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ABSTRACT 
 

The necessity for efficient mitigation techniques is highlighted by the worldwide loss in plant output 
caused by biotic and abiotic stressors. Promising bioinoculants known as Plant Growth-Promoting 
Rhizobacteria (PGPR) have been shown to provide improved nutritional availability, hormone 
regulation, and stress relief, among other advantages. Through several mechanisms such as 
phytohormone synthesis and ACC deaminase activity, they combat many environmental stressors 
such as pests, diseases, temperature variations, heavy metals, salt, and drought. Current research 
emphasizes the function of PGPR in a number of tree species, such as Quercus suber, Haloxylon 
ammodendron, and Acacia gerrardii. For example, inoculating Acacia gerrardii with Bacillus subtilis 
causes notable alterations in gene expression, indicating possible benefits in salinity and drought 
tolerance. Furthermore, in some nurseries, Quercus suber seedling quality is improved by a blend 
of bacterial inoculum and ECM fungus. Additionally, PGPR show effectiveness against heavy metal 
toxicity and heat stress. Sustainable plant growth depends on utilizing stress-resistant PGPR 
strains and maximizing microbial diversity. While breeding and genetic engineering provide long-
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term fixes, microbial inoculation offers a quick and affordable substitute. Moreover, PGPR promote 
environmental sustainability by improving soil fertility through processes including nitrogen fixation 
and phosphorus solubilization. In order to enhance plant development that is environmentally 
sustainable and optimize PGPR-mediated stress tolerance, it is essential to conduct 
multidisciplinary research and field investigations. 

 
 

Keywords: Plant growth-promoting rhizobacteria (PGPR); abiotic stress; heat stress; sustainable plant 
growth; microbial diversity; environmental sustainability. 

 

1. INTRODUCTION 
 

The fundamental reason for the worldwide 
decline in plant productivity is a variety of biotic 
and abiotic stresses in the environment [1,2,3,4]. 
Pests and phytopathogens, such as nematodes, 
viruses, fungi, and insects, can cause biological 
stresses. On the other hand, abiotic stressors are 
mostly brought on by abiotic variables, such as 
temperatures, flooding, increasing levels of heavy 
metals, varying salt levels in the field, and water 
scarcity [5,6,7]. In addition to stressors, the 
availability of soil nutrients plays a role in tree 
growth and soil nutrient depletion as a result of 
excessive and frequent drainage as well as the 
widespread use of chemicals (pesticides, 
insecticides, and fertilizers). A damaging abiotic 
stressor, salinity affects approximately 6.73 
million hectares in India [8]. According to recent 
projections, an increase in drainage regions and 
poor management of water resources might 
cause the amount of salt-affected soils to triple to 
20 million hectares (m ha) by 2050 [9]. Soil 
salinity, caused by soluble salts, leads to nutrient 
deficiency in plants and affects soil properties 
[10,11]. Plants can respond by modifying their 
signal transduction pathways when their 
metabolism is upset. Drought stress can reduce 
the biomass and turgor pressure of plants 
[12,13,14,15]. The plant has evolved a variety of 
coping mechanisms to withstand the pressures it 
has encountered. The creation of better plant 
varieties might help mitigate the major biotic and 
abiotic challenges to some degree. However, it is 
expensive and takes a long time to produce new 
genotypes that are resistant to abiotic stressors. 
Consequently, to counteract the impacts of biotic 
and abiotic pressures, other solutions must be 
used [14,16]. Beneficial bacterial inoculation 
could be one of the most efficient biological 
management strategies for handling these abiotic 
stressors. 
 

Plant growth-promoting rhizobacteria (PGPR) are 
a component of biofertilizers, which improve 
plant growth by increasing nutrient availability, 
producing phytohormones, and serving as 
biocontrol agents against insects and 

phytopathogens. [17,18,19]. Other similar 
processes are examples of direct mechanisms 
[20,21]. An example of an indirect strategy is 
resistance to abiotic stress and control of plant 
pathogens [22]. Among the bacteria that 
comprise a dependable group of PGPR are the 
genera Acinetobacter, Agrobacterium, 
Arthobacte, Azotobacter, Azospirillum, 
Burkholderia, Bradyrhizobium, Rhizobium, 
Frankia, Serratia, Thiobacillus, Pseudomonas, 
and Bacillus [23]. Studies have shown that 
beneficial microbes alleviate abiotic stress 
through various strategies. Kushwaha et al. [24] 
reported that root-colonizing bacteria produce 
phytohormones that alleviated salinity-induced 
dormancy and elicited seedling growth. It has 
been discovered that N2 fixing bacteria isolated 
from Pinus contorta stems and needles improve 
inoculated seedlings' uptake of atmospheric N2 
in comparison to control seedlings [121]. 
Moreover, Kumar et al [25] showed that 
Pseudomonas sp. strainTR15a and Bacillus 
erophilus strain TR15c promoted growth in 
stressed plants by producing indole acetic acid 
(IAA), siderophores, and solubilizing phosphates. 
Microorganisms carrying ACC-deaminase 
promote root development by blocking the 
synthesis of ethylene. [26,27]. Reduced ethylene 
levels promoted root development and increased 
stressed plants' chances of surviving [28]. 
Microorganisms employ different strategies for 
stress tolerance [29,30].  Some secondary 
metabolites such as flavonoids, phytoalexins, 
phenylpropanoids, and carotenoids have been 
documented in stressed plants inoculated with 
microorganisms that helps the plants to tolerate 
the abiotic stress [31,32,33]. Despite variations in 
plant colonization by microorganisms, positive 
effects are possible. It has been shown that 
when microbes are isolated from harsh 
environmental stress conditions, the alleviation of 
abiotic stress is possible [34]. Hence, this review 
article discusses the beneficial effects of 
microbes on abiotically stressed plants and 
highlights the microbial strains that are effective 
at alleviating abiotic stress effects to deploy them 
under extreme environmental conditions. 
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2. ROLE OF PGPR IN PLANT GROWTH PROMOTION 
 
PGPR protects plants from salt stress by improving antioxidant defenses, creating siderophores and 
exopolysaccharides (EPS), controlling phytohormones, promoting osmolyte production, increasing 
mineral uptake, and managing phytopathogens [35,36] (Table 1).  According to Araújo et al [37] in 
certain nurseries, Quercus suber L. seedling quality was enhanced up to twofold by utilizing a 
combination of ECM fungus and bacterial inoculum (Suillus granulatus (L.) Roussel + Mesorhizobium 
sp.). Several species of halotolerant soil bacteria such as Arthrobacter, Azospirillum, Alcaligenes, 
Bacillus, Burkholderia, Enterobactor, Flavobacterium, Pseudomonas, and Rhizobium, have been 
reported to ameliorate salt stress in plants [38,39]. Their use as bio-inoculants is reported to increase 
soil organic matter and improve soil structure and water retention capacity. Apart from this, the use of 
PGPR in the form of bioinoculants is an eco-friendly and sustainable method [40]. 
 

 
 

Fig. 1. Schematic diagram represents the effect of PGPR on various abiotic and biotic stress 
 

3. METHODS FOR ALLEVIATING BIOTIC 
STRESSES USING PGPR AS A TOOL 

 
Plant-beneficial microbe interactions can 
enhance plant growth, health, and capacity to 
absorb nutrients. They can also increase a 
plant's resistance to several disease-causing 
microorganisms [41,42,43]. Direct interaction 
with the bioagents results in the manufacture of 
many plant growth hormones, such as kinetin, 
zeatin, 6-benzyl amino purine, diphenylurea, and 
thidi-azuron (TDZ)-type cytokinin, IAA- and IBA-
type auxins, gibberellic acid, and enzyme ACC 
deaminase. Several researchers have found that 
the presence of ACC deaminase decreased the 
amount of ethylene in the roots of growing plants 
[44,45,46]. Plants' tolerance to different stressors 
is aided by several other mechanisms, including 

symbiotic nitrogen fixation and the solubilization 
of minerals (phosphorus and potassium). Somal 
and Karnwal [42] conducted a comprehensive 
assessment of the literature regarding the 
beneficial effects of microorganisms in plant 
rhizospheres and their impact on plant growth 
through the optimization of stress resistance 
under unfavorable environmental circumstances. 
 

3.1 Plant Hormone Biosynthesis 
 
Hormone balance and host plant growth are 
significantly altered by PGPR colonization. Plants 
use phyto-hormones as messengers to manage 
different cellular processes and modulate cell 
functions [19]. These mechanisms involve the 
plant's reaction to pathogen interaction as well as 
abiotic and biotic stressors. Significant changes 
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in plant development are brought about by PGPR 
colonization. Among these modifications 
included, but were not restricted to, promoting 
development, changing the form of the roots and 
shoots, and generating bioactive compounds 
[47,48]. Plant physiologic functions, such as 
growth, differentiation, development, and 
stomata movement, are also regulated by 
phytohormones. PGPR facilitates the formation 
of roots by producing indole-acetic acid (IAA). 
IAA can be produced by more than 80% of 
rhizosphere-associated bacteria including 
Azosprillum on rhizoplane, Azotobacter, 
Enterobacter, Pseudomonas, and 
Staphylococcus species [49].  In contrast, 
phytopathogenic bacteria mainly utilize the indole 
acetamide pathway to produce IAA, influencing 
the development of tumors in plants [50,51]. In 
PGPR, the synthesis of IAA is one of the most 
crucial mechanisms for promoting plant 
development [52]. The biosynthesis of auxin is 
well conserved in plants and it is known that 
auxins also accelerate the production of xylem 
and roots [53]. Auxin promotes the creation of 
lateral roots by preventing root extension during 
development. After dividing into root primordia, 
which eventually develop into new lateral roots, 
activated endoderm pericycle cells [54,55,56]. 
Auxin biosynthesis, transport, and signaling 
control all of these lateral root development 
activities, including their initiation, growth, 
emergence, and elongation [57]. 
 

3.2 Biogenesis of ACC Deaminase 
Enzyme 

 

The hydrolase enzyme 1-aminocyclopropane-1-
carboxylate (ACC) deaminase requires pyridoxal 
5′ phosphate or PLP. ACC deaminase catalyzes 
the conversion of ACC, an ethylene precursor, 
into ammonia and alpha-ketobutyrate, hence 
decreasing the amount of ethylene produced in 
plant cells [58,59,60]. A plant's synthesis of 
ethylene can be increased by a variety of 
environmental stresses, including metal toxicity, 
salt, drought, salinity, high-temperature, UV 
radiation, and damage from nematodes and 
fungal pathogens [61,62]. Stress causes the 
generation of two peaks, the second of which is 
noticeably higher than the first. Stressors induce 
plants' ethylene concentration to rise, which in 
turn causes early aging, leaf abscission, lower 
production, and eventually the death of plants 
[63].  
 

PGPR that can synthesize ACC deaminase and 
Indole-3-Acetic Acid (IAA) are important. These 
advantageous bacteria can either live inside 

plant tissues as endophytes or colonize plant 
roots [64]. Plant root exudates, which are 
especially high in sugars, organic acids, amino 
acids, and tryptophan, provide them with food. 
Bacteria create IAA when tryptophan is present, 
and this enhances the amount of IAA produced 
by the host plant [65,66,67]. This process 
encourages cell growth and the formation of 
roots and shoots. Furthermore, IAA initiates the 
synthesis of ACC synthase, which is in charge of 
producing ACC. The plant ethylene precursor 
ACC is then partially broken down by bacterial 
ACC deaminase into ammonia and α-
ketobutyrate, which significantly reduces 
ethylene levels and helps to prevent growth 
restriction, early senescence, and plant damage. 
ACC deaminase activity precedes ACC oxidase 
activation, which converts ACC to ethylene, thus 
regulating ethylene levels in plants [68]. 
 

3.3 Biogenesis of IAA  
 
A plant growth regulator called indole acetic acid 
(IAA) is secreted by bacteria that live in the plant 
rhizosphere specially PGPR species, which are 
the principal producers [69]. It has been noted 
that the growth of bacteria that produce IAA is 
especially advantageous in salt- affected soils. 
Approximately 75% of the identified bacterial 
isolates are highly efficient in producing IAA 
[112]. There have been reports of IAA 
synthesizing efficiency and features in numerous 
rhizobacteria, pathogenic, symbiotic, and free-
living bacterial species. [70]. Tryptophan and 
tryptophan-independent metabolic pathways are 
among the many metabolic pathways that the 
rhizobacterial species can use to create IAA. 
However, the primary mechanism by which 
phytopathogenic bacteria create IAA is the indole 
acetamide pathway, which influences the 
development of plant tumors [1, 2,3,4]. 
 
IAA is produced by Azotobacter species at 
concentrations ranging from 2.09 to 33.28 
mg/mL, according to the literature [70,71,72]. 
Nevertheless, this value varies greatly depending 
on the species, the type of soil, and the nutrients 
available in the particular habitat. Azospirillum is 
one of the most efficient PGPRs in generating 
IAA although other bacteria from the genera 
Aeromonas, Burkholderia, Azotobacter, 
Enterobacter, Pseudomonas, Bacillus, and 
Rhizobium have also been shown to exhibit 
comparable activity ranging from 1.47 to 32.80 
mg/ml in Azotobacter and 5.34 to 53.2 mg/ml in 
Pseudomonas [73,74]. These species include the 
most common IAA-releasing strains, known to 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/enterobacter
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/pseudomonas
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impact the strength of the plants, as PGPR 
strains. Increased root and shoot lengths are two 
benefits of IAA for plants; they allow the plant to 
absorb more micronutrients from the surrounding 
soil. IAA is essential for plant development 
because it encourages tissue growth, cell 
division, and morphological specialization in 
response to shifting environmental factors           
[73]. 
 

3.4 PGPR Application to Combat Insect 
Pest  

 
To control pest infestations, a variety of chemical 
pesticides are used, but their effects on the 
environment and human health are worrisome. In 
addition to increasing plant productivity, certain 
bacteria protect against insect pests by 
producing virulence factors, metabolites, and 
pesticidal compounds through pathogenesis 
[75,76,77]. It has been shown that certain strains 
of Bacillus subtilis have bioinsecticidal action and 
release bioactive compounds into the 
rhizosphere [78]. One important strategy used by 
many PGPR is the production of volatile 
chemicals. As the first PGPR with insecticidal 
action, B. thuringiensis has been used against 
lepidopteran larvae as well as other insects. 
Pesticide alternatives have been investigated, 
including environmentally benign biological pest 
management techniques [79]. According to 
studies, Brevibacillus laterosporus generates 
bioactive substances that are useful against a 
variety of insect species, such as enzymes and 
antibiotics [112]. In addition, studies have looked 
into the possibility of using rhizobacteria like B. 
sphaericus and Bacillus pumilus to control white 
grubs [80,81,82,83,]. 

 
4. METHODS FOR ALLEVIATING 

ABIOTIC STRESSES USING PGPR AS 
A TOOL 

 
According to recent research, plants that are 
subjected to stressful conditions benefit from the 
presence of PGPRs as they synthesize proline. 
When Arthrobacter, Burkholderia, and Bacillus 
are inoculated under abiotic stress 
circumstances, researchers have shown that 
proline levels are raised [14,15]. Furthermore, 
research conducted by [83,84,47] indicate that 
plant hormones produced by microbes 
associated with roots have the potential for use 
in metabolic engineering to improve host 
resistance to abiotic stressors. 

4.1 Alleviating Heavy Metal Stress and 
Reduced Availability of Inorganic 
Nutrients 

 
Important nutrients for plant growth, such as 
potassium, copper, iron, zinc, and phosphorus, 
tend to stay largely stationary in soil. The 
conversion of insoluble phosphorus into soluble 
form is mostly dependent on plant exudates; 
bacteria involved in this process use the 
carbohydrates in the exudate of the roots as a 
source of carbon. [42,85]. Studies indicate that 
IAA treatment promotes the release of 
carbohydrates, which helps the soil mobilize 
phosphorus indirectly [86]. Inoculating maize with 
particular bacterial strains improves the plant's 
ability to absorb nutrients, especially potassium, 
phosphate, and nitrogen [87]. Apart from that, 
siderophores secreted by root-colonizing bacteria 
can help absorb different metals like copper, iron, 
and zinc [81]. Because heavy metal is non-
biodegradable and disrupts natural processes 
and food chains, it poses a serious 
environmental risk on a worldwide scale. 
Through processes like organic acid release, pH 
adjustment, and chelating agent generation, 
bioremediation microorganisms especially 
rhizospheric bacteria—play a critical role in 
reducing heavy metal toxicity [88, 89]. Reports 
highlight the bio-reduction of highly toxic Cr (VI) 
as a promising remediation strategy. Various 
bacterial species isolated from metal-
contaminated sites demonstrate potential for 
colonizing and adapting to metal-polluted 
environments, offering promising detoxification 
processes like bioaccumulation, biosorption, and 
oxidation-reduction [90,91,92,93]. 

 
4.2 Alleviation of Drought Stress 
 
PGPR increases plant resilience to abiotic 
stressors like drought by secreting osmolytes 
when there is a drought [94]. Osmolytes raise 
cellular osmotic potential and are produced by 
drought-tolerant plants in response to water 
shortage [95]. By modifying pathways linked to 
antioxidant defense, root shape, phytohormone 
activity, and osmolyte accumulation, these 
rhizobacteria—which are found in root 
exudates—help plants cope with environmental 
stressors. However, the length, intensity, stage of 
development, and kind of plant affected by the 
drought may have a substantial impact on the 
bacterial response. The increased production of 
biomass from roots and shoots in response to
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Table 1. PGPR showing their activities in various abiotic stresses 
 

Abiotic stresses PGPRs PGPR- mediated mechanisms 

Drought as stress B. aquimaris Indole acetic acid, Exopolysaccharides, ACC deaminase 
Bacillus sp.,Enterobacter sp., Pseudomons fluorescens, Indole acetic acid, Salicylic acid 
A. chroococcum N2 fixation, phosphorus solubilization, Antimicrobial compounds 
B. megaterium Polyamine secretion 
V. paradoxus ACC deaminase 
E. cloacae ACC deaminase 
B. licheniformis, Abscisic acid 
P. fluorescens, A. brasilense 
A. piechaudii 

ACC deaminase 

Salinity as stress 
 

A. aneurinilyticus, ACC deaminase, 
Paenibacillus sp. ACC deaminase, Salicylic acid 
B. amyloliquefaciens ACC deaminase 
Glutamicibacter sp. YD01 ACC deaminase, osmoregulators, ROS, acquisition of Na:K 
Bacillus sp., Azospirillum, A. brasilense, P. stutzeri Phytohormones, osmoregulators, ROS 
S. maltophilia Indole acetic acid, ACC deaminase 
A. vinelandii, A. lipoferum, B. circulans P. fluorescens,B. 
megaterium   and B. subtilis 

 
Auxin, gibberellins, kinetin, N2 fixation 

P. oryzihabitans Indole acetic acid, ACC deaminase 
Burkholderia Indole acetic acid, ACC deaminase, Salicylic acid 
Bacillus safensis Indole acetic acid, ACC deaminase 

Water as stress 
 

P. putida and P.fluorescens Indole acetic acid, ACC deaminase 
P. putida ACC deaminase 
Gluconacetobacter diazotrophicus Abscisic acid, Phytohormones 
Azospirillum spp. (Az19) Proline production 

Temperature 
as stress 
 

Bacillus spp. Abscisic acid 
Azotoformans sp. and Pseudomonas sp. Phosphate availability, N2 fixation 
P. fragi, P. proteolytica, P. chloropaphis Lowering chill injury, lipid peroxidation and ice-nucleating activity 
B. tequilensis Apoplastic antioxidant enzyme activities 

Heavy Metal 
as stress 

S. acidiscabies Siderophores 
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drought stress is likely mostly due to the 
synthesis of IAA by PGPR. In plant rhizospheres, 
ACC deaminase-producing bacteria modify 
ethylene signaling to prevent root dryness. 
Achromobacter piechaudii's ACC deaminase 
activity increases the biomass of the plant and is 
resistant to conditions when there is a shortage 
of water. [96]. Similar to Achromobacter 
piechaudii and Azospirillum brasilense, PGPR 
improves membrane stability and water 
consumption efficiency by reducing root dryness 
and increasing plant biomass [88,97]. 
Additionally, under drought stress, these bacteria 
raise the proline level in plant tissues, which is 
essential for preserving cell hydration status [98]. 
Additionally, PGPR generates phenolic 
compounds and salicylic acid, which function as 
signaling molecules to activate genes and 
secondary metabolites responsive to stress [99]. 
Pseudomonas putida GAP-P45 and other PGPR 
strains increase proline buildup through 
inoculation, which is essential for plant drought 
resistance [100]. Furthermore, in water-stressed 
maize, Bacillus thuringiensis increases the 
concentration of shoot proline [42]. All things 
considered, PGPR is essential for shielding 
plants from dry stress and encouraging growth 
and development. 
 

4.3 Alleviation of Salinity Stress 
 
More than 5% of the Earth's surface is impacted 
by salinity, a crucial abiotic component, as a 
result of natural processes. When salts come into 
direct contact with roots, they have adverse 
effects on plants that greatly hinder development 
and metabolism, including cellular toxicity and 
soil desiccation. Plant Growth-Promoting 
Rhizobacteria (PGPR) might lessen the severity 
of the negative effects of salinity on plant output 
by influencing the size of panicles, tillers, 
spikelets, and grains [101,102]. Plant physiology 
and biochemical features are positively impacted 
by the phytohormones produced by PGPR, such 
as gibberellic acid, IAA, IBA, ABA, and 
cytokinins. This leads to an enhanced capacity of 
plants to absorb nutrients, even in situations with 
elevated salinities. To mitigate the negative 
effects of salinity, PGPR invades plant roots and 
uses strategies such as chemotaxis, EPS, IAA, 
and ACC deaminase synthesis [101,102]. 
Gibberellic acid and cytokinins, two 
phytohormones generated by PGPR, improve 
plant physiology and nutrient absorption even in 
salinized settings. While Bacillus, Pseudomonas 
spp. and Streptomyces strains promote plant 
development and reduce salt stress, studies 

show that specific species like P. putida, 
P.aurantiaca, and P. chlororaphis produce IAA 
under sodium chloride stress [103,104]. 
Agrobacterium, Bacillus, Klebsiella, 
Pseudomonas, and Ochrobactrum sp. are 
among the rhizosphere's salt-tolerant bacteria 
that have been identified as showing potential in 
salt tolerance up to 10% NaCl levels [105,106]. 
To properly manage salt stress, it is imperative to 
investigate microbial diversity. 
 

4.4 Alleviation of Thermal Stress 
 
Excessive temperatures have an impact on 
various aspects of plant life cycles, including 
growth, fertilization, production, and germination. 
However, the degree and vulnerability of these 
effects depend on factors such as ambient 
circumstances, plant ancestry, duration, and 
intensity. Sun damage, discoloration, leaf 
defoliation, root and shoot development, and 
seed output are all lowered by heat stress. Heat-
tolerant bacteria, or HTB, appear to play a crucial 
part in how plants react to high temperatures, 
according to previous findings. A plant species' 
ability to reproduce and survive depends on the 
process of seed germination. Elevated 
temperatures during the imbibition of seeds may 
cause germination to be delayed or prevented, 
resulting in damaged or subpar seedlings as well 
as reduced growth and development of plants. 
HTB can counteract the adverse effects of 
elevated temperatures on seed germination. 
Some bacteria, like Ochrobactrum 
pseudogrignonense RJ12, Pseudomonas sp. 
RJ15, and Bacillus subtilis RJ46, can produce 
ACC deaminase, siderophores, IAA, 
phosphorous solubilization, and nitrogen fixation, 
which can increase the dry mass of treated 
plants, shoot and root development, and seed 
germination under osmotic stress conditions 
[107]. 
 

5. PGPR AND TREE DEVELOPMENT 
 
PGPR may impact the plant in two ways: first, by 
generating phytohormones, and second, by 
activating the host plant's signaling pathways. A 
direct role has been described for the production 
of phytohormones such as gibberellins, auxins, 
cytokinin, abscisic acid, nitogen fixation, and P 
liquification [108,109,110]. One example of an 
indirect mechanism in plants is the creation of 
HCN. Other examples include siderophores, 
volatile primary and secondary metabolites, 
antagonistic action, and induced systemic 
resistance to pathogens. Indirect mechanisms 
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also include nutrient competition. A bacteria 
could influence a plant's growth and 
development through any one of these 
strategies. Over the past few decades, attempts 
have been made in many different parts of the 
world to decrease the use of chemical pesticides 
and fertilizers by increasing the percentage of 
land under sustainable agriculture that uses 
PGPR [101,42,98]. In another study, Binucleate 
Rhizoctonia (BnR) inoculation significantly 
improved early growth of Scots pine seedlings in 
nitrogen-limited nursery soil after 86 days post-
inoculation. The treated seedlings exhibited 
increased root length and reduced root width 
compared to non-inoculated seedlings [122]. The 
C4 perennial succulent xerohalophyte Haloxylon 
ammodendron is recognized for its remarkable 
resistance to salt and drought. He et al [123] 
discovered a novel strain of salt-tolerant bacteria 
in the rhizosphere of this plant, called 
Pseudomonas sp. M30-35. Abiotic stress 
tolerance and plant growth promotion (PGP) 
features are linked to 34 genes that 
Pseudomonas sp. M30-35 were found to 
possess. PGPR bacterian strain of                
Bacillus subtilis inoculation induced significant 
changes in gene expression in Acacia gerrardii, 
including activation of transcription factors 
regulating stress-related genes, suggesting its 
potential in alleviating salinity and drought effects 
[124]. 
 

6. PGPR AND SOIL AMELIORATION 
 
PGPR, have been the subject of growing interest 
for several decades because of their potential to 
improve plant development and act as effective 
agents for managing plant stress. 
Microorganisms that are good for plants naturally 
live in. They take part in several soil activities 
that impact productivity, crop yields, and general 
plant health [113]. Many attempts have been 
undertaken to investigate the diversity, 
distribution, and behavior of indigenous soil 
microorganisms in soil habitats to understand 
how microbial inoculants function and how they 
affect soil health [114]. Growth-stimulating 
bacteria, like PGPR, can improve soil health 
through a variety of mechanisms, including the 
mineralization of soil organic matter, the 
breakdown of crop residues, the suppression of 
phytopathogens, nitrogen fixation,         
phosphate solubilization, heavy metal 
sequestering, and the production of 
phytohormones (i.e., indole acetic acid, 
gibberellins, or cytokinins) that allow plants to 
grow even in nutrient-deficient soils [115]. 

Eight bacterial taxa, including Acinetobacter, 
Pseudomonas, Massilia, Bacillus, Arthrobacter, 
Stenotrophomonas, Ochrobactrum, and 
Cupriavidus, were tested for their ability to 
solubilize phosphorus by Wan et al. [116]. 
Acinetobacter was found to have a remarkable 
capacity to solubilize phosphorus, which makes it 
a viable option for improving the fertility and 
quality of soil [117]. Small molecule organic acids 
secreted by phosphorus-solubilizing bacteria can 
dissolve inorganic phosphorus, as demonstrated 
by Liu et al. [118]. This process can modify soil 
characteristics and have an indirect effect on the 
rhizosphere's microbial community. Plant-
unavailable P can be dissolved in either 
inorganic (calcium phosphate) or organic (phytin) 
forms by bacteria such as Enterobacter cloacae, 
Pseudomonas pseudoalcaligenes, and Bacillus 
thuringiensis, according to research by Pantigoso 
et al. [119]. Kour et al. [120] assessed how well 
soil samples taken from the Lesser Himalayan 
ecosystem could solubilize a sizable amount of 
phosphorus. The bacteria included in the 
evaluation were Bacillus, Enterobacter, 
Pseudomonas, Staphylococcus, Acinetobacter, 
Klebsiella, and Proteus. Based on the results, it 
was possible that these bacteria could improve 
soil fertility and plant growth because of their 
exceptional ability to solubilize phosphorus[125-
127]. 
 

7. FUTURE PROSPECTUS 
 
Bacterial isolates from stress-prone habitats are 
more effective than those from stress-free 
environments in developing plant tolerance to 
abiotic stresses such as drought, salt, and heavy 
metals. This is particularly relevant in the context 
of sustainable environmental practices. It is 
necessary for researchers to carefully evaluate 
the stress-adaptive characteristics of Plant 
Growth-Promoting Rhizobacteria (PGPR) before 
utilizing them in fields subjected to biotic or 
abiotic challenges. The kind of soil and the 
particular strains employed affect how effective 
PGPR-mediated stress tolerance is. To expand 
our knowledge in this sector, more investigation 
is required, especially fieldwork involving 
specialized biofertilizer organisms under stress. 
Although there are ways to improve stress 
tolerance through genetic engineering and plant 
breeding, these methods are very time- and 
money-consuming. Plant stress mitigation using 
microbial inoculation appears to be a viable, 
economical, and eco-friendly solution that takes 
little time to achieve. Stress-resistant naturally 
occurring PGPR strains are very helpful for 
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nearby farmers, and using single or mixed 
effective PGPRs can help improve environmental 
sustainability. 
 

8. CONCLUSION 
 
In conclusion, the global decline in plant 
productivity due to biotic and abiotic stresses, 
exacerbated by factors like pests, diseases, 
temperature fluctuations, heavy metal 
accumulation, salt, and drought, underscores the 
urgent need for effective mitigation strategies. 
Plant Growth-Promoting Rhizobacteria (PGPR) 
emerge as promising bioinoculants, offering 
multiple benefits such as enhanced nutrient 
availability, hormone modulation, and stress 
alleviation. Through diverse mechanisms 
including phytohormone production, ACC 
deaminase activity, and osmolyte synthesis, 
PGPR mitigate abiotic stressors and counteract 
phytopathogens. Moreover, PGPR demonstrate 
potential in addressing thermal stress and heavy 
metal toxicity. Harnessing microbial diversity and 
leveraging stress-resistant PGPR strains are 
essential for sustainable plant growth. While 
genetic engineering and plant breeding offer 
long-term solutions, microbial inoculation 
presents a cost-effective and rapid alternative. 
Furthermore, PGPR play a crucial role in soil 
fertility enhancement through activities like 
phosphorus solubilization and nitrogen fixation, 
emphasizing their significance in promoting 
environmental sustainability. Moving forward, 
multidisciplinary research initiatives and field 
investigations using specialized biofertilizer 
organisms are imperative to maximize PGPR-
mediated stress tolerance and advance 
environmental sustainability in plant growth. 
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