20 41

u2d P2 – H4 0.963 0.978 0.948 1,155 5

25 93

l2r P2 – H5 0.962 0.979 0.944 1,158 5

24 85

d2u P2 – H5 0.953 0.969 0.938 1,160 4

37 61

d2u P1 – H4 0.946 0.934 0.958 2,167 4

153 93

l2r P1 – H4 0.943 0.963 0.923 2,060 7

78 85

dg1 P1 – H1 0.942 0.983 0.901 1,019 5

17 46

Balanced acc stands for balanced accuracy, sense for sensitivity, spec for specificity, and

mov. for movement.

TABLE 2 Implementation of the classifiers on the external control

dataset of P3.

Direction

of

movement

Total

number of

gates

True False Accuracy (%)

u2d 258 243 15 94.186

l2r 234 215 19 0.91880

r2l 224 200 24 0.89285

d2u 245 230 15 0.93877

diag1 147 137 10 0.93197

diag2 150 137 13 0.91333

diag3 144 136 8 0.94444

diag4 136 119 17 0.875

Following, they were filtered using a simple moving average

window as a low-pass filter to present the underlying trend.

Having checked our hypothesis that the movement patterns

with the calculated characteristics can successfully distinguish a

movement as pathological or not, we used the data of the seven

participants (P1, P2, and H1–5) to retrain our final classifiers

(Table 1). These models were then applied to H6–10 and P3 who

were not involved in the development of themodel as an external

dataset. The final classifiers reached high accuracy (over 90%)

when characterizing the gates that P3 had passed as pathological

for six out of eight directions while in the remaining two, their

performance was just under 90% (Table 2).

TABLE 3 Implementation of the classifiers on the external control

dataset of H6–10.

Direction

of

movement

Total

number of

gates

True False Accuracy (%)

u2d 169 144 25 85.207

l2r 166 158 8 95.180

r2l 171 157 14 91.812

d2u 167 154 13 92.215

diag1 167 156 11 93.413

diag2 174 167 7 95.977

diag3 163 148 15 90.797

diag4 176 169 7 96.022

Similar results were also obtained during the

characterization of the gates passed by H6–10 as non-

pathological, where the final classifiers also reached high

accuracy (over 90%) in seven out of eight directions while in the

remaining one, the accuracy was about 85% (Table 3).

User experience—Analysis platform

User evaluation of the analysis platform was performed

through a user experience questionnaire (UEQ), which is

a popular method for web-based application evaluation. An

online workshop with 17 participants with various scientific

backgrounds and a study conducted in the Department of

Physical Education and Sport sciences with undergraduate

students were organized to gather feedback based on how the

platform was perceived by inexperienced—with the platform—

individuals. A small set of questions and a use case scenario

were prepared and given to the participants to test the

understandability of the various developed functionalities.

The participants were asked to complete the scenario by

using/interacting with the platforms’ functions and answer

the questions. The evaluation of data visualization showed

the following (Figure 15):

• The understanding of graphical representations is not self-

evident, and it may need a level of education, both in

terms of the “problematic” movements and the evolution

of characteristics over time. Participants encountered great

difficulty (20% success) in interpreting the combined

diagram of failed attempts (Sankey—like) which contained

a large amount of information, but it turned out to be tricky

without detailed training.

• For the needs of the user in everyday clinical practice,

some simple graphical representations should be
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FIGURE 15

(A) UEQ regarding MILORD analysis platform (four participants). (B) UEQ regarding MILORD analysis platform (15 participants).

chosen—possibly meeting different needs from those

of the doctor/researcher.

The questions had to be answered on a scale of 1–7. Further

written comments were given. The questionnaire was answered

by a total of 19 people, the majority of whom are students

in the Department of Physical Education and Sport Science.

In total, four people replied to the short version of the UEQ,

whereas the remaining 15 replied to its full version. Both short

and long forms refer to the same user experience questionnaire.

The short version was used during a webinar with experts,

where the whole concept was presented and discussed, and

users interacted more with the physician side of the platform.

The long version was used in a short study with normal

subjects engaged with the game conducted in the Department of

Physical Education and Sport Science at the Aristotle University

of Thessaloniki.

From the collected responses, it is concluded that the

platform of analysis should be more understandable and easier

to use. The small sample of responses does not allow conclusions

to be drawn by quantitative research. However, a brief analysis of

the answers shows us the following:
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• The analysis platform is treated as an inventive, innovative,

and interesting tool.

• The analysis platform has the lowest score on the question

of clarity and ease of use. These scores could be explained

by the total time spent on the presentation of the analysis

platform, which was limited both in the webinar and during

the study. In the time allotted, there could be no extensive

presentation of the analysis platform and its capabilities.

Finally, it should be noted that the development of the

platform analysis was focused on the thorough analysis of the

hand movement (trajectory), and for this reason, it is not

expected to be fully understandable during the first contact of

a user with it as it is difficult to familiarize himself/herself with

all its functions.

Preliminary study

An extensive clinical evaluation of the rehabilitation

platform was not feasible, but an informal validation test

(preliminary study) was performed on a small number of

patients and the initial results were encouraging. The patients

were divided into control and intervention groups. The clinical

status was evaluated by the physician with the help of FIM

and MESUPES upper limb scales (Johansson and Hager, 2012;

Granger, 2020).

A preliminary study was conducted in cooperation with a

physician to investigate the potential of the MILORD platform.

In total, 10 patients participated in the study. All patients were

diagnosed with stroke and began training 2 weeks after the

episode in the subacute state. Depending on the severity of the

stroke, patients continued their treatment from a few weeks

to 3 months. The physician divided them into two groups:

the treatment group, consisting of six patients, that included

the MILORD platform in their rehabilitation program, and

the control group, consisting of four patients, that followed a

standard rehabilitation program. The average age of the patients

was 52.43 ± 23.63. They participated in the program from 37 to

193 days.

The average age of the patients between intervention

and control groups did not show statistically significant

differences as well as the FIM and MESUPES scores for the

upper limb. After the end of the study, statistical analysis

was performed on the clinical outcomes to investigate the

impact of MILORD in comparison with standard rehabilitation

procedures. All patients had an improvement regarding the

functional independence measure (FIM) and the Johansson

and Hager (2012) measures, assessing their functionality

and quality of movement performance, respectively. The

average changes in the two metrics were −12.032 (FIM)

and −0.951 (Johansson and Hager, 2012), with a non-

statistically significant higher improvement of the milord

treatment group in functionality, as well as in MESUPES

arm-related categories.

The medical personnel reported that the requirements of

the game were easily understood, and patients got used to

it immediately. There were some who were looking forward

to repeating the session. Moreover, some reported that their

hands were tired during the process. As observed, most of

the patients showed increased engagement during the therapy

because of their increased pleasure. Both the medical personnel

and the patients thought that the MILORD platform fulfilled the

expectation of facilitating the recovery process.

Discussion

This paper presents a complete gamified rehabilitation

platform that utilizes the ability of the leap motion sensor

to detect the upper limbs with great accuracy with the aim

of functionally restoring their motion. To fully utilize a

rehabilitation platform and reach the level of a GaaHS, in-

depth research should be done in the field of gaming. The

MILORD platform contributes toward the establishment of a

GaaHS, including the gamification design, and data analysis and

management for the remote service execution. The platform was

tested in terms of the overall system and user experience, as well

as the value of analysis, and the initial results are encouraging.

Among the challenges with respect to the user interaction

and performance, it is to ensure that the game does not

incorporate any bias in relation to gender, age, dominant hand,

or other condition that has not been recognized in advance

as a limitation. The user’s vision level is a limitation that

should be considered. Familiarity with VR games may also

introduce a variable performance due to the game handling

learning curve, which is smoothed out after a brief period of

practicing. Introducing a training phase is deemed necessary for

such services.

One of the challenges we had to face was the customization

of the game’s scenario which would be correctly transferred to

a wide range of kinetic control exercises. In this respect, the

main problem in terms of analysis was that the use of many

variables would introduce a high degree of complexity and make

data comparability more difficult. The selection and correct

combination of game parameters to present all the necessary

movement combinations (e.g., right-to-left, diagonally, etc.) and

to escalate the difficulty in specific and meaningful steps needs

careful tuning.

The number of distinct movements including a combination

of gross/fine movements represented in the game for best results

in the virtual and real world is an open challenge. A gamified

“monotherapy” might not be optimal, whereas multiple games

or mini-games could be included in a rehabilitation service and

a combination of coarse and fine movements. In this case, one

would need to specify what combination and dosage of games
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can lead to better motor learning transferred to everyday life.

In addition, another challenge was to reduce the characteristics

of the game to generalized concepts that can be applied to

other scenarios.

The approach presented stands out from the rest as it

attempts to propose and evaluate metrics that correspond

not only with the patient’s performance within the virtual

environment of the platform but also with the characteristics of

hand movement which have some relation with the underlying

pathology. Observing the score-based characterization and

categorization based on movement characteristics, patients P1

and P2 managed to catch scores comparable to those of healthy

users, whereas P3 had significantly lower scores than everyone

else. The values of the motor characteristics of P3 were quite far

from those of other healthy and patient users. This suggests that

a score indicating only success or failure in completing a goal

is not always enough for proper categorization in the field of

serious gaming. On the other hand, the proposed classifiers who

make use of motion features were able to distinguish healthy and

pathological movements.

Although classifiers (horizontal, vertical, and diagonal) are

useful in terms of detailed characterization, their integration

could support clinical practice, providing a complete picture

of the patient in terms of the mobility of his/her hand in

all directions. The above analysis has shown encouraging

results. More data would help to establish a better benchmark

and ensure the reproducibility of the results. As a general

observation, patients had longer reaction times and a greater

distance from the center of the gate compared to healthy

ones. Among our future goals, the most important is the

quantification of patient progress and much of the future

development will be channeled into the effort to match the

progress shown by patients—and captured by our metrics—

with the widely used scales and tests to assess upper limb

movement (e.g., FIM/Hamilton et al., 1994 and FMA-UE/Singer

and Garcia-Vega, 2017).

Overall, MILORD investigated a number of game design

and data analysis challenges toward characterizing the progress

of the patient and the differences between normal and

pathological motion, such as (a) Do the game movement

features express the actual motion deficits of the patient? (b)

Do game performance measures reflect the real-life progress

(or decline) and characteristics of clinical value? (c) How can

we move beyond the motion heterogeneity among people and

establish normative values? (d) How can we introduce the

game parameters, like difficulty in such an analysis? and (e)

How to map the game-specific features to generic constructs

and abstractions, enabling analysis from multiple game and

motion variations?

While these issues were addressed, a more extended

investigation including an extended data collection or validation

is required to further progress these issues. Given the limitations

of this study, the number of patients and healthy subjects who

participated is small, although the total number of gates is quite

high. Future work should collect data from more participants

to provide evidence and correlations of patients’ data with the

progress they have as recorded by the therapist. In the next steps,

the analysis will include the possible effect of the different game’s

difficulty levels on the result. Moreover, as far as the performance

of the user is concerned, his/her familiarity with the specific

game and with video games, in general, should be examined.

Of note, the VR or gamification evaluation in the literature

is sparse, with only a part (1/3) of the systems evaluated with

tests or clinical trials with patients to test their implementation

(Koutsiana et al., 2020), or tests with a small number of

subjects or in short time, and frequently with no health-related

evaluation process. In this work, evaluation is provided (a)

questionnaires or interviews, or in combination, about the

game and the experience in general, (b) medical standard

tests examining the improvement of the motion, (c) extracted

game features about motion analysis or game performance, (d)

user experience.

Revisiting the concept of GaaHS, in terms of Platform

and Health Service Challenges, one must acknowledge that for

the introduction of a gamified—data-driven approach in the

daily routine of rehabilitation services, the applicability, and

acceptability relates to both the efficiency of such methods and

to several human factors: ICT literacy issues, familiarity with VR

games bias, and data literacy for clinicians.

Finally, MILORD proposes that patients should be able to

perform their rehabilitation exercise in their own environments.

Future work will capitalize on the MILORD experience and

investigate the safety of gamified approached in unsupervised

environments, along with the incorporation of safety measures

inside the implementation of the platform to prevent further

injuries or any deterioration of their impairments.

Conclusion

The MILORD project is an important aid to patients

who have a mobility deficit in the upper extremity. Its basic

use is extremely simple and easy. The virtual environment

translates rehabilitation practice into a pleasant experience,

aiming to increase patients’ engagement. It is an important

solution to increase the operational movements that should

be performed in a rehabilitation program. Nevertheless, this

is not a tool to be used alone. When integrated into the

rehabilitation program and complements the patient’s progress,

the results are quite significant. We have not been able to

identify significant statistical differences in upper extremity

training between users of the program and patients who did

not use it (control group). This was due to we did not have

a large sample of users and, although patients reported an

improvement in the use of the upper extremity, this was not

depicted in the numbers. It would be necessary to continue

research with more patients to get reliable results on its effect on

the functionality of the upper extremity. MILORD contributes

toward a framework for quantifiable gamified therapy that
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puts together the above-mentioned aspects, standardizes them,

and enables the integration of evidence and the comparability

of approaches.

Following the encouraging results of the preliminary study,

an extensive clinical evaluation, although not feasible so far

due to the unprecedented conditions created by the COVID-19

pandemic, will provide evidence in terms of additional motion

improvements, user compliance, and cost-effectiveness in home

care settings. More efforts are needed for the creation of this

framework, to provide solid evidence about the efficiency of

the rehabilitation scheme, and to personalize clinical practice.

Future work also needs to be done toward the extension of

the rehabilitation game’s functionalities regarding the patients’

engagement level. Such an idea is the deployment of a reward

system inside the game, where the user could spend the collected

coins for in-game benefits (e.g., artistic or functional).
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