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Abstract: Volatile organic compounds have drawn significant attention in recent years as a novel
tool for non-invasive detection of a wide range of diseases, including gastrointestinal cancers, for
which the need for effective, affordable, and non-invasive screening methods is substantial. Sample
preparation is a fundamental step that greatly influences the quality of results and the feasibility
of wide-range applications. This review summarizes sampling methods used in studies aiming at
testing the diagnostic value of volatile organic compounds in gastrointestinal cancers, discussing in
detail some of the recent advancements in automated sampling techniques. Finally, we propose some
directions in which sample collection and processing can improve for VOC analysis to be popularized
in clinical settings.
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1. Introduction

Gastrointestinal cancers present a significant health burden, contributing to substantial
morbidity and mortality rates worldwide. Gastric cancer (GC) and colorectal cancer
(CRC) rank as the third and fourth leading causes of cancer death, respectively [1,2].
Apart from that, the physical, emotional, and socioeconomic consequences of cancer are
profound, leading to decreased quality of life and financial hardships. Cancer screening
is an important means for early diagnosis and intervention, being beneficial for reducing
mortality and possibly reducing cancer incidence (by removal of precancerous lesions) [3].
CRC screening by sigmoidoscopy is estimated to be able to extend life for approximately
3 months [4]. Endoscopic approaches have the highest accuracy in screening and diagnosis
of malignancies of the gastrointestinal tract [5,6]. However, being invasive and possessing
a certain degree of risk, they are not recommended as a routine screening program except
in regions with high prevalence [6,7]. There is still substantial need for non-invasive tests to
screen for and help diagnose gastrointestinal cancers. Volatile organic compounds (VOCs)
reflect the metabolic states and pathophysiological conditions of individuals [8,9] and have,
in the recent decade, drawn attention as potential biomarkers to be utilized in screening
for a variety of diseases, especially cancer. VOCs can be collected from breath, urine, feces,
saliva, milk, skin secretions, blood, and tissues [10–12]. Taking into account the accessibility
of sample sources and applicability to the general population, breath, urine, and feces
have been most extensively studied. The distribution of VOCs from cancer tissues to other
parts of the body, especially to these sample sources, is demonstrated in Figure 1. Though
some attempts have been made to analyze blood and tissue VOCs for distinguishing cancer
samples and healthy controls and yielded positive results [11–15], the primary application
for these approaches is in research rather than clinical settings. Sample preparation is
the first step of VOC analysis. The quality of samples is vital for the accuracy of results,
and the ease of sample handling is an important factor to consider in the generalizability
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of an analyzing system. Various methods have been developed for the acquisition and
preparation of samples, with no unified protocol or standard. This review focuses on
sample preparation methods that have been developed in human VOC analyses, discusses
their advantages and disadvantages, and emphasizes their applicability in medical practice.
For reasons described above, this review will mainly discuss collection of breath, urinary,
and fecal samples.
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Figure 1. The distribution of volatile organic compounds from gastrointestinal tumor tissues to
parts around the body. The cancer-related volatile organic compounds, produced as a result of
metabolic alteration in cancer tissues, diffuse into the blood and are carried by the bloodstream to
other parts of the body. They cross the alveolocapillary barrier and enter exhaled breath. By Figdraw
(https://www.figdraw.com/static/index.html#/, accessed date: 9 July 2024).

2. Volatile Organic Compounds as Biomarkers

Given the need for the early diagnosis of cancers, a variety of biomarkers have been
explored. For CRC, currently, the most widely used biomarker is hemoglobin, detected
by the fecal immunochemical test (FIT). This method is easy to conduct and demonstrates
good sensitivity, but it does not guarantee satisfactory specificity, since gastrointestinal
bleeding can occur under various non-cancerous circumstances. In a diagnostic accuracy
study conducted in Britain from 2017 to 2019, when the sensitivity of FIT for CRC reached
97%, its specificity was only 64.9% [16]. Inadequate participation rate is another obstacle in
applying FIT for CRC screening programs, which is probably due to patient reluctance in
collecting fecal samples [17]. Other protein biomarkers for gastrointestinal cancers include
carcinoembryonic antigen (CEA), CD26 protein (sCD26), CA 19-9, and so on. However,
none of them display satisfactory sensitivity and specificity [17,18]. In a meta-analysis
assessing different biomarkers for CRC, CEA used as a single marker only provided sen-
sitivities ranging from 0 to 40% [17]. Some researchers focus on tumor-associated DNA
and RNA as biomarkers, for example, circulating tumor DNA (ctDNA), DNA methylation
markers, microRNA, and circular RNA. These fragments can be detected in the blood-
stream and may carry distinct tumor-associated genetic and/or epigenetic characteristics.
To this day, circulating tumor DNA (ctDNA) is mostly utilized as a prognostic marker,
providing information about minimal residual disease (MRD), recurrence, and therapeutic
response [19–21].

Volatile organic compounds first exhibited the potential of indicating cancers when
various studies in the 1980s discovered that trained dogs can smell certain types of can-
cer [22]. But it was not until recent decades that significant advancements were made
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in analytical methods. In the context of cancer research, VOCs are mostly studied for
the purpose of screening and early diagnosis. Nevertheless, there have been studies that
investigate their value as prognostic markers. For example, Markar et al. found that among
breath VOCs, propanal may serve as a marker of CRC recurrence, with a sensitivity of 71.4%
and a specificity of 90.9% [23]. A pilot study conducted by Steenhuis et al. demonstrated
that breath VOC analysis by electronic nose may be useful in detecting local recurrence or
metastases of CRC [24]. Škapars et al. suggested that VOC analysis could be used for the
surveillance of GC after surgery [25]. However, further prospective studies are needed to
confirm the value of VOCs in this aspect.

Compared with the biomarkers mentioned above, which are mostly detected in blood,
VOCs possess a unique advantage as they can be detected in completely non-invasive
ways. Breath analysis is especially convenient and highly acceptable for patients. VOCs
show promising abilities in the early diagnosis of gastrointestinal cancers better than that
of current protein markers. The details will be described in the sections that follow. The
substantial heterogeneity among existing studies hinders the application of VOCs as cancer
biomarkers, but many other biomarkers face similar problems, such as microRNAs [18].
The detection of all the biomarkers mentioned above, except for hemoglobin in the feces,
requires specialized equipment and staff. In addressing this matter, an electronic nose
may be a distinctive and innovative solution. It is fast, lower in cost, and does not require
specialized personnel. Detailed features of VOC analytical methods will be elaborated in
the following text.

3. Breath

Breath samples are easy to obtain and well accepted by patients, but they pose cer-
tain challenges in handling and storage. While the matrix is relatively simple, it can be
influenced by factors such as oral environment. Miekisch et al. compared three modes of
breath sampling and drew the conclusion that alveolar breath contains the least amount of
exogenous products [26]. Due to this reason, alveolar breath has been preferred by many
researchers as a subject for sample collection [27–29]. The collection of alveolar breath
is achieved by monitoring CO2 concentration [26,27]. The major approaches in breath
sample collection and analysis that have been tested for feasibility on human subjects are
summarized in Table 1. A brief diagram of the collection procedure is demonstrated in
Figure 2a. Traditionally, exhaled breath is collected in inert sample bags which exhibit no
affinity or reactivity for any constituents in the gas. One commercially available and widely
used product is the Tedlar® bag. The bags serve as a medium for collection and storage.
However, the concentration and recovery rate of VOCs in the Tedlar® bag is significantly
affected by temperature [30]. After collection into bags, sample air needs further processing
before entering the analytical unit. The thermal desorption (TD) technique is central to the
enrichment of VOCs prior to analysis [31–33]. In TD, VOCs that pass through the sorbent
tubes are trapped on the sorbents and released under a certain higher temperature. The
released VOCs, now enriched, can be carried to analyzing machines in a clean, inert air
flow [34].

Table 1. Characteristics of different approaches in breath sample collection and analysis.

Method of
Collection

Method of
Analysis

Real-
Time

Analysis

Identification
of Individual
Compounds

Duration of
Procedure Target Sensitivity/% Specificity/% References

Tedlar® bag, TD GC-MS

no yes

~2 h CRC 96 83 [35]

Visually
CO2-controlled

sampling,
SPME

GC-MS - CRC - - [28]

SPME GC-MS - GC - - [36]

ReCIVA®, TD GC-MS - CRC 79–90 86–93 [37,38]
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Table 1. Cont.

Method of
Collection

Method of
Analysis

Real-
Time

Analysis

Identification
of Individual
Compounds

Duration of
Procedure Target Sensitivity/% Specificity/% References

ReCIVA®, TD Multi-MS a no yes - Esophageal-
gastric cancer - - [39]

Nalophan bag SIFT-MS

yes selected

- CRC 96 76 [23]

Nalophan bag SIFT-MS -

Esophageal
and gastric
adenocarci-

noma

86.7 81.2 [40]

Steel breath bag SIFT-MS - Esophagogastric
cancer 80 81 [41]

Mylar® bag SIFT-MS Hepatocellular
cancer 73 71 [42]

Tedlar® bag, TD
PTR-TOF-

MS yes selected - GC 61 94 [43]

Tedlar® bag, TD SPI-MS yes partly - GC 95.8 96.5 [44]

BioVOC™,
Tedlar® bag

UVP-
TOFMS b yes partly -

Upper gas-
trointestinal

cancer
92.3 100 [45]

Mylar® bag nanoarray

yes no

- CRC 85 94 [29]

Mylar® bag nanoarray -

Precancerous
gastric lesions

and gastric
carcinoma

73 98 [46]

BioVOC™ nanoarray

15 min for
sampler

20 min for
sensor

GC 100 93 [47]

Tenax® TA
sorption tube

nanoarray - GC 100 98 [48]

Tedlar® bag SERS no partly - GC 91.23 88.52 [49]

e-nose

yes no

- CRC 63.3 84.2 [50]

Aeonose™
15 min

CRC 95 64 [51]

Aeonose™ GC 81 71 [52]
a This MS platform incorporates GC-MS retrofitted with electron ionization (EI) and positive chemical ionization
(PCI) and SIFT-MS. b UVP-TOFMS: ultraviolet photoionization time-of-flight mass spectrometry, another kind of
soft ionization technique.

Solid phase microextraction (SPME) is a technique that overcomes some of the dis-
advantages of traditional sorbent tubes. The SPME device is composed of a holder and
a fiber assembly. The coating extracting polymer can be guided into and out of a needle,
which enables both long-term sampling (time-weighted average sampling, TWA) and grab
sampling, the latter of which cannot be achieved by sorbent tubes. SPME combines extrac-
tion, preconcentration, and transfer of the sample into one device, thereby simplifying the
process of sample collection. It allows for both air and liquid sample collection and also
possesses the advantage of being reusable [53,54].

In recent years, automated breath sampling systems have also been developed and
significantly simplified the process of breath collection, while providing easier control for
confounding variables [55]. The ReCIVA® system and the Mistral system are examples in
this respect. The ReCIVA® system, with built-in TD tubes and CO2 and pressure monitoring
units, combines collection and enrichment in one apparatus and allows for the simultaneous
collection of mixed breath and alveolar breath [55]. It has been applied in a number of
studies on breath VOC analysis with optimistic results [14,56,57].
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Figure 2. Collection procedure for different forms of samples. (a) Major methods of collecting breath
samples and the corresponding analytical methods. (b) Headspace VOC collection for urinary and
fecal samples.

After the VOC collection procedures, the VOCs in the TD tubes are ready for analysis
in the gas chromatography–mass spectrometry (GC-MS) system [35]. GC-MS is currently
the gold standard for VOC analysis, due to its ability to identify the specific compound
composition of one given sample. The distinctive breath VOCs identified by studies differ to
a great extent. Even for studies using the same sample collecting equipment and analytical
method, the overlap between them is quite limited. For example, Altomare et al. used
ReCIVA® for sampling and GC-MS for analysis and identified eight distinctive VOCs for
CRC, including methyl-benzene, ethyl-benzene, and other compounds [37]. Woodfield et al.,
while using the same collection system and analytical method, identified 14 VOCs, the most
significant of which is propyl propionate [38]. Tetradecane was the only VOC identified
in both studies. Many factors may be responsible for this situation, such as diversity of
population, susceptibility of breath samples to external disturbance, and difference in
sampling procedures. Currently, there is no unified VOC profile for gastrointestinal cancers.
It might not be feasible to detect early gastrointestinal malignancies with only one VOC,
but rather, a panel of VOCs could be used. The association between specific VOCs and
the underlying disease is also poorly understood. Further investigation in this aspect may
help build more solid connections between VOCs and cancers, and therefore enhance their
clinical value.

A significant drawback of analyzing VOCs with GC-MS is that the instruments are
typically large in size and not easily portable. The analytical process is time-consuming, pre-
cluding the attainment of immediate bedside results, and thereby restricting its application
in medical practice.

More recently, portable GC-MS instruments have been developed [58], aiming to
expand the range of applications of this technique. However, Marcillo et al. compared
portable GC-MS devices to one latest, most advanced benchtop GC-MS instrument in
VOC analysis, and the portable devices showed poorer performance in sensitivity, re-
producibility, and quality of mass spectra data (evaluated by their similarity to library
spectra) [59]. This suggests that, currently, the portable GC-MS technique can still not
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replace stationary GC-MS, and this method still needs further development in order to
achieve bedside application.

Several other techniques based on MS that employ soft-ionization methods and break
VOCs into limited fragments [60] enable real-time analysis, such as selected ion flow
tube mass spectrometry (SIFT-MS), proton transfer reaction mass spectrometry (PTR-MS),
and single-photon ionization mass spectrometry (SPI-MS). A TD sampling system can
be coupled to the MS system for sample collection [61]. These MS methods can also be
combined with the time-of-flight (TOF) technique. SIFT-MS and PTR-MS measure the level
of selected molecules rather than provide the overall profile of the sample [62]. SPI-MS
enables comprehensive detection of VOCs and is particularly advantageous in detecting
non-polar VOCs. However, its recognition of specific particles also depends on existing
information about cancer VOC markers [44]. Thus, for application in population-based
screening programs, the methods mentioned above all rely on a well-founded cancer
VOC database.

In 2022, Huang et al. applied a surface-enhanced Raman scattering (SERS) sensor
to breath analysis, with a newly designed tubular shape to better capture and enrich gas
molecules. SERS utilizes the difference in Raman response to discriminate analytes [63].
It obtains a chemical fingerprint, with the ability to detect certain molecules, such as
aldehydes and ketones. TD is not needed in this method and collected gas can be directly
pumped into the SERS sensor. SERS does not inherently provide real-time results, but it is
more cost effective than GC-MS and SIFT-MS [49].

The diagnostic accuracy of the above-mentioned methods is listed in Table 1. ReCIVA®

coupled with GC-MS can achieve fair sensitivity and specificity at the same time. The diag-
nostic accuracy of SIFT-MS is generally lower than that of GC-MS. Profound heterogeneity
exists among the studies and a comprehensive analysis is needed to evaluate the quality of
breath VOC analysis with mass spectrometry technique.

In the past decade, electric nose (e-nose) technology based on nanosensors and
pattern recognition algorithms has been developed and gradually gained significant
attention [64,65]. Sample breath is exhaled through a mouthpiece into a sensor chamber,
which houses an array of nanosensors that can interact competitively with VOCs [51,66].
The output signal is a matrix of conductivity values that will be analyzed by machine learn-
ing models. Since VOC patterns in exhaled breath can be strongly affected by factors such
as diet, smoking, alcohol intake, and ambient air, several measures are taken by researchers
to minimize environmental noise. Carbon filters are used to eliminate contamination from
the environment air. Additional high-efficiency particulate air (HEPA) filters can be used to
block bacteria and viruses from entering the sensor chamber [51]. In some studies, patients
are asked to go through fasting and refrain from smoking and alcohol drinking prior to the
sample collection [50], while in some others, these factors are simply collected as baseline
information [66]. Several studies have attempted to examine the influence of confounding
factors, such as food ingestion [67], on the performance of e-noses, but there is not yet a
clear conclusion. No standard has been established for sampling in e-nose analyses.

The diagnostic performance of e-nose for cancers has been systematically reviewed by
Sheepers et al. A pooled analysis for CRC showed a sensitivity of 93% and a specificity of
59% [68]. It should not be neglected that the studies included generally show a high risk of
bias, which is probably relevant with the factors discussed above.

Simplifying the sampling procedure and applying nanosensor and machine learning
technology, e-noses reduce the length of analysis to a great extent. The total analytical
procedure (from the start of one breath to the readiness of the next) for Aeonose™, an e-nose
product, only takes 15 min [24]. Despite its obvious advantages in operational simplicity,
portability, rapid analysis, and cost-effectiveness, e-noses have not yet been employed in
clinical settings for tumor diagnosis [68]. This is largely due to the high heterogeneity of
results among different machines. The opacity of the analyzing process and underlying
principles of machine learning techniques, one keystone technique in e-nose analysis, ham-
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per the reproducibility of outcomes and the comparability of results produced by different
machines, or even by the same machine but under different environmental conditions.

4. Urine

Analyzing VOCs using urinary samples has certain advantages. Urinary sample
collection can be completed on-demand and is easily accepted by patients. It is relatively
chemically stable, less likely to be affected by confounding factors such as diet, and can be
stored long-term easily [69,70]. Urinary VOCs have been analyzed in attempts to detect
cancers of the urinary tract, breast cancer, lung cancer, and others. Among neoplasms of
the gastrointestinal system, its value in the detection of colorectal cancer has been most
extensively studied. The analysis of urinary VOCs is most often based on headspace
analysis. A schematic demonstration of headspace analysis is shown in Figure 2b. Field
asymmetric ion mobility spectrometry (FAIMS) coupled with a standardized sampling
system (for example, the ATLAS sampling system) is a method frequently used. Samples
are heated to a designed temperature in the collection chamber. Carrier air flows through
the headspace and into the FAIMS instrument, carrying VOCs from the sample [71,72].
VOCs from the headspace are ionized first and then pass through two parallel plates
between which an alternating electric field is applied. The path of an ion is determined
by the differential mobility that it shows in the high- and low-strength fields. Under
a given dispersion field and compensatory voltage (one that compensates for the ion’s
vertical drift and allows certain ions to pass through the plates), a certain type of ion is
selected. By scanning through the fields, a complex pattern, containing information about
the composition of the VOCs in the sample, can be obtained [70]. FAIMS does not identify
specific compounds but rather produces a fingerprint. The clinical accuracy of FAIMS in
differentiating people with and without CRC varies. Sensitivity can range from a little
over 60% to 100%. Widlak et al. demonstrated that the sensitivity and specificity of FAIMS
analysis of urinary VOCs can be improved when combined with FIT [73]. The diagnostic
ability of urinary VOC analysis with the FAIMS method has not been comprehensively and
systematically reviewed.

More traditional GC-MS and GC-IMS can also be used for urine headspace analysis,
though less often [72,74]. Urinary VOC identification faces the same difficulty as breath
VOCs: no single VOC was consistently associated with cancer across studies. According to
van Liere et al., currently, the most distinctive VOC for CRC may be butanal, a marker of
oxidative stress [69].

McFarlane et al. used a sequence of liquid chromatography (LC), FAIMS, and MS
to analyze urinary VOCs instead of direct headspace analysis. The sample, first eluted
by LC, is aerosolized and sent into FAIMS, with MS following [75]. This allows for finer
separation of different compounds and may increase the sensitivity and accuracy of VOC
analysis. However, treating the sample in this sequence renders the analysis more time
consuming and increases the complexity of the operation. Alterations also need to be
made in data analysis, since data obtained by LC and FAIMS do not abide by a one-to-one
corresponding relationship.

5. Feces

Fecal material has long been utilized as a sample source for non-invasive laboratory
examination in the diagnosis of gastrointestinal diseases. Nevertheless, relatively fewer
studies have been conducted in fecal VOC analysis when compared to urinary and breath
VOCs. This might be due to the lower patient acceptance for fecal sample collection than
for urine and breath. Moreover, fecal samples are heavily affected by exogenous factors
such as diet and activity of the gut microbiota.

The sampling process of feces is generally similar to that of urine. Both sources
are not in the gaseous phase, so analysis mainly focuses on the sample headspace. The
techniques previously described, namely GC-MS and e-nose, can also be applied to fecal
samples. SPME can also be applied to fecal headspace [76]. The micro-chamber/thermal
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extractor (µ-CTE) has been developed and employed as a sampling system for fecal VOCs
in recent years. This portable device can carry out headspace VOC extraction in six
chambers simultaneously, with temperature and carrier air flow rate customized according
to software design. A variety of sorbent tubes can be connected to it and collect VOCs for
further analysis, usually by GC-MS [77,78]. The diagnostic ability of fecal VOC GC-MS
analysis seems promising. Śmiełowska et al. used an artificial neural network (ANN) to
build a predictive model and achieved a diagnostic accuracy of 100% [78].

Alustiza et al. designed a headspace extraction unit based on magnetic adsorption
using graphene oxide and Fe3O4 nanocomposite [79]. The underlying technique, known
as magnetic solid-phase extraction (MSPE), combines a magnetic phase and a sorbent
phase, thereby possessing both strong adsorption capacity and manipulability by magnetic
forces [80]. The VOCs are extracted and transferred into a thermal desorption tube with
the help of magnetic power. The tube can then be connected to a thermal desorption–gas
chromatography–mass spectrometry (TD-GC-MS) system for analysis.

As they rely on GC-MS for analysis, the above-mentioned devices cannot perform
real-time analysis. These techniques are valuable for investigational purposes, since they
can achieve high-quality sampling and recognition of specific VOC profiles but may not be
suitable in clinical settings.

Several studies have attempted to utilize e-noses in fecal VOC analysis. De Meij et al.
used Cyranose 320® to analyze fecal headspace. Frozen fecal samples are taken into a
vacutainer and incubated at 37 ◦C to generate ample vapor which would pass into the
e-nose through a connecting needle [81]. SCENT A1, a system based on nanostructured
semiconductor gas sensors, has been tested and shown to have better positive predictive
value than FIT in distinguishing healthy people and individuals affected by colorectal
tumors [82]. It contains a pneumatic system that directs filtered air through a sample box,
transporting fecal exhalation into the sensor unit. Fecal samples are frozen at −8 ◦C and
need to be defrosted 30–40 min before the analysis. The whole process of one analysis takes
around 50–70 min, with 20–40 min for analysis and 30 min for self-cleaning to prepare for
the next analysis [83,84]. These two e-nose devices showed similar diagnostic power, with
sensitivities and specificities around 85%. It should be noted, however, that existing studies
on fecal VOCs, regardless of the analytical method used, are small in both size and number.
Further validation is needed to acknowledge the diagnostic power of fecal VOC analysis.

A different approach taken by Ishibe et al. exploited defecation gas components
instead of feces. Their sampling system is placed in a toilet and consists of a fan that
aspirates air, a gas sensor, a pipe that connects the gas sensor and the sampling Tedlar®

bag, and a stopper placed in front of the bag, the opening of which is controlled by the gas
sensor. When the toilet is in use, the system collects the defecation gas of patients for 30 s
before the stopper automatically closes. Toilet air is aspirated when the toilet is not in use
and treated as background [85]. For subsequent analysis, gas in the sample bag is injected
into a GC system. This study demonstrated that the defecation gas of CRC patients contains
significantly higher concentrations of methyl mercaptan but did not provide information
about the predictive value of this method. This method is highly patient-friendly, as it
requires no additional actions beyond routine daily activities from the patients. Combining
this sampling apparatus with e-noses may obviate the requirement for GC-MS analysis
and enable more affordable real-time analysis. However, the feasibility of the regular
installation and maintenance of this equipment in hospitals remains a problem.

6. Conclusions

Overall, among the VOC sample sources, breath is probably the earliest to be inves-
tigated and most extensively studied. Compared with mixed breath, alveolar air is less
affected by exogenous components and more stable than mixed air or time-controlled
samples. Equipment used for breath collection includes inert bags, sorbent tubes, SPME
tubes, and automated sampling systems. Samples collected in bags need to be transferred
onto sorbent tubes before analysis for VOC enrichment. The ReCIVA® system is one com-
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mercially available apparatus that is used relatively often for automated breath collection
and processing. It allows for the simultaneous collection of mixed breath and alveolar
breath. E-nose technology that enables on-line analysis does not require extra maneuvering
of the sample. Breath is filtered to minimize the contamination of samples and passes
directly onto nanosensors that generate a fingerprint of the input gas.

For urine and feces, the mainstream method of sample collection utilizes their
headspace. In urinary VOC analysis, one of the most often employed techniques is FAIMS
coupled with a standardized sampling system. The Owlstone ATLAS sampling system
enables air-flow control and temperature control. Clean compressed air carries headspace
VOCs into the analyzer for on-line analysis. For fecal samples, instruments such as the
µ-CTE (for GC-MS) and SCENT A1 (for e-nose) have been developed.

In summary, there are mainly two routes for VOC sample preparation. For off-line
analysis that can distinguish specific VOC components, samples need to be enriched and
stored before analysis, meaning that the sample preparation process usually involves
more steps. The TD technique is central to the enrichment process. For on-line analysis
that recognizes sample VOC patterns but not their specific composition, the sample does
not need pre-concentration, but the control of sampling condition and elimination of
distractors are important for data quality. The limitations of the former method are that
it is usually time-consuming and requires more professional manipulation. There is also
the problem of equipment cost and transportability. The latter method complements
these disadvantages excellently, but it faces many challenges such as the instability of
data and lack of comparability. The difficulty in establishing a unified standard impedes
the implementation of these techniques under clinical scenarios. Despite the fact that,
based on existing data, VOCs appear to be promising biomarkers for the early diagnosis
of gastrointestinal cancers, these technical barriers still need to be overcome for VOC
analyzing systems to be implemented for routine hospital use.

For future development of VOC analysis for screening and diagnosing gastrointestinal
cancers, advancements in both sample collection and analytical techniques are equally
crucial. Automated sampling systems represent a significant advancement in the field
of sample collection and may contribute to achieving better consistency across different
settings. Optimization of sampling conditions and standardization of sampling procedures
may be helpful for improving the external validity of VOC analysis results.
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