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Abstract 
A means to develop a comparative assessment of the risks of available 
wastewater effluent disposal options on a local scale needs to be developed to 
help local decision-makers make decisions on options such as direct or indi-
rect potable reuse options. These options have garnered more interest as a 
result of water supply limitations in many urban areas. This risk assessment 
was developed from a risk assessment developed at the University of Miami 
in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse 
and injection wells were deemed to have the lowest risk in the most recent 
study by FAU.  However, the injection well option may not be available 
everywhere. As a result, a more local means to assess exposure risk is needed. 
This paper outlines the process to evaluate the public health risks associated 
with available disposal alternatives which may be very limited in some areas. 
The development of exposure pathways can help local decision-makers define 
the challenges, and support later expert level analysis upon which public 
health decisions are based. 
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1. Introduction 

Regulatory, political, and economic constraints have shaped wastewater man-
agement strategies throughout the United States. Historically the easiest means 
to dispose of wastewater is via the nearest river or stream. Such disposal goes back 
to Roman times. However, as the communities grew, the environmental degra-
dation caused by this practice became clearer, and regulations to eliminate raw 
wastewater disposal were legislated. With passage of the Clean Water Act, other 
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effluent management options were pursued, and regionalization became the 
standard. 

Today there are eight categories for waste disposal, none of which are availa-
ble in every location. The most common are septic tanks which are limited to 
rural areas, surface water disposal and various and reclamation for beneficial reuse 
(irrigation) although the latter has not generally been implemented anywhere 
where water supplies are not limited. In some, options like ocean outfall and Class 
I injection wells might be available. 

Bloetscher et al. [1] noted that there are studies that have “looked at risks re-
lated to wastewater disposal in agriculture [2] [3], tertiary treatment in surface 
water [4], injection wells [5], groundwater recharge [6] [7] and potable reuse [8] 
[9] [10] [11] [12],” but the closest to comparative risks outside Florida was per-
formed by Soller et al. [13]. Other assessments have been performed to evaluate 
the risks associated with water distribution systems and reclaimed water pro-
grams associated with viral pathogens [14]-[19], but these were neither compar-
ative assessments nor recent. 

The first comparative risk assessment of multiple wastewater disposal options 
was undertaken by the University of Miami (UM) in 2000. The analysis was a 
comparative assessment of the public health an ecological risks associated with 
three effluent disposal alternatives available to wastewater utilities in Southeast 
Florida: ocean discharges (300 MGD), Class I injection wells (300 MGD), and 
surface water discharges (although the practice was abandoned in the 1970s in 
south Florida) [20] [21] [22] [23]. The use of reclaimed water was specifically 
excluded. Class I injection wells were deemed to have the lowest relative risk of 
the three alternatives analyzed. 

A concurrent study conducted by Cadmus Group for USEPA in 2001 also 
found that in southeast Florida, Class I injection wells were the lowest risk as 
well, although in the Tampa area, the different depth and geology increase public 
health exposure. In the third study, Soller, et al. [12] compared risks from de 
facto reuse (surface water discharge), indirect potable reuse (IPR), and direct 
potable reuse (DPR) scenarios using their prior Quantitative Microbial Risk As-
sessment (QMRA) methodology and found direct potable reuse to have the low-
est risk in California. 

In Bloetscher et al. [1], six effluent disposal alternatives currently or poten-
tially available to wastewater utilities in Southeast Florida: Class I injection well, 
ocean outfalls, surface discharges, irrigation with reclaimed water, indirect and 
direct potable reuse. Differing levels of treatment were required for each option: 

1) Deep well injection utilizing secondary treatment plus filtration and 
high-level disinfection to the Boulder zone 3000 ft below the surface. 

2) Ocean outfalls utilizing secondary treatment and disinfection. 
3) Surface water (canal) discharges utilizing tertiary treatment (secondary 

wastewater treatment, filtration and nutrient removal plus ultraviolet disinfection). 
4) Reclaimed water for irrigation purposes (secondary treatment plus filtra-

tion and high-level disinfection). 
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5) Indirect potable reuse (full treatment with reverse osmosis, plus ultraviolet 
light and advanced oxidation with storage in the aquifer or a pond). 

6) Direct potable reuse using reverse osmosis, ultraviolet light and advanced 
oxidation prior to discharge to the headworks of a water treatment plant. 

Septic tanks are not a consideration in urban areas, so are not considered. One 
other option is snow—an option in high mountain areas in the winter that as-
sumes the same treatment as reclaimed water above, although UV is likely to be 
employed as opposed to chlorination. Table 1 outlines a comparison of options 
by some jurisdictions. 

2. Methods 

The concept for the development of the comparative (relative) risk assessment 
used in the UM and FAU studies is based on the predictive Bayesian compound 
Poisson model proposed previously by Englehardt [24]. In both Englehardt et al. 
[20] and Bloetscher et al. [1], a conceptual model of the operating environment 
was developed for each disposal option. Elements of the conceptual models in-
cluded regulatory constraints, hydrogeological and hydrological considerations, 
and potential pathways of health and ecological exposure. Water quality gath-
ered from the utility effluents and receiving water was compared to applicable 
disposal and drinking water standards (see Table 2). 

Figures 1-12 show the conceptual models used in Bloetscher, et al. [1]—odd 
numbered figures) with applicable exposure routes associated with each disposal 
method (even numbered tree diagram figures), with the treatment assumptions 
noted above. However, with these methods, many of the nodes provided mini-
mal impact. The direct potable reuse scenario assumes the use of filtration, mi-
crofiltration, reverse osmosis, ultraviolet light, and peroxide, prior to discharge 
to a water plant for treatment (see Figure 11). The only exposure is customers of 
the drinking water utility. Impacts from the water distribution piping are not 
part of the analysis since they are not fully controllable once the water leaves the 
treatment plant. 
 
Table 1. Examples of wastewater disposal options. 

Comparison IW OO Reuse IRR PR SW Snow 

SE FL x x x x x  

Colorado   x x x* x 

Texas x  x x x***  

AA   x x x  

Central FL   x x x  

Detroit   ** ** x  

*WQ might need to be must greater than AWT for some discharges; **Lacks need for this 
option; ***recreation exposure. 
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Figure 1. Ocean outfall disposal method route diagram (from [23]). 

 

 
Figure 2. Ocean outfall risk tree diagram (from [23]). 

 

 
Figure 3. Injection well disposal method route diagram 9 from [23]). 
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Figure 4. Injection well tree risk tree diagram (from [23]). 

 

 
Figure 5. Surface water disposal method route diagram (from [23]). 

 

 
Figure 6. Surface water risk tree diagram (from Bloetscher [23]). 
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Figure 7. Reuse irrigation disposal method route diagram (from [2]). 

 

 
Figure 8. Reuse irrigation risk tree diagram (from [2]). 

 

 
Figure 9. Indirect potable reuse aquifer injection disposal method route di-
agram (from [2]). 
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Figure 10. Indirect potable reuse aquifer injection risk tree diagram from [1]). 

 

 
Figure 11. Potable reuse disposal method route diagram (from [1]). 

 

 
Figure 12. Potable reuse risk tree diagram (from [1]). 

Contaminants of Concern 

Initial discussions among the experts focused on the conceptual models dis-
cussed above for the technological and environmental setting for wastewater 
disposal in Southeast Florida. An extensive literature review was gathered and 
discussions about contaminants of concern were held. “Risk” for this study was 
defined in terms of the number and duration of periods when public health ex-
posure triggers were exceeded. projected for each alternative. The following pub-
lic health exposure triggers were used [1]: 

1) Rotavirus—zero CFU/mL (based on Bloetscher [25] and team microbiolo-
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gists) 
2) PFAS—5 ng/L (per California law—note this effort was conducted before 

the USEPA proposed 4 ng/L regulation) 
3) Total Phosphorous—10 mg/L environmental exposure (as used in both 

prior studies) 
4) 17b estradiol—0.5 ng/L—the known impact on fish 
While these were used for Bloetscher et al. [1], local conditions may dictate 

what public health concerns might be appropriate. Norovirus has been suggested 
as a replacement for rotavirus [13]. A different microbiological agent might be 
considered in other jurisdictions such as fecal or total coliforms which are faster 
to detect. Caffeine, ibuprofen and acetaminophen are also options to contami-
nants. 

Expert opinion can be solicited for input on the model developed using a 
modified Delphi method. The modified Delphi method used in the UM and 
FAU studies is described in Bloetscher et al. [1] [23]. The Delphi technique is a 
methodology developed by the Rand Corporation in 1948 to elicit expert opin-
ion in a systematic way in order to gather subjective information as data. Apost-
alakis [26] anticipated that the use of expert opinions in safety studies and risk 
management would receive increased attention. The benefits of a Delphi solici-
tation are that it is generally fast, inexpensive, easy to understand, versatile, and 
can be applied wherever expert opinion is believed to exist [27]. The method 
used in this study was a modified version of Delphi, aimed at obtaining a distri-
bution of opinions rather than consensus, and with experts answering question-
naires individually rather than as a group. 

For the modified Delphi each node and each discharge alternative, the re-
search team was asked four questions: 

1) How many times in 30 years will the public health exposure trigger be ex-
ceeded at the receiving node? (One such exceedance event may last any number 
of days.) 

2) What is your confidence in the numbers of exceedance events you entered? 
Please select low (L), medium (M) or high (H). 

3) How many days will exceedance events last (minimum, mean, maximum)? 
4) What is your confidence in the event sizes you entered? Please select from 

low (L), medium (M) or high (H). 
For each disposal option and each constituent, the results calculated for each 

node were added to obtain an overall believed number of days as a percentage of 
the total timeframe of 10,950 days (30 years). The means for creating these re-
sults was based on obtaining the probability distribution for risks and develop-
ing a robust risk assessment is described by Shannon [28]: “The probability dis-
tribution having maximum entropy (uncertainty) over any finite range of real 
values is the uniform distribution over that range.” Predictive Bayesian inference 
is one means of addressing the challenge of assessing uncertainty in risk estima-
tion and has been previously applied [29] [30] [31] [32] [33]. The approach, 
successful in previous projects, involves the assignment of probability distribu-
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tions, termed sampling distributions, to uncertain/variable parameters affecting 
the risk of a planning alternative. 

The Poisson distribution is known to predict the number of incidents over a 
period [34]. The Pareto distribution is known to predict incident size ([23] [29] 
[30] [31] [32] [35]. Probability distributions, termed prior distributions, can 
then be assigned to the parameters of the sampling distributions. The predictive 
Bayesian approach used here is identical to that from the UM study [20]. 

Incidents have been suggested to be represented as Poisson distributions [23] 
[30] [31] [32] [33]. A Poisson distribution is a discrete distribution that can be 
used to model rare-events with a gamma prior distribution for λ [36]. Using this 
method, Table 3 shows the results of the programs for the south Florida example 
(run for reach node). Ultimately, the injection wells and direct potable reuse op-
tions were the lowest risk. The similarity in risk from these two options was un-
anticipated but, these low relative risks are likely due to the advanced treatment 
used for direct potable reuse and the lack of public exposure. 

3. Results 

Reviewing the results of the FAU study provides some insight into the simplifi-
cation of the process. First, very few places will have 6 available alternatives, 
thereby simplifying the process considerably. In addition, not all nodes are sig-
nificant. In Table 3, the red items indicate the expert opinion is less than the 
minimum of 10−9. As a result, they can be ignored since they fall below the 
minimum risk permitted in the study (10−9). The orange boxes indicate risk ex-
posures that are less than 1% contributions. As a result, they can also likely be 
ignored. Yellow boxes are 10 times less and therefore probably should not be 
ignored. Figures 13-18 show each of the decision trees with the important risks 
highlighted. This can greatly simplify the analysis particularly as an initial analy-
sis that does not require the extensive literature review and data gathering an 
expert opinion might need. As noted in Figures 13-18, the process simplifies 
considerably when many nodes are not required. 

The modified Delphi can also be created at two levels. For starting purposes at 
the local level, a staff can use the models to develop “what if” scenarios and 
measure the breadth of uncertainty. However, to conduct a public-facing study, 
experts should be employed.  

During the FAU study [1], for most of the options, there was a node or two 
that carried the weight many times others were far lower magnitudes and can 
probably be ignored. For example, the injection wells nodes of significant public 
health exposure were ASR wells that did not treat the water (a finding from 
[23]). For ocean outfalls, the issue was beach swimming. The exposure pathway 
can vary considerably—in south Florida, no one is really swimming in the ca-
nals, but this may not be true in places where the water is more recreation (Tex-
as) or high quality waters (Colorado mountains, N. England). As the options 
may vary, the need to pursue options varies as well. Likewise, data on contami-
nants needs careful consideration. PFAS data was too scattered to provide a  
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Table 3. Comparison of total believed days failing to meet trigger over 30 years to other options (from Bloetscher, et al. 2024). 

Rotavirus Contaminant Ocean Outfalls Surface Irr Reuse 
Indirect  

Potable Reuse 
Potable Reuse 

Injection Wells 

Rotavirus 6E+00 2E+01 2E+01 3E+00 7E−01 

PFAS 4E+01 3E+01 4E+01 4E+00 4E+00 

Total Phosphorous 4E+00 4E+00 6E+00 3E+00 3E−01 

Estrogen 3E+01 1E+01 2E+01 3E+00 6E−01 

Ocean Outfalls 

Rotavirus  3E+00 4E+00 5E−01 1E−01 

PFAS  8E−01 1E+00 1E−01 1E−01 

Total Phosphorous  1E+00 2E+00 7E−01 7E−02 

Estrogen  4E-01 5E−01 8E−02 2E−02 

Surface 

Rotavirus   1E+00 2E−01 3E−02 

PFAS   1E+00 1E−01 1E−01 

Total Phosphorous   2E+00 7E−01 7E−02 

Estrogen   1E+00 2E−01 5E−02 

Irr Reuse 

Rotavirus    1E−01 3E−02 

PFAS    1E−01 9E−02 

Total Phosphorous    4E−01 4E−02 

Estrogen    2E−01 4E−02 

Direct Potable Reuse 

Rotavirus     2E−01 

PFAS     8E−01 

Total Phosphorous     1E−01 

Estrogen     2E−01 

*Negative exponent indicates the risk numerator is lower disposal option than the denominator disposal option. 

 

 
Figure 13. Significant nodes for injection wells. 
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Figure 14. Significant nodes for ocean outfall discharges. 

 

 
Figure 15. Significant exposure nodes for Cana/surface water discharges. 

 

 
Figure 16. Significant exposure nodes for reuse irrigation. 

https://doi.org/10.4236/jwarp.2024.166022


F. Bloetscher et al. 
 

 

DOI: 10.4236/jwarp.2024.166022 408 Journal of Water Resource and Protection 
 

 
Figure 17. Significant exposure nodes for indirect potable reuse. 

 

 
Figure 18. Significant exposure nodes for direct potable reuse. 

 
good answer, the FAU study did not have enough data to really evaluate this 
properly. Nutrient pathways are not really an issue in south Flroida, but they are 
in other communities with the caveat of whether they are ecological or public 
health impacts? Surrogates for nutrients, like cyanobacteria might be useful for 
ecological risks. 

Development of the initial process would include asking a series of question to 
reduce the number of scenarios offered: 

1) Do you have access to ocean disposal? 
2) Do you have access to Class I injection zone available for disposal? 
3) Do you need to use reclaimed water for water supply purposes? 
4) Do you make snow for skiing using wastewater (or might you)? 
5) Are there recreational uses downstream of your discharge point? 
6) Is swimming in local waterways where wastewater is discharged a signifi-

cant issue? 
7) Is fish consumption from nearby waterways that receive wastewater dispos-

al significant in your community? 
Many nodes can be excluded at this point. 
The process to develop such a tool is outlined as follows: 
1) Challenges to overcome 

a) Direct comparisons 
b) Localized effort requires a lot of time from experts 
c) Finding experts 
d) Simplifying the process 
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Table 4. Summary of Modeling Results by node and constituent. 

 Injection Well  Ocean Outfall  Surficial Recharge  Reuse Irrigation  Indirect Potable Reuse  Direct Potable Reuse 

Rotavirus 

1.n.1.1.1 2.71E−13  2.n.2.1 2.10E−12  3.2.n.1.1 6.40E−11  4.1.2 6.80E−08  5.1.3.1.n 1.33E−07  6.1.1 7.80E−10 

1.n.1.1.2.1 5.01E−12  2.n.1.1.1.1 8.31E−13  3.2.n.1.2 7.81E−08  4.1.1.1.1.1.1 2.32E−07  5.1.1.1.1 8.23E−07    

1.n.1.2.1.1 4.39E−12  2.n.1.1.1.2 2.03E−07  3.3.n.1.1.1 2.22E−08  4.1.1.1.1.1.2 5.95E−08  5.1.1.1.2. 3.97E−09    

1.n.1.3 2.23E−11  2.n.3.2.1 3.54E−06  3.3.n.1.1.2 5.12E−07  4.1.1.1.1.2.1 5.11E−07  5.1.1.2.1 5.93E−08    

1.n.1.4 6.24E−13  2.n.3.2.2 6.18E−08  3.3.n.2.1 7.07E−08  4.1.1.1.1.2.2 1.92E−06  5.1.1.2.2 3.26E−07    

1.n.1.1.1.1 6.70E−12  2.n.3.2.3 1.11E−06  3.3.n.2.2 3.45E−09  4.1.1.1.1.2.3 4.73E−07  5.1.1.2.3 2.85E−06    

1.n.1.2 2.10E−12  2.n.3.1.1.1 7.55E−07  3.3.n.2.3 1.73E−09  4.1.1.3.2 9.90E−07  5.1.2.1 2.55E−07    

1.2.1 4.58E−09  2.n.3.1.1.2 4.58E−07  3.2.n.2.1.1 1.38E−07  4.1.1.3.1 7.52E−07  5.1.2.2 2.20E−07    

1.2.1.1 6.53E−13  2.1 4.94E−06     4.1.1.3 3.13E−07       

    2.n.2 6.42E−07             

Summation of Delphi: 4.62353E−09   1.1708E−05   8.26123E−07   5.31489E−06   4.66852E−06   7.7982E−10  

                  

 Injection Well  Ocean Outfall  Surficial Recharge  Reuse Irrigation  Indirect Potable Reuse  Direct Potable Reuse 

PFAS 

1.n.1.1.1 1.00E−11  2.n.2.1 9.77E−08  3.2.n.1.1 8.41E−11  4.1.2 1.75E−07  5.1.3.1.n 6.80E−07  6.1.1 3.43E−06 

1.n.1.1.2.1 3.66E−11  2.n.1.1.1.1 1.80E−06  3.2.n.1.2 8.24E−07  4.1.1.1.1.1.1 5.62E−07  5.1.1.1.1 1.49E−07    

1.n.1.2.1.1 1.08E−08  2.n.1.1.1.2 6.64E−07  3.3.n.1.1.1 1.14E−06  4.1.1.1.1.1.2 5.04E−06  5.1.1.1.2. 1.41E−09    

1.n.1.3 1.17E−08  2.n.3.2.1 8.56E−08  3.3.n.1.1.2 6.48E−07  4.1.1.1.1.2.1 1.14E−06  5.1.1.2.1 2.82E−08    

1.n.1.4 2.91E−09  2.n.3.2.2 1.15E−06  3.3.n.2.1 9.88E−06  4.1.1.1.1.2.2 1.96E−07  5.1.1.2.2 2.12E−11    

1.n.1.1.1.1 4.41E−11  2.n.3.2.3 1.71E−11  3.3.n.2.2 5.32E−08  4.1.1.1.1.2.3 1.24E−07  5.1.1.2.3 1.69E−10    

1.n.1.2 1.70E−12  2.n.3.1.1.1 2.23E−06  3.3.n.2.3 4.23E−11  4.1.1.3.2 9.72E−09  5.1.2.1 5.79E−11    

1.2.1 1.00E−12  2.n.3.1.1.2 9.79E−06  3.2.n.2.1.1 4.57E−06  4.1.1.3.1 2.60E−06  5.1.2.2 5.31E−10    

1.2.1.1 1.77E−11  2.1 5.36E−06     4.1.1.3 5.74E−06       

    2.n.2 5.99E−06             

Summation of Delphi: 2.55799E−08   2.71685E−05   1.71189E−05   1.558E−05   8.59003E−07   0.000003429  

                  

 Injection Well  Ocean Outfall  Surficial Recharge  Reuse Irrigation  Indirect Potable Reuse  Direct Potable Reuse 

TP 

1.n.1.1.1 2.64E−09  2.n.2.1 2.36E−12  3.2.n.1.1 5.03E−09  4.1.2 5.95E−08  5.1.3.1.n 1.40E−09  6.1.1 1.96E−10 

1.n.1.1.2.1 2.79E−12  2.n.1.1.1.1 4.61E−11  3.2.n.1.2 6.69E−09  4.1.1.1.1.1.1 7.41E−09  5.1.1.1.1 1.56E−10    

1.n.1.2.1.1 7.57E−13  2.n.1.1.1.2 6.13E−10  3.3.n.1.1.1 3.51E−08  4.1.1.1.1.1.2 2.40E−09  5.1.1.1.2. 1.44E−07    

1.n.1.3 1.55E−09  2.n.3.2.1 1.38E−07  3.3.n.1.1.2 3.31E−09  4.1.1.1.1.2.1 3.78E−09  5.1.1.2.1 6.07E−10    

1.n.1.4 1.57E−10  2.n.3.2.2 3.44E−11  3.3.n.2.1 1.40E−08  4.1.1.1.1.2.2 4.22E−10  5.1.1.2.2 5.75E−09    

1.n.1.1.1.1 7.80E−12  2.n.3.2.3 6.40E−12  3.3.n.2.2 4.91E−09  4.1.1.1.1.2.3 1.18E−08  5.1.1.2.3 1.02E−08    

1.n.1.2 2.78E−11  2.n.3.1.1.1 2.31E−11  3.3.n.2.3 1.33E−09  4.1.1.3.2 5.39E−09  5.1.2.1 2.79E−08    

1.2.1 4.02E−11  2.n.3.1.1.2 8.37E−11  3.2.n.2.1.1 2.67E−06  4.1.1.3.1 6.53E−08  5.1.2.2 2.58E−07    

1.2.1.1 7.25E−11  2.1 1.40E−07     4.1.1.3 1.33E−07       

    2.n.2 1.70E−07             

Summation of Delphi: 4.50241E−09   4.49269E−07   2.73742E−06   2.89233E−07   4.47737E−07   1.9614E−10  
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Continued 

 Injection Well  Ocean Outfall  Surficial Recharge  Reuse Irrigation  Indirect Potable Reuse  Direct Potable Reuse 

Synthetic Estrogen 
Synthetic Estrogen 

1.n.1.1.1 9.03E−13  2.n.2.1 4.87E−07  3.2.n.1.1 9.69E−07  4.1.2 1.74E−08  5.1.3.1.n 8.84E−08  6.1.1 2.09E−08 

1.n.1.1.2.1 4.44E−13  2.n.1.1.1.1 3.97E−06  3.2.n.1.2 5.43E−08  4.1.1.1.1.1.1 6.97E−08  5.1.1.1.1 3.73E−07    

1.n.1.2.1.1 4.33E−12  2.n.1.1.1.2 1.99E−05  3.3.n.1.1.1 8.45E−07  4.1.1.1.1.1.2 6.45E−07  5.1.1.1.2. 5.90E−11    

1.n.1.3 6.90E−09  2.n.3.2.1 7.70E−07  3.3.n.1.1.2 7.00E−08  4.1.1.1.1.2.1 2.23E−07  5.1.1.2.1 3.73E−09    

1.n.1.4 3.97E−11  2.n.3.2.2 2.27E−06  3.3.n.2.1 2.73E−08  4.1.1.1.1.2.2 7.74E−07  5.1.1.2.2 3.90E−11    

1.n.1.1.1.1 1.33E−09  2.n.3.2.3 4.84E−10  3.3.n.2.2 6.41E−06  4.1.1.1.1.2.3 5.40E−08  5.1.1.2.3 1.40E−10    

1.n.1.2 2.66E−12  2.n.3.1.1.1 2.15E−06  3.3.n.2.3 3.39E−07  4.1.1.3.2 1.14E−07  5.1.2.1 1.18E−10    

1.2.1 1.09E−11  2.n.3.1.1.2 4.03E−07  3.2.n.2.1.1 1.44E−06  4.1.1.3.1 1.10E−06  5.1.2.2 1.05E−10    

1.2.1.1 1.58E−12  2.1 3.42E−06     4.1.1.3 2.66E−07       

    2.n.2 1.14E−07             

Summation of Delphi: 8.28879E−09   3.34792E−05   1.01592E−05   3.26331E−06   4.65863E−07   2.0895E−08  

 
i) How to eliminate nodes (and maybe some are gone to start) 
ii) Identify nodes that are locally relevant 

e) Identify treatment requirements that apply 
2) Create a two track excel based program  

a) Your options 
b) Your treatment 
c) Your WQ concerns 
d) Your pathways 
e) Track 1—the primary driver only (Staff based) 
f) Track 2—experts—may include others nodes deemed relevant by experts 

i) How to find the experts or is that us? Need local help as well 
g) Include all nodes but “zero” out the unneeded ones 
h) Develop a process to solicit responses from experts 

For a more formal process, expert opinion and data are needed. It is suggested 
that all yellow, and likely many orange nodes on Table 4 should be retained, at 
least initially. Finding the experts is one challenge as some knowledge of local 
conditions and regulatory contacts is also relevant. 

4. Conclusions 

The FAU [1] and UM [20] studies provide a pathway to an informed risk as-
sessment process of wastewater disposal and reuse options. While the FAU and 
UM studies are limited to south Florida, the methods can be translated else-
where. The ability to limit options and nodes reduces the effort required consid-
erably. In comparing the FAU study to this effort, eliminating the red, orange 
and yellow boxes in Table 4, created minimal impact and no changes in the 
magnitude of difference between options. Hence the concept has potential. 

Note this effort is not intended to address risks associated with issues in the 
water distribution systems. Such problems are not related to the wastewater dis-
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posal options. The public’s perception of wastewater treatment and reclaimed 
water also is not something measurable. A public relations effort is needed to 
address the public’s perception of the “Toilet to Tap” concern. 
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