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Abstract: By applying AI techniques to a variety of pandemic-relevant data, artificial intelligence 

(AI) has substantially supported the control of the spread of the SARS-CoV-2 virus. Along with this, 

epidemiological machine learning studies of SARS-CoV-2 have been frequently published. While 

these models can be perceived as precise and policy-relevant to guide governments towards optimal 

containment policies, their black box nature can hamper building trust and relying confidently on 

the prescriptions proposed. This paper focuses on interpretable AI-based epidemiological models 

in the context of the recent SARS-CoV-2 pandemic. We systematically review existing studies, which 

jointly incorporate AI, SARS-CoV-2 epidemiology, and explainable AI approaches (XAI). First, we 

propose a conceptual framework by synthesizing the main methodological features of the existing 

AI pipelines of SARS-CoV-2. Upon the proposed conceptual framework and by analyzing the se-

lected epidemiological studies, we reflect on current research gaps in epidemiological AI toolboxes 

and how to fill these gaps to generate enhanced policy support in the next potential pandemic. 
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1. Introduction 

The application of artificial intelligence (AI), especially machine learning and deep 

learning models, has been evidenced in a variety of research areas such as computer vi-

sion, robotics, epidemiology, medical imaging, etc., as one of the most powerful ap-

proaches to contain the spread of the SARS-CoV-2 pandemic [1]. While the excellence of 

AI models in terms of their accuracy and performances is broadly admitted, the results 

and prescriptions made based on these models are not always as transparent as required 

[2]. In other words, despite being highly accurate, AI models are not sufficiently interpret-

able (or explainable). Miller defines interpretability as “the degree to which a human can 

understand the cause of a decision” [2]. The terms explainability and interpretability are 

often used interchangeably. Explainability is also referred to in the literature as interpret-

ability, intelligibility, causability, or understandability [3]. 

In recent research, explainable artificial intelligence (XAI) has received high attention 

to address interpretability. The goal of XAI is to understand and explain the correspond-

ing processes behind the algorithms, which lead to the generated predictions of the AI 

models [3–8]. 

In AI studies of the SARS-CoV-2 pandemic, XAI remains one of the main concerns, 

especially with regard to medical AI systems [9], as AI-based medical diagnoses are di-

rectly linked to human lives. While the significance of XAI in healthcare systems is self-

evident, the substantial role XAI may play in AI-based and data-driven generation of gov-

ernment policies in pandemic circumstances is a noticeable subject as well [10]. 

Figure 1 shows an example of a basic AI-powered recommendation system to contain 

the SARS-CoV-2 pandemic, researched within the “AI and COVID project”. The system 
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uses three types of databases: (a) Publicly available information on the global status of the 

pandemic and historical data on measures and their impacts (primary pandemic data), (b) 

region-specific information on population and demographic characteristics (secondary 

pandemic data), and (c) information about the current status of available healthcare per-

sonnel and resources (internal data). By developing AI-supported methods and taking 

into account the current knowledge base, recommendations for actions are developed and 

communicated to the key pandemic-relevant target groups, including political decision-

makers, health authorities, and citizens. The impact of the proposed policy measures, e.g., 

pharmaceutical interventions (PIs) and non-pharmaceutical interventions (NPIs), behav-

ioral changes, and knowledge gained are then stored back into the primary pandemic da-

tabases for use in the next phase of the pandemic. 

 

Figure 1. Motivation of applying XAI to influence the understandability of AI at policy level along 

the overall AI and COVID approach (https://covid-ai.uni-koblenz.de/, accessed on 20 June 2024). 

XAI makes it possible to transparently present the significance and magnitude of the 

recommended measures for the target actors mentioned above. In particular, in the pres-

ence of XAI, the policy level can see the evidence of the results achieved at the level of AI 

development and trust the proposed policies. 
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In addition, system developers can also benefit from the use of XAI at the AI devel-

opment level. XAI enables system developers to take a look at the internal workings of AI-

based algorithms and helps them eliminate potential pitfalls (e.g., misunderstandings of 

semantics and syntax errors) that arise at the AI development level and correct the corre-

sponding errors [11]. 

Identifying the main methodological gaps in the AI pipelines of epidemiology re-

mains important to develop enhanced epidemiological XAI toolboxes for the next poten-

tial epidemics. In order to develop a comprehensive understanding, our objective in this 

paper is to systematically review the existing literature in the field and to figure out the 

main research gaps on XAI and AI-based epidemiological pipelines of the recent SARS-

CoV-2 pandemic. The insights obtained from our review serve as a guide for expanding 

the methodological toolbox in AI-based epidemiology. The following research questions 

(RQs) drive this study: 

RQ 1: What is the current state of research on XAI applied to the recent pandemic, 

and what research gaps exist? 

RQ 2: What would be a suitable conceptual framework to systematically analyze the 

main methodological features of interpretable machine learning pipelines on SARS-CoV-

2 data? 

RQ 3: What further research is required to boost the development of explainable AI 

models of epidemiology? 

To answer these RQs, the study conducts a systematic literature review by adapting 

the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) ap-

proach [12,13]. 

The remainder of the paper is as follows. Section 2 details the methodology for the 

systematic literature reviews in the subsequent Sections 3 and 4. In Section 3, a literature 

analysis is conducted with the focus of conceptualizing a decent framework of interpret-

able machine learning pipelines in the context of SARS-CoV-2. Based on the conceptual 

framework, in Section 4, we focus on the epidemiological AI approaches of SARS-CoV-2 

and analyze the set of selected epidemiological papers. Section 5 concludes the paper with 

a discussion and reflection of future research needs derived from the gaps identified. 

2. Research Methodology 

Our study applies the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) approach for literature identification [12]. The process employs four 

sequential phases: Identification, screening, eligibility, and inclusion. The identification 

phase is carried out by filtering titles and content in the Google Scholar database. Thereby, 

we opted for broad coverage by using the search term “COVID” in the title as well as one 

of the semantically exchangeable search terms “interpretable machine learning”, “inter-

pretable deep learning”, “explainable machine learning” and “explainable deep learning” 

in the body text (accessed on 10 January 2024). We opted for setting a generally defined 

search term in the database without primarily specifying any keywords with relation to 

the “epidemiological” target of our review. This was conducted to minimize the risk of 

bias in the selection of the final included studies in favor of specified words such as epi-

demiology, government policy, non-pharmaceutical interventions, etc. The search of the 

aforementioned four search combinations resulted in a total of 1503 studies. As among the 

collected papers, 218 studies were duplicates due to coexistence in more than one of the 

four aforementioned search combinations, the duplicated papers were filtered, and we 

moved on with 1285 papers in the screening phase. 

In the screening phase, an Excel sheet was used to mark each paper with regard to 

the specific research area (with respect to the methods and results) it belongs to. For the 

development of the reference framework for interpretable machine learning pipelines on 

SARS-CoV-2 data, the 1285 papers were the basis. We particularly scanned the studies for 

the main methods of data processing and ML processing pipelines. This resulted in 325 

papers that deal with different methodological features. Through tabular evaluation, we 
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analyzed these papers to synthesize the information with regard to the six steps for our 

conceptual framework. A tabular representation of the papers is presented in the paper’s 

Supplementary Material. The results of the synthesis are described in Section 3 along with 

the conceptualized reference framework of the pipeline. This reference framework was 

applied to identify both the potentials and limitations of the narrowed scope of epidemi-

ological AI research in the SARS-CoV-2 context elaborated in Section 4. 

To narrow the vast amount of literature for Section 4, more than seven research areas 

were identified to group the studies. A subset of identified papers included 328 papers 

related to X-ray and CT imaging classification methods. 196 papers addressed SARS-CoV-

2 diagnosis approaches based on clinical markers (i.e., blood tests, patient symptoms etc.). 

62 papers tackled psychology and language understanding. Further 611 papers were 

grouped into the miscellaneous area. While, within this miscellaneous group, we identi-

fied 188 articles that conducted reviews of literature in the scope of AI research and SARS-

CoV-2 epidemiology from different perspectives, none of these studies have focused on 

the same objective as our study, i.e., jointly incorporating AI, SARS-CoV-2 epidemiology, 

and XAI. We therefore did not include these papers in our further consideration for the 

latter analysis of epidemiological AI research with XAI. 88 studies were assigned to the 

epidemiological category to be further considered in our targeted group of relevant stud-

ies in Section 4. 

Next, we further screened the eligibility of the 88 epidemiological studies as the main 

study target with the following three inclusion rules: (a) Being a peer-reviewed journal 

paper, (b) using at least one ML model rather than statistical regression models in the 

paper, and (c) that the paper applies XAI in the pipeline. By stepwise filtering based on 

the three inclusion rules, we finally included 26 papers, which are further categorized and 

explored in more detail in Section 4 of this paper. Figure 2 presents the flowchart for se-

lecting the papers for the epidemiological AI research in Section 4 based on the PRISMA 

2020 flow diagram for new systematic reviews [12,13]. 
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Figure 2. Study search and selection process for literature on epidemiological AI research based on 

the PRISMA template [13]. The dashed lines and dashed squares are added to elucidate the selection 

process of included studies reviewed in Section 3. 

3. Literature Review on XAI Pipelines of SARS-CoV-2 and Reference Framework for 

the Subsequent Epidemiological Study 

In this section, we review the existing literature with regard to XAI applied in the 

identified SARS-CoV-2 literature. The objective is to conceptualize a reference framework 

for studying XAI pipelines of SARS-CoV-2 for synthesizing the main methodological fea-

tures in Section 4. The proposed reference framework (Figure 3) entails the main steps of 

Severn et al.’s approach, i.e., process data, build prediction models, and explain prediction 

model sub-pipelines for explainable machine learning models [14]. However, we followed 

a more fine-grained and adjusted set of steps as shown in Figure 3: Data preprocessing, 
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feature engineering, parameter tuning, model training, model evaluation, and model ex-

planation (XAI). This more detailed pipeline is extracted from the literature analysis and 

is described below along the individual steps. 

 

Figure 3. A conceptual reference framework of ML pipelines in the context of SARS-CoV-2. 

3.1. Data Preprocessing 

The Data Preprocessing step handles missing, unbalanced and sparse data. 

3.1.1. Missing Data 

Missing data can cause concerns not only to the model’s precision but, furthermore, 

to the interpretation of the achieved output. While missing data values are inherently han-

dled by some techniques, e.g., gradient-boosting predictors [15], these remain a basic 

problem on top of the pipeline in numerous studies. The lack of enough data hampers the 

prediction accuracy of SARS-CoV-2 cases, while having larger datasets can lead to im-

proved results [16]. As the amount of data increases, the epistemic uncertainty related to 

the model decreases [17]. In contrast, the problem of lacking data is amplified when facing 

problems with a large number of inputs. Docquier et al. show how the inclusion of extra 

parameters (to incorporate day-specific effects—i.e., 366 day-specific time dummies) in 

their models deteriorates the predictive power of the ML model. The authors conclude 

that, given a dataset, the gains from adding information are indeed outbalanced by the 

costs linked to the inflated dimensionality of the AI computation problem [18]. Hinns et 

al. study XAI generated by various predictors on a dataset and show how inconsistent 

model interpretations emerge among a set of random data sub-sets when using little data, 

and that by increasing the size of the data, interpretations of the random data subsets 

converge towards each other [19]. Andonov, Ulm, and Graessner show how a sudden shift 

in the input data impacts the performances of AI models as well as the explanation of the 

models [20]. 

To combat missing data, in the context of SARS-CoV-2 studies, the k-nearest-neigh-

bor algorithm (KNN) is frequently used [21] to impute the missing values in the dataset. 

By trying to compare an unlabeled data point to the training dataset, the KNN finds the 

K most related data points. Thereby, a metric that measures distance, such as Euclidean 

or Manhattan distance, is utilized to determine proximity. This technique then assigns the 

given data point to the most familiar class [22]. Another possible imputation approach is 

the usage of generative adversarial neural networks (GANN), which learn to generate 

“missing” data with the same distribution as the training set. This is performed by training 

a “generative” network, which generates possible imputed values and proposes them to 

a “discriminative” network, which is trained to accept only those generated values that 

properly fill the missing ones according to the underlying data distribution [23]. 



Life 2024, 14, 783 7 of 31 
 

 

3.1.2. Unbalanced Data 

Unbalanced data can lead the model’s performance to be biased in favor of the classes 

or ranges of outputs, which are overrepresented. The unbalanced data is often handled by 

the Synthetic Minority Oversampling Technique algorithm (SMOTE) [24]. SMOTE works 

based on identifying the k-nearest neighbors’ principle and deploys the principles of in-

terpolation [25]. It creates synthetic data that is close to the minority class to oversample 

the minority class in the feature space [26,27]. To handle the problem of unbalanced data, 

other alternatives exist, such as data partitioning (i.e., utilizing dichotomous variables). 

Discretizing the variable spaces will not necessarily worsen the model performance in all 

circumstances to a large extent. For instance, Wendland et al. show that models using only 

dichotomous features perform only slightly worse than models based on a complex com-

bination of numerical input values [28]. Another way of managing unbalanced data is 

during the training step. In [29], during the fitting procedure, the unbalancing issue is 

tackled by penalizing the misclassification of the minority class with a multiplicative fac-

tor inversely proportional to the class frequencies. Hu et al. propose a novel self-adaptive 

auxiliary loss to help the training with imbalanced data [30]. The self-adaptive factor re-

flects the feature distribution and emphasizes the minority class. Also, other data imputa-

tion methods are used in the SARS-CoV-2 literature based on decision trees, e.g., isolation 

forest [31], miss forest [32], and random forest [33]. The range of possible data imputation 

techniques is not restricted to those frequently used. For example, predictive mean match-

ing to impute numeric features, logistic regression to impute binary variables, and Bayes-

ian polytomous regression to impute factor features are used in [34]. In addition, Abbas-

imehr, Paki, and Bahrini present a time series augmentation technique to create new time 

series with the same temporal dependencies that exist in the original time series data [35]. 

3.1.3. Sparse Data 

To resolve the generic problem of sparse training data, generative networks (GANs) 

are applied in studies to generate ample synthetic training data [36–38]. With limited data 

in the SARS-CoV-2 context, synthetic data is generated using the auto encoder (AE) meth-

ods [39–41]. AEs belong to the realm of unsupervised learning, as they do not need labeled 

data for their training. The process consists of providing labeled sample data to the en-

coder, which captures the distribution of the deep feature, and the decoder, which gener-

ates data from the deep feature by decompressing the latent space. 

3.2. Feature Engineering 

Feature engineering generally covers feature extraction and feature selection [42]. 

Whereas feature extraction creates new features, feature selection is about selecting a sub-

set of the original feature set [43]. For feature extraction, two types of methods are distin-

guished: pre-trained feature extracting and reduced dimensional feature extracting. 

3.2.1. Pre-Trained Feature Extracting 

As most ML models require inputs in the form of numerical vectors, some feature 

extraction techniques aim at translating features such as vocabulary [44], images [45], or 

parts of speech into numerical representations. This is performed in most image recogni-

tion studies [46] as well as natural language processing studies [44] by means of pre-

trained deep learning models. The pre-trained model acts as an early feature extractor, 

usually followed by a fine-tuning step [47]. Subsequently, a downstream classification 

step is executed in many cases [48]. 

The upstream part of an ML pipeline can comprise the translation of, e.g., text and 

image in both directions to extract desired features. For example, Shang et al. utilize a text-

guided visual feature generator to generate visual features from the news text as well as 

an image-guided textual feature decoder to generate the corresponding textual features 

from the news image [49]. 
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3.2.2. Reduced Dimensional Feature Extraction 

Feature extraction techniques can also aim at learning the reduced structure of the 

data by finding a low-dimensional embedding representation that preserves the essential 

structure of the data. For this, a variety of algorithms are applied in the context of the 

SARS-CoV-2 literature, as summarized in Table 1. 

Table 1. Overview and short explanation of dimensionality reduction algorithms used in SARS-

CoV-2 literature context. 

Method 

[Source] 
Explanation 

K-Means 

[50,51] 

Clustering algorithms that can detect complex patterns based on a 

partition system to group data into several clusters 

PCA—

principal 

component 

analysis 

[26,51–53] 

A statistical procedure, which relies on linear transformation for 

reducing the dimensionality of datasets while preserving crucial 

information 

AE—auto 

encoders [40] 

Perform dimensionality reduction similar to PCA. However, unlike PCA, 

which relies on linear transformation, AEs carry out non-linear 

transformation using deep neural networks 

SOM—self-

organizing 

maps [54,55] 

Is an unsupervised machine learning technique to cluster the high-

dimensional data into low-dimensional outputs consisting of a similar 

structure like artificial neural networks (ANNs), with the difference that 

the organizing maps in SOM use competitive learning whereas the 

ANNs use error correction learning such as back-propagation with 

gradient descent 

LDA—Latent 

Dirichlet 

Allocation [56] 

Is a Bayesian unsupervised clustering method that is often employed to 

cluster topics of a set of documents in each cluster 

t-SNE— 

t-stochastic 

neighborhood 

embedding 

[57] 

Is a kind of unsupervised non-linear embedding dimensionality 

reduction: It embeds the points from a higher dimension to a lower 

dimension trying to preserve the local structure of data 

UMAP—

uniform 

manifold 

approximation 

and projection 

[58,59] 

Is a flexible non-linear dimension reduction algorithm based on 

Riemannian geometry and algebraic topology to learn the manifold 

structure of the data and find a low dimensional embedding that 

preserves the essential topological structure of that manifold 

RFF—Random 

Fourier 

Features [60] 

An approximate kernel method, which maps the given data to a low 

dimensional randomized feature space based on Euclidean inner product 

space 

Docquier, Golenvaux, and Nijssen use a PCA analysis to reduce the dimensionality 

of the origin- and destination-specific containment measures, extract the first two compo-

nents of the PCA, and propose that the first PCA component can be interpreted as an 

average index of the stringency of containment measures, and the second component cap-

tures testing and tracing policies [18]. Trajanoska, Trajanov, and Eftimov cluster countries 

with similarly balanced diets using SOM. In addition to presenting the SOM clusters, the 

authors present an explainable decision map corresponding to the SOM clusters, with 
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squares representing the most dominant feature leading to the decision to cluster the 

countries [61]. 

Beside the previously mentioned methods, knowledge graph embedding techniques 

to encode the entities and relations in a knowledge graph as dense and low-dimensional 

vector representations are utilized in the literature of SARS-CoV-2 [62,63]. In addition, 

functional data analysis following the principle of “breaking up the whole into pieces” of 

big data analysis to transfer discrete and high-frequency sequences of data to continuous 

smooth functions, treating the whole functions as a single entity with an internal unified 

structure, is used in the literature [64]. 

While the above-mentioned techniques for reducing the number of variables can 

eliminate redundant and irrelevant features, de Paiva, Pereira, and de Andrade argue that 

it is not always clear whether these methods result in improvements in the predictive 

power of ML models [65]. Furthermore, as these methods project the features to a new 

dimension and the features in the new dimension become mixed features, these new fea-

tures might not necessarily provide a strong explanatory basis [66]. Despite that, some of 

the aforementioned studies have provided XAI along with the corresponding AI algo-

rithms. For example, [58] constructs discriminative decision rules that identify and differ-

entiate the clusters, forming the explanations of subgroups. Moreover, features with the 

strongest impact on clustering can be examined by assessing their importance to each 

emerging cluster through supervised machine learning models and subsequent applica-

tion of XAI techniques [67]. 

3.2.3. Feature Selection 

Feature selection aims at eliminating irrelevant and redundant features. Irrelevant 

and redundant features not only increase the computational complexity of a model but 

also increase the probability of overfitting [68]. 

Statistical correlation analysis is the first milestone to observe if, e.g., there is a high 

degree of correlation between multiple independent variables. Finding high correlations 

between two variables, e.g., the share of the population with cancer and the share of the 

elderly, is conceivable. After the correlation analysis, such variables can be reduced to 

continue the investigation with a lower number of representing variables [69]. The factor 

analysis technique is an alternative statistical method that extracts the maximum common 

variance from all variables and puts them into a common score. This contributes to iden-

tifying latent composite variables, for example, between gross domestic product (GDP) 

per capita and other development metrics, such as access to electricity [70]. 

Various statistical methods can contribute to evaluating the association between in-

dependent variables and the dependent variables (leading to sorting the priority of influ-

ential variables and eliminating the irrelevant ones), including H-statistics [71], Pearson’s 

correlation analysis [72], chi-square [73], T-test [74], U-test [51], univariate logistic regres-

sion [75], etc. While statistical methods can indicate the overall interaction strength of each 

feature with the other features, they do not convey what the interactions look like. That is 

what XAI is for. 

Next to the statistical approaches, the selection of the feature selection model is often 

based on training an ML model. This ML model could be identical to the training model 

at the upcoming stage of the pipeline or not. Various approaches undertake a kind of step-

wise wrapping feature selection by removing (or adding) features one by one from (to) a 

set of features and evaluating the model error (or statistical significance of the added fac-

tor) through training the model at the upcoming stage of the pipeline (forward feature 

addition and backward feature elimination) [69,76]. 

Alternatively, the selection of the feature selection model can be carried out based on 

training an ML model and computing the significance of each feature through the subse-

quent XAI corresponding to the chosen ML model [77,78]. For example, a number of stud-

ies utilize the SHAPley value-based explanations (SHAP) concept (see Section 3.6 below 
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on model interpretation) to undertake the task of feature selection in their pipeline [52,79–

81]. 

Beside the above-mentioned categories (i.e., statistical analysis, error-based, and XAI-

based feature selection methods) different evolutionary techniques are utilized in the con-

text of SARS-CoV-2 literature for feature selection. Examples are artificial bee colony, ant 

colony optimization, butterfly optimization algorithm, elephant herding optimization, ge-

netic algorithm, and particle swarm optimization [40,82,83]. 

An alternative kind of explainable feature selection is proposed by [84] by initializing 

a weighted graph to comprise features with Pearson similarity criteria for the feature sim-

ilarities calculation as well as the integration of Fisher score (FS) and the node centrality 

to determine the score of each feature. That way, the feature selection approach considers 

not only feature importance but also feature similarity. 

Figure 4 portrays an overview of the methods presented in Section 3.2. 

 

Figure 4. Overview of the feature engineering approaches resulted from the SARS-CoV-2 research 

studied in Section 3.2. 

3.3. Model Parameter Tuning 

To achieve highly precise results through ML algorithms, various approaches are 

used to fine-tune the models’ hyper-parameters. The hyper-parameters of DL (deep learn-

ing) models, which must be tuned, consist of the number of layers, number of neurons, 

activation function, learning rate, etc. [72]. For example, Vernikou, Lyras, and Kanavos 

show that the Bert Tokenizer long short-term memory network (LSTM) model responds 

better with a very low learning rate [85]. The hyper-parameters to tune in decision tree-

based models would comprise the maximum depths of trees and the maximum number 

of features used in each split. Hyper-parameter tuning is conducted in most pipelines with 
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a grid search algorithm. The grid search algorithm tests all combinations of hyper-param-

eters and narrows the model parameters to the optimal ones [25,86,87]. 

Due to the computational costs of information processing in grid search strategies, 

evolutionary and swarm intelligence-based optimization algorithms are also applied 

[88,89]. In addition, the search for hyper-parameters is carried out frequently using a 

Bayesian search [90–92]. 

3.4. Model Training 

Model training approaches are based on different categories consisting of statistical 

regression models, pre-trained DL (deep learning) models, ML basic models, DL basic 

models, graph models, ensemble models, and hybrid models. A complete list of detailed 

training (as well as interpretation) methods used in the identification phase of the litera-

ture in our paper is provided in the Supplementary Material to this paper. Among statis-

tical regression models, the logistic regression (LR) model is frequently used to take on 

either classification or regression tasks in various studies [93–95]. Model training in the 

context of natural language processing and medical imaging is often elaborated through 

pre-trained models, such as Bert [44], ResNet [96], etc. Among the basic ML models, the 

extreme gradient boosting algorithm (XGB) is elaborated on in a variety of classification 

or regression tasks in the context of the SARS-CoV-2 literature. XGB itself is an ensemble 

model encompassing multiple weak tree-based models, which work together [97] based 

on the boosting approach. Boosting is a sequential ensemble method that iteratively ad-

justs the weight of observation as per the last model output. Long short-term memory 

networks (LSTM) and convolutional neural networks (CNN) are prominent examples of 

basic DL models applied frequently in the context of SARS-CoV-2 studies. LSTM excels at 

capturing time data dependencies, making it ideal for sequence prediction tasks [98]. 

CNN is specifically used for image classification and tasks that consider the processing of 

spatial dimensions of data [99]. While CNNs are primarily used for computer vision ap-

plications, they work on different time series problems, too [100]. Ensemble models incor-

porate a number of basic ML or DL models to achieve higher degrees of accuracy. Four 

main alternatives to creating ensembles, comprising bagging, boosting, stacking, and mix-

ture of experts, are addressed in [93]. Hybrid models concatenate different combinations 

of ML and DL models at different model architecture levels [96,101,102]. Graph models 

reflect the underlying logical connection of the model components in a graphical style 

[103,104]. Graph neural networks (GNNs) are novel graph models that comprise input 

variables as graph components, e.g., nodes and edges. The graph components get updated 

through machine learning models, e.g., based on the feature networks of the nodes’ neigh-

bors and the edges connecting them [105]. Figure 5 provides an overview of the methods 

presented in Section 3.4. 
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Figure 5. Overview of the model training approaches resulted from the SARS-CoV-2 research stud-

ied in Section 3.3. 

3.5. Model Evaluation 

The evaluation of the performance of an ML or DL model depends on the model 

outputs. For pipelines with classification output types, the evaluation criteria are often 

AUC (area under receiver operating characteristic curve), precision, recall, F1-score, and 

accuracy [106]. The aforementioned criteria can be further elucidated based on the notions 

of the receiver operating characteristic (ROC) curve [107] as well as the precision and recall 

(PR) curve [108]. To evaluate the performance of pipelines with continuous outputs, mean 

absolute error (MAE), mean square error (MSE), root mean squared error (RMSE), and 

goodness-of-fit (R2 score) are used [90]. Furthermore, instead of evaluating the perfor-

mance of a model on a single validation dataset, multiple random splits (k-fold validation) 

are utilized (as the performance of a model can change depending on the choice of split) 

[109]. For the time series ML models, a sliding window can be applied to the dataset to 

alter the test data that is set in a non-random (subsequent) manner from a time point to 

the next time point onward. Thus, if, e.g., for the first split, the test set covers 20% of the 

earliest data records from a certain time point on, the test set of the last split corresponds 

to the most recent 20% of the data records [77]. 

3.6. Model Interpretation 

ML and DL models can be grouped into two categories of interpretability: Intrinsi-

cally interpretable and non-intrinsically interpretable [3]. A complete list of detailed inter-

pretations (as well as training methods) used in the identification phase of the literature 

study can be found in the Supplementary Material. 

3.6.1. Intrinsically Interpretable Models 

Statistical regression models, e.g., a logistic regression (LR) model, are examples of 

intrinsically interpretable models. In these models, a coefficient or odds ratio summarizes 

the positive or negative strength of the association between exposure and an event. More-

over, the coefficients from the LR model can be utilized to build a nomogram predicting 

the model outcome [110]. Regressions remain one of the simplest and most explainable 

models with a clear formulation. Despite this, they may not precisely accommodate the 

non-linear and non-monotonic patterns in the data. The literature of SARS-CoV-2 studies 
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has proposed a range of intrinsically interpretable methods rather than statistical models. 

Table 2 summarizes a list of intrinsically interpretable methods identified throughout the 

literature analysis. 

Table 2. Overview of intrinsically interpretable ML methods used in SARS-CoV-2 literature context. 

Method 

[Source] 
Description of Method 

J48 [111] 
Machine learning decision tree classification algorithm based on 

Iterative Dichotomies. 

RIPPER 

[112,113] 

Rule-based ML algorithm, in which rules are learned from the data 

directly. 

pyFUME [112] Can create rules based on fuzzy logic. 

GAMs [114] 
Used as non-linear regression tools that allow for non-parametric 

fittings of complex dependencies of responses. 

GNAMs [115] 
A hybrid ML-DL, which belongs to the GAMs family and learns a 

linear combination of multi-layer perceptron models. 

EBM [116] 

Explainable boosting machine is constructed with multiple 

hierarchically organized simple classifiers consisting of sequences of 

binary decisions and tree-based decision system. 

JRip [109] 
Rule-based classifier, which creates propositional rules that can be used 

to classify elements. 

Quantum 

Lattice [25] 

Inspired by the Richard Feynman path, which creates multiple possible 

graphical models composed of different mathematical operations. On 

selection of the best model, a Q-graph is created to provide the rationale 

behind a prediction. Further, a simplified equation for the model is 

obtained that provides insights into the mapping of inputs to outputs. 

Bayesian 

networks [117]  

Probabilistic graphical model for representing knowledge about an 

uncertain domain. 

3.6.2. Non-Intrinsically Interpretable Models 

The non-intrinsically interpretable models are analyzed in two alternative ways in 

the literature: Model-agnostic approaches and model-specific approaches [3–8]. Model-

agnostic approaches presume ML models as a black box and try to convey XAI based on 

surrogate models, either by means of employing intrinsically interpretable meta-explain-

ing models or by means of employing perturbation mechanisms. Model-specific ap-

proaches, conversely, try to embed XAI into the specific model to observe the feature in-

fluences during the training procedure. Among model-agnostic approaches, SHAP is fre-

quently elaborated on in a variety of model interpretation tasks in the context of the SARS-

CoV-2 literature. The SHAP is a perturbation-based concept. Perturbation-based ap-

proaches aim at analyzing the importance of each input on the model outcome by system-

atically modifying the input of the model and observing the changes in the output. If the 

permutation of a specific part of the input, considerably alters the model output, then the 

specified part is considered to be important. SHAP computes the average marginal con-

tribution of a feature to the output predicted by the ML model, considering all possible 

combinations of features [118]. The SHAP computation time increases exponentially with 

the number of features. 

Local interpretable model-agnostic explanation (LIME) is another most frequently 

applied interpretation model-agnostic method that is based on perturbation and meta-

modeling. LIME tunes the values of the features of a selected predicted instance and gen-

erates new samples based on the proximity to the instance being picked [119]. It then op-

timizes a line based on all generated samples and gives a local interpretable explanation 

of the instance being picked. 
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Likewise, a number of studies in the context of the SARS-CoV-2 literature have uti-

lized other surrogate meta-models, which are intrinsically interpretable, to explain the 

logic behind decisions made by an original black-box model. Examples of such ap-

proaches include: 

- using formal concept analysis (FCA) to create a set of association rules with different 

confidence intervals [120]; 

- applying a Bayesian network to visualize the effect of the potential influencers on 

decision making [24]; 

- proposing a single associated decision tree (DT) to represent a random forest (RF) 

model [68]; 

- applying the anchors method to help explain predictions by decision rules [23]; 

- utilizing a probabilistic graphical model (PGM-Explainer) as a simpler interpretable 

Bayesian network in order to interpret GNNs [121]; 

- applying the symbolic meta modeling approach, which integrates various simple pa-

rameterized functions to obtain a closed-form and interpretable expression for the 

meta model [122]. 

Despite a wide range of practical applications of model-agnostic models, these ap-

proaches are not ideal XAI approaches, representing the original training procedures be-

hind the model they explain. Model-agnostic methods are indeed surrogates, which first 

presume an ML model as a black box, then derive their interpretations (after the model 

training is finished) from a different modeling perspective with priors that are not neces-

sarily in line with the internal procedures of the original model [123]. Model-specific ap-

proaches try to fill this gap by trying to provide information regarding the actual reason-

ing process within the specific model through the training. Model-specific approaches are 

built based on incorporating weights, gradients, or attention from DL model-specific lay-

ers. 

Figure 6 visualizes the mechanisms behind the XAI approaches reviewed in this sec-

tion. 

 

Figure 6. Overview of the mechanisms of XAI approaches used in the SARS-CoV-2 context: intrin-

sically interpretable methods, model-agnostic methods, weight-based methods, gradient-based 

methods, and attention-based methods. 
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Weight-based techniques utilize the product of final weights based on the connec-

tions from input neurons to the output neurons [72,124]. Gradient-based techniques back-

propagate outputs onto a particular feature map (the output of one filter applied to the 

previous layer). Usually, the feature map is chosen to be the final convolutional layer in 

CNNs. Class activation map (CAM) and Grad-CAM explanation methods are frequently 

applied examples of weight-based and gradient-based approaches in the literature [125]. 

CAM uses the notion of global average pooling (GAP) and learns weights from the output 

of the GAP layer onto the output classes. Grad-CAM generates a localization map that 

shows the critical features by using gradients from the target class, which are settled in 

the final convolutional layer in the CNN network [125]. Integrated gradients (IG) method 

is another gradient-based alternative. IG methods examine the inputs of a deep learning 

model and their importance for the output by integrating the gradients of the output with 

respect to the input along an arbitrary path from the baseline to the input data point [98]. 

In addition, attention mechanisms have gained a lot of attention in the SARS-CoV-2 

literature [126]. The attention approaches are inspired by human attention visual mecha-

nisms, which use limited attention to quickly screen high value information from a large 

amount of information. This not only contributes to increase the prediction performance 

but is also efficient in gaining insight into information that is more critical to the model 

outputs instead of learning non-useful information [37,127,128]. 

4. Literature Analysis of Epidemiological AI Research 

In this section, we focus on the 26 papers that fulfill the inclusion criteria of our study. 

A detailed tabular representation of the 26 papers (comprising research question, data, 

pipeline, and significant results per paper) is presented in the paper’s Supplementary Ma-

terial. 

The models in the papers are designed to analyze different epidemiologic aspects of 

SARS-CoV-2 in different geographical scopes. A subset of papers incorporated data of 

multiple countries, including analyzing NPIs in 176 countries [129], analyzing the evolu-

tion of cross-border movements of people during the SARS-CoV-2 in Europe [18], study-

ing the influence of NPIs, PIs, virus variants etc. on SARS-CoV-2 spread in Europe [130], 

investigating the role of booster vaccine in 32 countries [131], focusing on the role of die-

tary imbalances in 154 countries [61], assessing the role of NPIs against SARS-CoV-2 at 

containing seasonal influenza transmission in 33 countries [92], forecasting confirmed 

cases prediction in 8 countries [102], assessing the effect of non-countermeasure factors 

(e.g., cultural factors) to classify countries into those more and less prone to the fast spread 

of SARS-CoV-2 [51], and explaining a variety of socio-temporal variables on SARS-CoV-2 

prevalence and mortality at a global scale [72]. 

The rest of the papers, e.g., [98,127,132], mostly utilize the data of one country or 

region, especially from the US. The analyzed studies focus on different research objectives. 

Depending on the focus, they generate different explanations on the significance of differ-

ent influential factors on the spread of the pandemic, such as compliance with interven-

tions [133], population density [134], population movement and gathering [76,78,92], lock 

down effects [18,120], labor and unemployment effects [72,81], closure and regulation of 

schools [129,135], vaccination [130–132], spatial effects [74,136], weather conditions 

[127,137,138], country dietary and cultural effects [51,61], virus variants [98], and health 

infrastructural impacts [139]. 

The data preprocessing stage encompasses, in most studies, a data imputation step. 

In rare cases, the unbalanced data issue is handled, e.g., by SMOT in [138] and by exclud-

ing those NPIs that were used in less than 20 countries [129]. Data discretization is carried 

out by means of a relevant algorithm due to the necessity of discretization of feature val-

ues in Bayesian network analysis (but not for the sake of handling data unbalance) [136]. 

Feature extraction techniques are applied in three studies, comprising: PCA analysis 

in [18], SOM in [61], and K-means in [51]. The feature selection step is performed in most 
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of the studies. It consists, e.g., of statistical analysis in [72,133], and stepwise wrapping 

methods based on k-fold validation [61,76,92,136,137,139]. 

SHAP-based feature selection methods [61,78,92] and feature selection based on al-

ternative ML methods [51,92] are applied as well. Data preprocessing and data engineer-

ing steps are not explicit parts of the pipeline in [74]. The authors use the inherent ad-

vantage of XGB to cope with correlations between the covariates and to deal with data 

imputation. 

Parameter tuning and model evaluation stages are in most models performed based 

on a grid search algorithm and by evaluation metrics as introduced in Section 3.3 and 

Section 3.5, respectively. 

Figures 7 and 8 depict the main ML and XAI approaches and their corresponding 

application frequencies within the selected epidemiological XAI research. A list of method 

abbreviations existing in Figures 7 and 8 is presented in Abbreviations. 

 

Figure 7. ML approaches used in the epidemiological context, and frequency of use in the studies. 
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Figure 8. XAI approaches used in the epidemiological context, and frequency of use in the studies. 

Figures 7 and 8 visualize a dominance of XGB (using ML in the training step) and 

SHAP (using XAI in the interpretation step), as well as their joint application in the liter-

ature studied. Zopluglu argues that this results from XGB’s speed and performance based 

on parallelization, tree pruning, and hardware optimization [140]. Molnar argues for the 

first time that this may be grounded in the solid game-theoretical basis of SHAP [141]. At 

the same time, the higher proportion of the XGB- and SHAP-based pipelines (beside the 

prevalence of other tree-based ML and model-agnostic XAI techniques) indicates a lower 

presence of deep learning as well as the corresponding model-specific XAI techniques in 

the context of epidemiological AI studies of SARS-CoV-2. This is despite the fact that deep 

learning approaches (the corresponding XAI techniques) are a rapidly growing area of 

computer science. 

Table 3 illustrates further modeling aspects employed in the different XAI-based ep-

idemiological studies analyzed. 

Table 3. Overview of modelling aspects in the XAI epidemiological studies. 

Modelling 

Aspect 

SEIR 

Based ML 

Time 

Explicitness 
Dynamic Time Graphical Model 

Rule Creating 

XAI 

Model-Specific 

XAI 

[Source] [135,142]  

[18,81,92,98,102,12

0,127,129,132,135,

138,139,142] 

[98,102,120,127,13

5,138,139,142] 
[136,142,143] [51,120] [72,98,127,138]  

SEIR-based ML models combine compartmental models with machine learning mod-

els to replace the fixed parameters of the former with time-varying parameters that are 

fitted using machine learning methods. Figure 9 illustrates the estimation of SEIR param-

eters based on AI-based approaches. 
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Figure 9. Hybrid SEIR-Deep learning approach in epidemiological pipelines. 

Time series data (Figure 9) includes the main epidemiological factors such as daily 

government non-pharmaceutical measures (NPIs), the percentages of different virus var-

iants, as well as the proportion of vaccinated people. Static data include factors such as 

country-specific parameters of the healthcare system as well as its demographic and eco-

nomic characteristics. The transition rates at which people move from one state of the SEIR 

model to another state can be calculated based on deep learning models fed with time 

series and static epidemic data. The deep learning models applied can be of different na-

tures (e.g., pre-trained transformer-based, graphical, Bayesian, etc.). 

Vega et al. [142] use a simplified probabilistic graph model (PGM) (e.g., probabilistic 

version of linear regression) to update the SEIR model parameters based on past infor-

mation and estimated parameters in a previous iteration. Ref. [135] adopts a generalized 

additive model for each variable to be added to the SEIR model to represent the transmis-

sion rates. 

A subset of studies is not designed to be used as real-time forecasting tools. Indeed, 

most of the studies employ fitted models to enhance the overall understanding regarding 

the effect of various influential features on pandemic progression, mortality rates, etc. 

Hence, they do not explicitly model the factor time. In contrast, a subset of studies (listed 

in the third column of Table 3) has explicitly modeled the factor time. These studies can 

be divided into two distinct categories: (a) Studies, which utilize dynamic time series mod-

els (i.e., RNN, LSTM, or CNN) to systematically incorporate the dependencies between 
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consequent time points (listed in the fourth column in Table 3); and (b) studies, which treat 

each variable at each time point as a distinct input to the model (listed in the third column 

but not listed in the fourth column in Table 3). For example, Ref. [129] represents a com-

bination of each NPI variable with how long the corresponding NPI has been in place as 

a distinct variable. Ref. [92] used, for each NPI, the lagged day with the largest Spearman 

correlation coefficient to generate the explanatory variables. Nonetheless, Ref. [127] uses 

a multi-stage (4-stage) LSTM, which, at each stage, forecasts a chosen target variable for 

one week ahead. The model elaborates on the initial first stage prediction to forecast an 

additional week, and it continues to implement this iterative approach, one stage at a time, 

to predict further into the future. 

Graphical causal structure of the data is used in the studies presented in Table 3, not 

only for the sake of intrinsically interpretable model training [136,142], but also for incor-

porating prior knowledge into the resulting SHAP values [143]. In addition, creating as-

sociative rules as interpretable model-agnostic models is applied in [51,120]. 

The explanations provided by models in the sixth column of Table 3 are model-spe-

cific explanation types replicating an ML model’s internal mechanism. Such XAIs can bet-

ter reflect the corresponding decision making of the models rather than explanations pro-

duced by model-agnostic methods. These XAI methods reflect: 

- the internal connected neurons’ weights in [72]; 

- attention weights (to determine which input features should be given more attention 

over others, and the weight of importance for each historical temporal step) in [127] 

- integrated gradient in [98]; 

- the XGB feature is important in [138], representing the percentage of trees that use a 

variable in the ensemble tree model. 

Although the presented studies incorporate important data processing, training, and 

explanation tools, there is still room to reflect on enhancing the reviewed AI pipelines 

based on the existing scope of literature. 

5. Discussion and Conclusions 

The overall aim of this paper is to systematically figure out the main research gaps 

with regard to the methodological aspects of the epidemiological interpretable machine 

learning models of SARS-CoV-2. In Section 3, we developed a conceptual framework for 

the methodical pipeline of AI-based model development. The conceptual framework 

serves as a guideline for the analysis of epidemiological AI research in Section 4. Subse-

quently, we summarize the main existing research gaps in XAI-based epidemiological 

models of SARS-CoV-2 as data, modeling, explanation, uncertainty, and generation. Fig-

ure 10 visualizes the summarization of the main research needs related to each of the 

aforementioned research gaps. 
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Figure 10. Main existing research needs in XAI-based epidemiological models of SARS-CoV-2. 

More detailed research necessities are elaborated in the following subsections. 

5.1. Data 

Currently, the problem of missing, unbalanced, and sparse data is handled to a lim-

ited extent, especially by applying oversampling techniques such as SMOTE. SMOTE 

works based on the k-nearest neighbors’ principle and the principles of interpolation. 

However, such models can lead to the generation of poor, new, or unseen data. Upcoming 

epidemiological research needs to explore using more complex methods based on the va-

riety of techniques mentioned in Section 3.1, especially generative approaches, e.g., AEs 

and GANs, to come up with a data scarcity issue. 

In addition, while the datasets used in the recent epidemiological AI research are 

scattered and diverse, assessing the impact of different applied data sources in the ana-

lyzed literature in Section 4 on the corresponding results in a comparative way is crucial. 

A variety of influencing factors are used to generate results. Key data used in the reviewed 

epidemiological studies in our study are aggregated in Table 4. 

Table 4. Overview of selected key data used in XAI-based epidemiological studies of SARS-CoV-2. 

Paper Selected Key Data  

[133] Compliance with NPIs, mobility patterns, work–life conflicts. 

[134] Income per capita, Population density. 

[142] Regional government policies. 

[76] Travel data, population density, medical endowments, environmental policy. 

[143] Socioeconomic disparities. 

[120] New cases, seasons, national lockdown, population vaccination number. 

[102] 
Population data, positive and total tests, number of cases and deaths, population 

vaccination number. 

[81] Population density, educational data, income data, household and housing data. 

[129] NPIs and how long which NPI has been in place. 

[18] 
Data on international travel bans, stringency of countries containment policies, 

Facebook users’ mobility data. 
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[130] 
NPIs, different virus variants, average daily temperature, population 

characteristics, health expenditures, cultural participation data. 

[135] 
Confirmed case and deaths, Google mobility reports, government restrictions, 

demographic data. 

[136] 
Geographic data, e.g., proximity to major health facilities, churches, shopping 

centers and supermarkets, Average annual traffic density. 

[131] Health services indexes, GDP, behavioral risk factors. 

[78] 
Demographic data, economic data, health care data, unemployment, education, 

emissions. 

[137] 
Air pollution, proximity to industrial facilities, neighborhood and housing 

characteristics, age, poverty rate. 

[61] 
Dietary habits, past comorbidity prevalence, environmental policy factors such 

as seasonally averaged temperature geolocation, development indices. 

[74] Sex, age, ethnicity, comorbidities, socioeconomic data. 

[92] NPIs, influenza virology surveillance.  

[132] Vaccination data, wearing masks, mobility, government interventions. 

[51] Weather, culture, travel, health, economical data, development data. 

[72] 
Unemployment data, population density, air and rail transportation, urban 

population, gross national income per capita. 

[127] 
Demographic, public health data, population density, transportation, pollution, 

sex ratio. 

[98] Mobility, climate data, demographic data, virus variant frequencies. 

[138] 
Weather situation in the location of the infected person, medRxiv, and bioRxiv 

SARS-CoV-2 literature databases. 

[139] Mobility data, death number, patients in ICU, hospitalization by region. 

Investigating the feasibility of integrating the above-mentioned data sources into 

comprehensive pipelines is a research need. This approach can lead to the creation of pre-

trained epidemiological models based on the combination of existing large SARS-CoV-2 

data sets. The resulting models can then be used for the next possible pandemic through 

transformer-based approaches based on the specific nature of new epidemic diseases or 

the corresponding specific spatial dimensions. The conceptual framework presented in 

Section 3 represents a starting point for tackling this research. 

5.2. Modelling 

Although the need to use deep learning models to address the spatial and temporal 

features of epidemics in epidemiological pipelines is urgent, we have found (in Section 4) 

that deep learning-based (as well as corresponding XAI) methods are not widely consid-

ered. The SEIR approaches can be enriched by using state-of-the art DL models. Currently, 

the time-dependent parameters of the applied SEIR models are often updated based on 

classic time series approaches or simplified probabilistic graph models [142]. Hybrid 

CNN-LSTM architectures as well as novel GNN approaches (presented in Section 3.4) are 

archetypal alternative approaches that can represent the time-varying character of SEIR 

model parameters in a robust and explainable manner. 

The usage of CNN-based architecture approaches in the context of clinical studies is 

practiced [144]. However, the potential of CNN-based models has so far not been substan-

tially exploited in XAI-based epidemiological studies. CNNs can be combined with the 

time-dependency-based architecture of existing LSTM models (mentioned in Section 4) to 

present multi-dimensional spatial-temporal representations of the pandemic. CNNs per-

form convolution operations in the upstream layers of the network, where the filters ex-

tract the most critical features to generate a feature map. The extracted features can not 

only be of spatial or temporal nature but also be used to recognize a range of government 
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policies, including PIs and NPIs in a certain spatial context (cf. Figure 9). Further research 

is needed to explore these options. 

In addition, other feature extraction methods mentioned in Section 3.2.2, such as 

knowledge embedding graphs, functional data analysis, and RFFs, have not been exam-

ined in epidemiological studies. By encoding the explanatory factors into dense and low-

dimensional vectors, these methods can potentially boost the predictive power of AI mod-

els. Whether the inclusion of these methods enhances (or decreases) the explanation 

power of the models needs to be further studied. However, as mentioned in Section 3, 

through utilizing further AI and XAI techniques, it is possible to shed light on the features 

with the strongest impact on feature extraction methods. In addition, applying explaina-

ble graphical approaches to selecting the relevant features (noted in Section 3.2.3) has not 

yet been considered in epidemiological research. 

Physics-informed neural networks (PINNs) [145] and neural ordinary differential 

equations (Neural ODEs) [146] are further noticeable modeling approaches that are not 

identified within the searched scope in Sections 3 and 4, but need to be considered more 

in future XAI-based epidemiologic research. PINNs comprise neural networks that can 

add the SEIR models and the corresponding constraints as a regularization term in the 

loss function. The regularization term penalizes the training when SEIR models and the 

corresponding constraints are disturbed [147,148]. Neural ODEs combine the notions of 

ordinary differential equations (ODEs) and deep learning by parameterizing the deriva-

tive of the hidden state in the neural network. Given that the SEIR model can be expressed 

by an intractable system of ordinary differential equations, neural ODEs can devise a rep-

resenting system that approximates the output of the model [149]. Future research shall 

demonstrate the added value of such approaches within future XAI-based epidemiologic 

research. 

5.3. Explanation 

The set of applied XAI methods shown in Section 4 is currently led by model-agnostic 

interpretation methods, especially SHAP-based approaches (see Figure 8 above). Other 

model-agnostic interpretation methods, i.e., surrogate meta-models introduced in Section 

3.6.2, such as symbolic meta modeling, FCA, and anchors are not well known in the epi-

demiological context. In addition, while the high-performance degree of intrinsically in-

terpretable approaches (especially the high performance of EBMs compared to non-intrin-

sically interpretable models) is indicated in the corresponding literature (cf. Table 2), such 

approaches are still not well known in the field of epidemiology. Moreover, the potential 

of model-specific interpretation methods (mentioned in Section 3.6.2) is, to date, not effec-

tively utilized. Model-specific explanations can better replicate the ML models’ corre-

sponding decision making than explanations created using model-agnostic methods. 

Model-specific CNN XAI approaches, such as gradient- and CAM-based methods, are 

proposed in papers belonging to the group of X-ray and CT imaging methods. The Grad-

CAM interpretation method uses the gradients of the target class flowing into the final 

convolutional layer and, hence, can be used to produce visual explanations for any CNN-

based model. It can be applied to the spatial-temporal epidemiological pipelines, too, in-

dicating further research is needed in this area. 

Case-based reasoning (CBR) techniques are another decent technique that can be 

adopted from the broad context of the literature in epidemiological XAI research. In the 

evidence-based medical domain, cases are the most specialized form of knowledge repre-

sentation, consisting of both general understanding and human experiences, taking into 

consideration differences between the current case and typical or known exceptional cases 

[150]. Prototyping for the explanation of decision making within the training networks in 

the clinical and imaging-based studies of SARS-CoV-2 has been explored through CBR-

based approaches [123,151,152]. However, this area of research has not yet been explored 

in an XAI-based epidemiological context. 
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Furthermore, comparing the explaining power and suitability of different XAI meth-

ods to epidemiological problems based on reliable criteria has not been elaborated in the 

existing literature. While some research, e.g., [153,154], has proposed guidelines for eval-

uating and scoring XAI methods from a human understanding point of view in medical 

image applications, neither a global evaluation schema nor specific evaluation metrics 

have been proposed as standard evaluation schemes so far. This needs to be further ad-

dressed in the medical AI literature as well as within the related epidemiological research. 

The relevant evaluation criteria must enable the epidemiological research to choose XAI 

methods, which not only efficiently convey the significance and magnitude of the effects of 

each pandemic explanatory factor in the spread of a pandemic but also efficiently explain 

the required time gaps, which could have been necessary to unfold the effect of each ex-

planatory factor. This research can also possibly be extended to examine the fusion and 

hybridization of the existing XAI models. 

5.4. Uncertainty 

At the onset of pandemic phases, where the available data are scarce, not only the 

task of forecasting but also the task of explaining and generating suitable epidemiological 

policies are required to be inherently of a non-deterministic nature. The effect of data scar-

city, both on model training and on model interpretation, is argued in Section 3.1 [19]. 

Scarce data necessitates the incorporation of uncertainty in the model training as well as 

in the model interpretation [17]. Incorporating uncertainty in model training and model 

interpretation level is practiced in computer vision literature. For example, [17] introduces 

ensemble models of pre-trained CNNs with large changes in CNN weights and applied 

uncertain-CAM approaches to their model explanation. In the epidemiological context, 

uncertainty is rarely performed based on Bayesian approaches [137]. Elaborating more on 

different non-deterministic approaches, including ensemble models (to best synthesize 

the predictions of multiple basic models) [93] and Bayesian neural networks (to infer dis-

tributions over the models’ weights and outputs) [155], can enhance future epidemiolog-

ical pipelines. 

5.5. Generation 

The important role generative DL models can play within the scope of epidemiolog-

ical studies is not elaborated on in the range of the reviewed SARS-CoV-2 literature stud-

ied in Section 4. Currently, most generative AI models are performed in the field of com-

puter vision as well as in medical studies. A comprehensive study on the role of GANs in 

addressing the challenges related to SARS-CoV-2 data scarcity and diagnosis is presented 

in [156]. The use of GANs in the context of SARS-CoV-2 diagnosis is further studied in 

[38,157]. Generative epidemiological pipelines can create government policies along with 

different counter-factual scenarios as the pandemic spreads beyond the forecasting mod-

els. However, further research is needed to develop reliable and accurate results with 

GANs. 
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Abbreviations 

ML abbreviations 

ADAB adaptive boosting model 

ANN artificial neural network 

AR autoregressive model 

BI-LSTM bidirectional long short-term memory network 

BN Bayesian network model 

CATB categorical boosting model 

CBR case-based reasoning 

CONV-LSTM convolutional long short term memory network  

DT decision tree 

EBM explainable boosting machine 

ENR elastic net regularization regression 

GAMS generalized additive model 

GAN generative network 

GB gradient boosting model 

KNN k-nearest neighbors model 

LGB light gradient boosting model 

LOG-R logistic regression 

LR linear regression 

LSTM long short-term memory network 

MLP multi-layer perception network 

NN neural network 

ODEs ordinary differential equations 

PINNs physics-informed neural networks 

RF random forest 

RNN recurrent neural network 

SEIR susceptible exposed infected recovered model 

SVM support vector machine 

XGB extreme gradient boosting model 

XAI abbreviations 

ALE accumulated local effects 

CW connection weights 

FCA formal concept analysis 

ICE individual conditional expectation 

IG integrated gradients 

LIME local interpretable model-agnostic explanation 

MCW modified connection weights 

MS most squares 

SHAP Shapley value-based explanation 

PDP partial dependence plot 

PFI permutation feature importance 

PGM probabilistic graphical model 

VB Variance-based model 
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